


losers (those who do not). SP fluctuates in accordance with the
highly volatile market supply-demand curve at the granularity
of inter-price time. Whenever SP exceeds customers’ bids,
out-of-bid events are triggered, and Amazon may terminate
out-of-bid instances without notification. When an out-of-bid
event occurs, bidders whose bids are below SP lose their
access to instances and need to submit bids again for instance
access, while other bidders remain in the market with instance
access. Despite the fact that customers’ bids differ, those
whose bids exceed the spot price pay the same price for each
instance, which is typically lower than their bids. Such form
of an auction is referred to as a single-price auction [14].
Two forms of single-price auction, namely, uniform-price
auction [18] [20] and optimal single-price auction [14] have
been widely used in mechanism design, and in Section II, we
discuss respective pros and cons when applying them to a
DCSM.
Although ASM provides customers with inexpensive ser-

vice, such monetary benefit is attained at the cost of service
reliability, since requests could be terminated by Amazon with-
out notification. Thus, in addition to revenue and efficiency,
which are commonly used metrics to evaluate markets, relia-
bility is also a critical performance metric in DCSM. Indeed,
the discussions in [5], indicates that both, the customers and
Amazon are looking for a more reliable ASM.
Unfortunately, the mechanism adopted in ASM is not pub-

licly known, and hence customers are left guessing how ASM
works. Recent work [11], [25] and [17] has been conducted
to discover the underlying mechanism, and it shows that ASM
has the following problems.
• Pricing mechanism is unknown to customers, and thus the

use of ASM is complicated by the fact that a good bidding
strategy heavily relies on an understanding of strategies of
other buyers as well as an estimate of available instances,
both of which are difficult to obtain. In addition, with
current ASM, malicious bidders have incentives to game
the system through their bids [6].

• Once instances are obtained, winners are unable to
change their bids. For example, given the opportunity of
adjusting their bids, bidders are likely to increase their
bids when jobs are near completion, to avoid last-minute
service interruption. At the same time, Amazon might be
able to increase its revenue by allowing winners to pay
higher price at later stage of job execution.

Towards this end, we argue that a truthful auction mechanism
is more attractive in DCSM to avoid complications mentioned
above. Particularly, we propose a truthful mechanism adapted
from repeated uniform price auction. In this mechanism,
observing that bidders are likely to adjust true valuation during
the job’s execution, we incorporate bidding flexibility in our
mechanism by allowing bid adjustments for all bidders. To
evaluate how bidding flexibility helps improve the perfor-
mance of our mechanism, a bidding adjustment model is
discussed in Section III-D; the use of this model is validated
in Section V.
Evaluation of the proposed mechanism is conducted using

four metrics, namely revenue, efficiency, slowdown and waste.
The first two metrics are commonly used metrics in auction
theory, and the last two metrics we define in the context of
DCSM in evaluation of service reliability. We prove that a
uniform price achieves optimal efficiency among all single-
price auctions in DCSMs. A comprehensive comparison study
is conducted to show, the performance improvements gained
using the four metrics stated above, over the mechanism used
in ASM . Parameter tuning studies are also performed to refine
the performance of our mechanism. Our contributions can be
summarized as follows:

• We propose a truthful mechanism based on a uniform
price auction, which eliminates the complications and
malicious behaviors that exist in the current mechanism
in ASM. In the proposed mechanism, to achieve bet-
ter performance, the flexibility of adjusting bids during
job execution is incorporated, and a bidding adjustment
model is introduced accordingly to make use of such
flexibility and validated in Section V.

• We define and introduce two new performance metrics,
namely, slowdown and waste, to better reflect the defined
Quality of Service in DCSM.

• We prove that a uniform price action achieves optimal
efficiency among all single-price auctions in DCSMs, and
comprehensive comparison studies are conducted to show
the performance improvements over the mechanism used
in ASM using the four metrics mentioned above. The
results show that (1) The bidding adjustment model helps
increase the revenue by an average of 5.4%, and decrease
the slowdown and waste by an average of 4.9% and 5.7%,
respectively; (2) Our model with a repeated uniform price
auction outperforms the current Amazon Spot Market by
averagely 14.2% in revenue, 24.3% in efficiency, 13.6%
in slowdown, and by 14.1% in waste.

II. BACKGROUND

In this section we present fundamentals in auction theory
as background needed in the remainder of the paper.
Definition 1: An auction is called incentive-compatible if,

for every player i, the dominant strategy is to provide the true
valuation vi. Incentive compatibility is also called strategy-
proofness or truthfulness [21].
Definition 2: In a single-price auction, each winner pays

the same per unit price.
A single-price auction is commonly used in digital goods

markets, where identical units of a homogeneous commodity
are sold for the same price. There are two commonly used
forms of a single-price auction, namely, uniform price auction
and optimal single-price auction, depending on how an auc-
tioneer determines the selling price. Suppose we have n cus-
tomers bidding for M units in a uniform price auction. Each
bidder has a demand of mi units, and the bid for each unit is
bi. Assume, without loss of generality, b1 ≥ b2 ≥ · · · ≥ bn.
Definition 3: Let ku be the smallest number such that∑
1≤i≤ku mi > M , in the uniform-price auction, the unit
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selling price is bk
u

, i.e., the highest losing bid.2 All bids that
are greater than bk

u

will be accepted, and all other bids will
be rejected.
It has been proven that a uniform-price auction is always

incentive-compatible, if each bidder is only allowed to bid for
one unit. But, truthfulness fails in the multiple-demand case
since bidders have monetary incentives to lower their actual
bids, which is termed demand reduction [18]. It is interesting
to consider the case where

∑
1≤i≤n m

i < M (i.e., ku does
not exist). We will return to this issue in Section III.
Definition 4: Let kopt = argmax1≤i≤n (i− 1) · bi , in the

optimal single-price auction, the unit selling price is bk
opt

. All
bids that are greater than bk

opt

will be accepted, and all other
bids will be rejected.
We argue that an optimal single-price auction is not truthful

even in the context of a single-unit demand. As an illustrating
example, consider three bidders A, B, and C who bid $10, $5,
and $2, respectively, each for a single instance. The utility
function of each bidder is defined as 0 for losers, and the
difference between true valuation and selling price for winners.
Here, with the optimal single-price auction, one instance will
be sold for a revenue of $5, where only bidder A is the winner,
and bidder B has a utility of $0. However, if the second highest
bidder B decreases its bid from $5 to $3, two instances are
sold for a revenue of $4, where B would win one instance at
the cost of $2, with a utility of $3. Therefore, B has sufficient
incentive to hide its true valuation, to increase its utility.
Definition 5: In a single-price auction, if m units are sold

at the unit price of p, then the revenue is m · p.
Definition 6: In a single-price auction, assume the true

valuation of each unit of bidder i is vi, and let the value to the
seller of each instance be a small constant c, where instances
are sold to nw winners with a unit price p , then efficiency
(social welfare) is defined as

∑
1≤i≤nw

mi · (vi − p) + (p −
c) ·

∑
1≤i≤nw

mi =
∑

1≤i≤nw
mi · (vi − c).

III. MECHANISM DESIGN

In this section, we focus on mechanism design for a DCSM.
After justifying our selection of single-price auction, we pro-
pose our truthful mechanism based on repeated uniform-price
auction. In addition to proving the truthfulness and discussing
the mechanism details, we also model how bidders adjust their
true valuations as job execution progresses and job completion
approaches. Table I summarizes the notation used in the paper.

A. Why Single-price Auction

In a DCSM, multiple types of instances are sold at different
unit prices, instances of the same type in various geographic
locations are sold the different unit prices as well; however,
instances of the same type in the same location are sold at the
same unit price. To better capture and understand the economic
properties of a DCSM, we focus on designing a mechanism for
a market with only one type of instance at one location, where
a single-price auction becomes an appropriate mechanism. We

2Some literature takes the highest losing bid as the unit selling price.

TABLE I
NOTATIONS

Nj Total number of job requests at tj
M Number of available instances
mi Number of request instances of job i

li Initial length of job i

vi Initial true valuation of job i

bij Job i’s bid at tj
vi
j Job i’s true valuation at tj

lij Job i’s length at tj
ku
j Index of the highest losing bid at tj

pj Spot price at tj
αi

j Number of instances allocated to job i at tj
Tto Job requests’ timeout

note that, in DCSMs, instances with various types are allocated
from resources on physical machines at different locations;
such allocation algorithms are outside the scope of this paper.

B. Repeated Uniform-price Auction Model

In many cases, the use of auctions is complicated by the fact
that a good bidding strategy for a bidder requires understand-
ings of strategies and utilities of other bidder. Thus, truthful
auction mechanisms are attractive in this context because
they avoid such complications. Particularly in DCSMs, both,
bidders’ strategies and their heterogeneous job requests are
private. In addition, DCSMs are highly volatile due to new
job arrivals and completed job departures. Therefore, a truthful
mechanism is favored by both the provider and bidders, with
the goal of building a sustainable and profitable market. As
discussed in Section II, uniform-price auction and optimal
single-price auction are two widely used variations. In our
work, we select uniform-price auction as the model due to its
truthfulness in DCSMs’ settings. Details are described below.

In our model, time is slotted, where one time slot is an
atomic scheduling unit. At each time slot tj , each job request
is associated with a bid, based on which a uniform-price
auction is performed to determine selling price, namely Spot
Price (SP). Any request whose bid is greater than SP obtains
instances it needs in time slot tj , whereas other requests fail to
obtain any instances in tj . Formally, let (bij ,m

i) characterize
job request Ri(1 ≤ i ≤ Nj) at tj , where Nj is the total
number of job requests at tj , bij is Ri’s bid in tj , and
mi is the number of requested instances, which remains the
same during job execution. Without loss of generality, let
b1j ≥ b2j ≥ · · · ≥ b

Nj

j , and suppose that there are M available
instances. Based on the uniform-price auction, the spot price
at tj , pj = b

ku
j

j , where kuj = argmink
∑

1≤i≤k m
i > M . If kuj

does not exist, i.e.,
∑

1≤i≤Nj
mi ≤M , for ease of exposition,

we add a dummy job Rd(b
Nj

j −ε,+∞), which requests infinite

number of instances with a bid b
Nj

j −ε (ε is a small constant).

In this case, the spot price is b
Nj

j − ε. Note that for each
request Ri, either all the mi requested instances are granted,
or none are granted. In summary, payment and allocation rules
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are given as:

pij =

{
mi · b

ku
j

j , i < kuj

0, i ≥ kuj
αi
j =

{
mi, i < kuj

0, i ≥ kuj
(1)

where pij and αi
j are Bi’s payment and allocated number of

instances at tj , respectively. Note that, pij = mi·pj for winners.
In each time slot tj , the market also has job arrivals and

departures - new job requests arrive and existing job requests
depart upon completion. During the execution of a job, i.e.,
Ri, if the spot price exceeds Ri’s bid, then Ri is interrupted
and thus might be executed again from the beginning or
from a certain check point. Details of service interruption are
discussed in Section IV. In addition, some bidders might have
less competitive bids due to budget constraints, and thus fail
to gain access to requested instances for a long time. To avoid
accumulating losers in the market, we assume that such bidders
will voluntarily leave the market after experiencing failure for
Tto consecutive time slots. We study how Tto impacts system
performance in Section V.

C. Truthfulness

Generally, uniform-price auction with multiple demands is
untruthful because of two reasons: 1) bidders are allowed to
bid for the same instance using different price; 2) bidders
are allowed to obtain a fraction of requested instances. For
example, a bid vector of (10, 6) indicates that bidder A wants
to bid for the first instance at $10 and the second one at $6.
Consider another bidder B with bid vector (8, 7), and suppose
two instances are available. If both A and B bid truthfully,
each of them obtains one instance with a unit price of $7.
However, if B just needs one instance and changes the bid
vector to (8, 1), then each of them obtains one instance with
a unit price of $6. From this example, we can see the bidders
might have incentives to shade their bids, which causes the
mechanism to be untruthful. Nonetheless, the aforementioned
issues do not exist in DCSMs, where either all instances are
granted when bids are higher than the spot price or none
otherwise.
Theorem 1: In DCSMs, the uniform-price auction de-

scribed in Section III-B is truthful.
Proof: We prove that no bidder has incentive to lie to

improve its utility. Suppose that we have n customers bidding
for M units. Each bidder has a demand of mi units, with true
valuation of vi for each instance. Without loss of generality,
let v1 ≥ v2 ≥ · · · ≥ vn. If everyone bids truthfully, ku =
argmink

∑
1≤i≤k m

i > M . We discuss three cases below:

• If the loser Bku

lies by setting the bid to bi, there are two
cases: i) if bi ≤ vk

u−1, then Bku

remains a loser and thus
has no incentive to lie; ii) bi > vk

u−1, then Bku

becomes
a winner and Bku−1 becomes a loser, which implies that
the spot price becomes vk

u−1. Since vk
u

< vk
u−1, Bku

’s
utility becomes vk

u

− vk
u−1 ≤ 0. Therefore, Bku

has no
incentive to lie.

• If a loser Bi(i > ku) lies by setting the bid to bi, there
are also two cases: i) if bi ≤ vk

u

, then Bi is still a loser,

and thus has no incentive to lie; ii) if bi > vk
u

, then Bi

could become a winner, in which case the spot price is at
least vk

u

. Since vi < vk
u

(i > ku), Bi’s utility becomes
vi − vk

u

≤ 0. Therefore, Bi has no incentive to lie.
• If a winner Bi(i < ku) lies by setting the bid to bi, there

are two cases: i) if bi > vk
u

, obviously the spot price
remains the same, Bi is still the winner, and Bi’s utility
remains the same, i.e., vi−vk

u

; ii) if bi ≤ vk
u

, Bi cannot
be a winner, otherwise we have at least ku winners,
namely Bk(1 ≤ k ≤ ku). Therefore,

∑
1≤k≤ku nk ≤M ,

which contradicts with the fact that
∑

1≤k≤ku nk > M .
Thus, in this case, Bi must be a loser, so Bi’s utility
decrease from vi − vk

u

> 0 to 0, which means there is
no incentive to lie.

D. True Valuation Adjustment

As shown in Section III-C, bidders will always bid their true
valuation in every time slot. However, true valuation is likely
to change as the job execution progresses and completion
approaches. For instance, when a job approaches completion,
the true valuation of the job’s remaining instances increases as
the cost of being interrupted and starting from the beginning
(or a recent checkpoint) increases. We note that, checkpointing
[27] techniques have been widely used to save state period-
ically so that interrupted jobs do not have to re-start from
the beginning, that is, once interrupted, a job can start from
the most recent check point. Particularly, we assume check
points are set every tc time slots, i.e., t1, tc+1, t2c+1, · · · . For
ease of exposition, we only consider the first c time slots
since the analysis of time slots between any two consecutive
check points is similar. Check points in DCSMs are usually
created and stored inexpensively [27]. Thus, we assume that
the overhead of creating and retrieving a check point from
storage is negligible. We assume bidders are risk-neutral. Thus
in any time slot tj(1 ≤ j ≤ c), bidder i should select the true
valuation vij with the goal of minimizing the expected cost
of processing the j-th time slot of the job. However, in a
real system, bidding information is private. And bidders are
unable to obtain the spot prices in advance, which is needed
in the computation of the expected cost. In this case, one
reasonable approach for bidders is to minimize the expected
maximum cost of processing the j-th time slot of the job
(note that the expected cost can always be upper bounded by
this quantity). The effectiveness of this model is evaluated
in Section V. In the remainder of Section III-D, we drop
the superscript i for clarity of presentation. Particularly, let
Cj(bj) be the expected maximum cost of processing the j-
th time slot of the job given its bid bj . Accordingly, let C∗j
be the minimum of this expectation by properly selecting
bj . Note that C∗1 = v1 since we are at a checkpoint at t1,
and thus an out-of-bid event would not cost us anything.
Define the function f(b) : R

+ → [0, 1] as the probability
function of failure (i.e., out-of-bid) given a bid b, and let
D∗j =

∑
1≤k≤j C

∗
k . Note that the maximum cost for a bidder
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at tj is bj . Then we have

Cj(bj) = f(bj)·(D
∗
j−1+bj)+(1−f(bj))·bj = f(bj)·D

∗
j−1+bj

Therefore, the true valuation vj should be set as

vj = b∗j = argmin
bj

{f(bj) ·D
∗
j−1 + bj} (2)

Accordingly,

D∗j = D∗j−1+C∗j = D∗j−1+Cj(b
∗
j ) = D∗j−1+f(b∗j )·D

∗
j−1+b∗j

By calculating vj and D∗j using the above two equations
iteratively, for each job, we can obtain the true valua-
tions for each time slot (i.e., the computation sequence is
v1, D

∗
1 , v2, D

∗
2 , v3, D

∗
3 · · · ).

The above model has the following property.
Property 1: ∀j1, j2, 1 ≤ j1 < j2 ≤ c, we have vj1 ≤ vj2 .

Proof: Suppose ∃j1, j2, 1 ≤ j1 < j2 ≤ c, such that vj1 >

vj2 . Thus f(vj1) ≤ f(vj2). At time slot tj1 , according to (2),
we have

f(vj1) ·D
∗
j1−1 + vj1 ≤ f(vj2) ·D

∗
j1−1 + vj2 (3)

similarly at tj2 , we have

f(vj2) ·D
∗
j2−1 + vj2 ≤ f(vj1) ·D

∗
j2−1 + vj1 (4)

Adding (3) and (4), we have

(f(vj2)− f(vj1)) ·D
∗
j1−1 ≥ (f(vj2)− f(vj1)) ·D

∗
j2−1 (5)

Since D∗j2−1 > D∗j1−1 and f(vj2) − f(vj1) ≥ 0, the only
possibility for (5) to hold is f(vj2) = f(vj1). However, if we
put this condition back to (3) and (4), we get vj1 ≥ vj2 and
vj1 ≤ vj2 , which result in vj1 = vj2 . Contradiction.
This property of our model indicates that the true valuations
is monotonically non-decreasing in time slots between two
consecutive checkpoints. Such property is reflected in the
experiment results in Section V.
The function f(b) represents the probability of out-of-

bid with a bid b, and thus guides bidders to adjust their
true valuations during job’s execution. The function can be
approximated by analyzing the historical spot prices (e.g., In
ASM, the spot prices for the latest 3 months are provided [7].).
Figure 2(a) depicts the 8 cumulative distribution functions of
the spot prices of the selected 8 zones3 of ASM from January
1st, 2013 to April 1st, 2013, based on which we derive the
out-of-bid probability functions as depicted in Figure 2(b).
Note that each zone sells multiple types of instances. Here,
we select 8 different types of instances from 8 zones, one
from each zone, where each instance type forms a DCSM. In
addition, the unit price of instances of different types varies
due to differences in resources. For clarity of presentation,
we pre-processed the historical spot prices in each zone by
normalizing them by the on-demand price (ODP)4 in the
corresponding zone. This normalization eliminates the inherent
price differences between various zones, thus giving us a
clearer (although relative) representation of the spot prices.

3ASM consists of eight regions (e.g., US East, EU, South America), each
of which has multiple zones (e.g., us-east-1a, eu-west-1a, sa-east-1a ).

4ODP is a fixed price per instance-hour, with resources allocated using
on-demand basis.
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Fig. 2. Spot price of 8 zones in ASM from 1/1/2013 to 4/1/2013

IV. PERFORMANCE EVALUATION

In this section, we evaluate the proposed mechanism using
revenue and efficiency, which are the two commonly used
metrics in auction theory. We develop an algorithm for revenue
computation and prove that our approach achieves optimal
efficiency among all single-price auctions in DCSMs. In addi-
tion, we also evaluate the Quality of Service of the proposed
mechanism, which can be measured by two metrics, namely
slowdown and waste. We define the two metrics and develop
algorithms to compute them.

A. Revenue

As discussed in Section III-B, the spot price at time slot
tj is equal to the highest losing bid, i.e, pj = b

ku
j

j , where
kuj = argmink

∑
1≤i≤k m

i > M , and the revenue gained in

tj is b
ku
j

j · (kuj −1) (see Definition 5 in Section II). Therefore,
the key factor in calculating the revenue is kuj The index
kuj is determined by the order of all the bids at tj along
with corresponding demand mi, which is determined by three
factors: 1) completed job requests in tj no longer participate
in the bidding; 2) winning job requests and losing job requests
in the previous time slot change the bids based on the model
discussed in Section III-D; 3) new arriving job requests submit
new bids. In time slot tj , let Rj = {(m

i, bij , l
i
j)(1 ≤ i ≤ Nj)}

be the set of all job requests (including arrivals) at tj , where
mi, bij and lij are the number of requested instances, bid
and remaining job length, respectively of job request i at tj .
Note that mi is a constant for job request i. Accordingly, let
Ra

j ⊆ Rj be the set of all arriving jobs at tj . The algorithm
for computing the revenue at tj is given by Algorithm 1.
Lines 3, 5 and 8 deal with completed jobs, remaining jobs,
and newly arriving jobs, respectively. The revenue generated
by our approach is studied in detail through simulation-based
experiments in Section V.

B. Quality of Service

Recall that service could be interrupted without any notifi-
cation in a DCSM, in which case jobs need to be rolled back to
the most recent check point. Service interruptions result in at
least two drawbacks for customers: 1) The completion time is
postponed, which is bad for delay-sensitive jobs; 2) The total
number of instance-hour required to complete a job increases,
and thus the cost of completing jobs increases. To capture
and evaluate the above two drawbacks, we use slowdown and
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Algorithm 1 Revenue Calculation
Input: Mj , Rj−1 and Ra

j

Output: Revenue generated in tj

1: for all ri ∈ Rj−1 do
2: if lij = 0 then
3: remove r

i from Rj

4: else
5: b

i
j ← output from Eq. (2) in Section III-D

6: end if
7: end for
8: Rj = Rj−1 ∪R

a
j

9: Sort all bij in Rj in descending order.
10: k

u
j ← argmink

∑
1≤k≤i

m
i
> Mj

11: return b
ku
j

j · (k
u
j − 1)

waste to evaluate the Quality of Service (QoS) in DCSMs. The
definition of slowdown of a job in DCSMs is similar with that
defined in [16]. The expected slowdown measures the expected
delay of job completion in a DCSM.
Definition 7: A job J of length l enters the market at

tj1 , and leaves the market at tj2 upon completion, then the
slowdown of J is ls

l
, where ls = j2 − j1.

Service interruptions not only result in delay of job comple-
tion, but also result in cost increases of job completion in
the sense that a fraction of a job is executed in a duplicated
manner when recovered from a check point. We use waste to
measured the cost increase of completing a job in a DCSM.
Definition 8: Given Definition 7, suppose during [tj1 , tj2 ],

J gains access to instances for lw time slots5, then the waste
for J is lw

l
.

Accordingly, the slowdown and waste in a system are defined
as the average slowdown and waste over all jobs in that system.

C. Efficiency

As discussed in Definition 6 of Section II, efficiency reflects
social welfare generated by auctions. Efficiency might not be
of great interest for providers in a short term. However, in
the long run, a more efficient auction tends to be sustainable
and attracts more customers. We have the following theorem
regarding efficiency in DCSMs.
Theorem 2: Among all single-price auctions, uniform-price

auction achieves optimal efficiency in DCSMs.
Proof: Suppose we have n customers bidding forM units.

Each bidder has a demand of mi units, with bid bi for each
instances. Without loss of generality, let b1 ≥ b2 ≥ · · · ≥ bn.
In uniform-price auction, the efficiency, as defined in Defini-
tion 6, Eu =

∑
1≤i<ku mi · (bi − c). The efficiency in any

other single-price auction S, Es =
∑

1≤i<ks m
i · (bi − c),

where ks is index of the highest losing bidder in S. Note that
ku = argmink

∑
1≤i≤k m

i > M , and thus ku ≥ ks, which
proves Eu ≥ Es.

5In the other j2 − j1 − lw time slots, as a loser, J does not need to pay.

V. EXPERIMENTS

In this section, we evaluate our proposed mechanism
through extensive simulations. We conduct a comparison study
against ASM using four performance metrics, namely, revenue,
efficiency, slowdown, and waste. Revenue and efficiency are
introduced in Section II; slowdown and waste are defined
in Section IV-B. The main objectives of these simulation-
based experiments are i) gain understanding of how the inter-
checkpointing time tc and timeout Tto affect our proposed
mechanism’s performance. ii) quantify the gained performance
improvements over the mechanism currently used in ASM;
iii) evaluate how bidding flexibility helps improve the perfor-
mance in our mechanism.

A. Datasets and Simulation Settings

We first describe the datasets and simulation settings used
throughout the remainder of the paper.
We use a tuple (vi, li,mi) to represent a job request, where

vi, li, and mi are initial true valuation, initial length, and
number of requested instances, respectively, of job i. The job
length li is modeled using a Geometric distribution G(p) ( 1

p

is the expected job length), and mi is uniformly distributed
in [1, 100]6. We also vary the true valuation vi using 4
distributions, denoted as HIST, DET(0.5,1), N (0.5, 0.09), and
N (0.5, 0.01). Note that vi is normalized using On-Demand
Price as discussed in Section III-D. In HIST (setting 1-4 in
Table II), the distribution of vi is generated from the his-
togram in Figure 3, which is reported by ASM, and replicated
from [1]). In DET(0.5,1) (setting 5-8 in Table II, as modeled

Fig. 3. Bid distribution replicated from [1].

in [11]), vi is deterministic given a li with ri increasing as
li increases; specifically, it is obtained using a linear function
which maps job lengths to values in the interval [0.5, 1], i.e.,
for a job of length li, vi = 0.5(lmax+li)−lmin

lmax−lmin
.7 In these settings

customers’ bids are higher for longer jobs, which is intended to
represent customers’ aversion to having long-running instances

6In ASM, customers are not allowed to submit a job request with more
than 100 instances [8].

7If lmax = lmin, every vi has the same value, and thus can be selected
from any value in [0.5,1], say 0.5.
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terminated [11]. In settings 9-16 in Table II, vi is drawn from a
normal distributionsN (0.5, 0.01) and N (0.5, 0.09). The mean
is set to 0.5 based on the report from Amazon that ASM results
in average cost-savings of 50% ∼ 66% as compared to that
using ODP [1]. The two different standard deviations represent
scenarios where vi has large or small variance. In addition, we
model the number of jobs arrival during a time slot using a
Poisson distribution, i.e., na

j ∼ Poisson(λ), where na
j is the

number of jobs arrival between tj−1 and tj , with λ being the
average number of jobs arrival in each time slot. We treat
all jobs arrival between tj−1 and tj as arriving at tj . We
note that λ = 10 represents a buyer’s market (where supply
exceeds demand), and λ = 1000 represents a seller’s market
(where demand exceeds supply). We generated 16 simulation
settings in total by combining the job model with the job
arrival model as summarized in Table II. For each setting, to
obtain statistically significant results, we generated a sequence
of job arrival batches for 100,000 time slots. In each time slot,
the number of arrival job requests and the characteristics of
jobs are specified by na

j and (vi, mi, li). In all simulations
below, the number of available instances M is set to 50,000.

TABLE II
SIMULATION SETTINGS

Setting ID vi λ p

1 HIST 10 0.1
2 HIST 1000 0.1
3 HIST 10 0.02
4 HIST 1000 0.02
5 DET(0.5, 1) 10 0.1
6 DET(0.5, 1) 1000 0.1
7 DET(0.5, 1) 10 0.02
8 DET(0.5, 1) 1000 0.02
9 N (0.5, 0.01) 10 0.1
10 N (0.5, 0.01) 1000 0.1
11 N (0.5, 0.01) 10 0.02
12 N (0.5, 0.01) 1000 0.02
13 N (0.5, 0.09) 10 0.1
14 N (0.5, 0.09) 1000 0.1
15 N (0.5, 0.09) 10 0.02
16 N (0.5, 0.09) 1000 0.02

B. Performance Study

Experiment 1: Here, we study how the inter-checkpointing
Time (ICT, see Section III-D) affects the performance of
our mechanism, and how sensitive is the performance of
our mechanism to the parameter settings. In determining the
simulation settings of our experiments, rather than using the
same range of tc values for each experiment, we determine
the range of values to use relative to the mean job length
(i.e., E

{
l
}
). In a real system, a larger E

{
l
}
is likely to result

in a larger tc, and a smaller E
{
l
}

is likely to result in a
smaller tc. We ran 16 simulations using the 16 setting in
Table II, and computed the four metrics of interest. For each
setting, we vary 10 values of tc, and obtain the average values
(defined in Section IV) of the four metrics for each value of tc.
Simulations are performed under both buyer’s (settings with
λ = 10) and seller’s (setting with λ = 1000) markets, and the
results are shown in Figure 4 and Figure 5, respectively.

For clearer depiction, we present our results across different
settings as a function of tc

E

{
l

} . We also normalized the results,

corresponding to the 10 different values of tc

E

{
l

} , by their

maximum values within each setting. The normalization is
done for each metric in each setting. All simulation results
are obtained with 95%± 6% confidence intervals.
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Fig. 4. Parameter tuning of ICT with λ = 10
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Fig. 5. Parameter tunning of ICT with λ = 1000

From Figure 4, we observe that, in buyer’s markets (settings
with λ = 10), all four metrics are fairly insensitive to
the value of tc

E

{
l

} . For revenue, slowdown and waste, such

insensitivity can be explained by the rare occurrences of
interruptions occurred in the market, where available instances
are essentially sufficient; the insensitivity of efficiency can be
explained by the fact that efficiency is mainly determined by
the number of instances sold (see Section II, Definition 6).
In seller’s markets, we observe that the revenue (see Fig-

ure 5(a)) gradually increases as tc

E

{
l

} increases. The ex-
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planation is as follows: when the value of tc

E

{
l

} increases,

according to Property 1 proved in Section III-D, bidders have
a greater number of time slots (between two consecutive check
points) in which to increase their bids. Therefore, it is likely
that the lowest losing bid in the market increases, which
results in the increase in revenue. Figures 5(b) shows that the
efficiency is fairly insensitive to the value of tc

E

{
l

} , which can

be explained as in the case of buyer’s markets. Slowdowns
in seller’s markets are shown in Figures 5(d), where we
observe that slowdown grows slowly when tc

E

{
l

} is below a

certain value, and then grows fast after that. The slow-growing
part can be explained by the trade-off between reduction in
the interruption probability and the cost of the interruption,
once it happens. That is, under a relatively large value of

tc

E

{
l

} , the interruption probability is low, but the cost of an

interruption, once it occurs, is relatively high; while under
a relatively small value of tc

E

{
l

} , the interruption probability

is high, but corresponding cost of an interruption, once it
occurs, is relatively low. After a certain value of tc

E

{
l

} , the
steep increase in the slowdown indicates that the cost of an
interruption occurrence outweights the benefit due to reducing
the interruption probability. Figure 5(d) shows similar results
for waste, which can be explained similarly to the slowdown,
because both metrics are impacted by interruptions.
Experiment 2: In a real system, some bidders might have

less competitive bids due to budget constraints, and thus fail
to gain access to requested instances for a long time. To
avoid accumulating losers in the market, we assume such
bidders will voluntarily leave the market after failure for Tto

consecutive time slots of failing to obtain an instance. In this
experiment, we study how the timeout (see Section III-D)
affects the performance of our mechanism, and how sensitive
is the performance of our mechanism to the parameter settings.
In our simulations, instead of using a specific range of Tto,

we use values that are proportional to the mean job length
(i.e., E

{
l
}
). In a real system, a larger E

{
l
}
is likely to result

in a larger Tto, and a smaller E
{
l
}
is likely to result in smaller

Tto. Again, we ran simulations using the 16 setting in Table II,
and computed the four metrics of interest. For each setting, we
varied Tto over 10 different values and obtained the normalized
average values (defined in Section IV) as was done in Exp. 1.
To better depict the results across different settings, we present
them as a function of Tto

E

{
l

} . The simulation results are shown

in Figure 6 and Figure 7. All simulation results are obtained
with 95%± 4% confidence intervals.
Again, from the four figures in Figure 6, we observe that,

in buyer’s markets (settings with λ = 10), all four metrics are
fairly insensitive to the value of Tto

E

{
l

} . The explanation is the

same with the one given in Exp. 1. In a seller’s market (see
7(a)), we observe that revenue grows fast when Tto

E

{
l

} is below

a certain value, and then grows slowly. In the system, out-of-
bid could be caused by two reasons: i) arrival of jobs with
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Fig. 6. Parameter tunning of timeout with λ = 10
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Fig. 7. Parameter tunning of timeout with λ = 1000

high bids; ii) bids are too low to get access to instances. The
fast-growing part corresponds to reason i), where out-of-bid
jobs just need to wait for jobs with high bids to complete, to
gain access to instances. The slow-growing part corresponds
to reason ii), where bids of out-of-bid jobs are too low to
become winners, and thus jobs corresponding to those bids
leaving does not significantly affect the system revenue.
Efficiency, slowdown and waste (see Figure 7(b), 7(c) and

7(d)) are fairly insensitive to the value of Tto

E

{
l

} . The case

of efficiency can be explained by the same reason given in
Exp. 1, i.e., efficiency is mainly determined by the number
of instances sold. For the cases of slowdown and waste, note
that the two metrics are computed over completed jobs, thus
removing jobs with low bids that can hardly be completed
from the system barely affects the two metrics.
Experiment 3: In this experiment, we compare the system

performance under the following three mechanisms: 1) the
mechanism suggested in [11], denoted as ASM, which is
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TABLE III
PERFORMANCE COMPARISON

Setting ID
RUA vs. ASM RUA vs. RUA-BF

Revenue Efficiency Slowdown Waste Revenue Efficiency Slowdown Waste
1 10.28% 19.42% 11.75% 13.45% 4.71% 0.21% 5.41% 5.72%
2 18.62% 27.56% 16.19% 17.25% 6.03% 0.29% 6.11% 5.93%
3 10.58% 19.8% 11.94% 10.16% 5.12% 0.15% 5.82% 5.63%
4 17.74% 30.96% 15.14% 15.79% 5.95% 0.21% 6.25% 6.04%
5 11.83% 19.37% 9.38% 12.16% 5.06% 0.15% 5.08% 5.12%
6 17.96% 28.87% 15.94% 16.94% 5.48% 0.15% 6.15% 5.73%
7 11.99% 19.89% 11.33% 11.73% 4.61% 0.28% 5.84% 5.51%
8 15.60% 29.65% 15.31% 16.32% 5.97% 0.24% 6.31% 6.12%
9 11.09% 18.53% 12.44% 11.39% 4.81% 0.10% 5.52% 5.17%
10 15.86% 30.12% 16.90% 15.70% 6.14% 0.12% 6.41% 6.31%
11 12.78% 19.01% 10.96% 12.96% 4.56% 0.27% 5.22% 5.17%
12 15.76% 26.83% 16.63% 16.58% 5.68% 0.24% 6.21% 5.96%
13 10.71% 19.07% 9.54% 11.50% 5.49% 0.26% 5.22% 5.29%
14 18.18% 29.96% 16.87% 16.44% 5.90% 0.16% 5.73% 5.81%
15 10.85% 19.9% 10.82% 10.97% 5.71% 0.24% 5.32% 5.12%
16 16.78% 29.14% 16.37% 16.80% 6.52% 0.29% 5.91% 6.52%

likely the current mechanism used in ASM; 2) our proposed
mechanism, denoted as RUA; 3) our proposed mechanism
without bidding flexibility, denoted as RUA-BF. We ran sim-
ulations using the 16 setting in Table II under each of the
three mechanisms, and computed the four metrics of interest.
Columns 2-5 in Table III show the performance improvements
achieved by RUA relative to ASM, where RUA outperforms
ASM by an average of 14.2% in revenue, 24.3% in efficiency,
13.6% in slowdown, and 14.1% in waste. In particular, more
significant improvements are observed in all seller’s markets
(i.e., settings with λ = 1000), where spot price better reflects
the results of an auction. In a buyer’s market, job requests
are satisfied most of the time, and thus the benefits due to
RUA are not as great; while in a seller’s market, jobs are
competing with each other for instances, and there are greater
benefits from our approach. Columns 6-9 in Table III show the
performance improvements achieved by RUA against RUA-
BF. We observe that RUA outperforms RUA-BF by around 5%
in revenue, slowdown and waste. This improvement implies
that, from the improvements achieved by RUA against ASM,
more than 35% of the revenue improvement (i.e., 5%

14.2% ),
36% (i.e., 5%

13.6% ) of the slowdown improvement, and 35%
(i.e., 5%

14.1% ) of the waste improvement is contributed by the
bidding flexibility. The performance improvements due to the
bidding flexibility can be explained by the fact that bidders
are likely to reduce the out-of-bid probability by gradually
increasing their bids, which will result in interruption reduction
and revenue increase. We also observe that efficiency is barely
changed. The explanation is that high efficiency is achieved by
a property of uniform-price auction, i.e., sell as many instances
as possible. RUA does not impact efficiency significantly. All
results are obtained with a confidence interval of 95%± 7%.

In summary, we have the following four takeaways from the
experiments. 1) In a buyer’s market, the performance of our
mechanism is fairly insensitive to the discussed two parameters
(i.e., tc and Tto), which indicates that our mechanism is fairly
robust under various parameter settings; 2) In a seller’s market,
revenue, slowdown and waste are affected by the value of

tc

E

{
l

} , and tc needs to be properly selected in a seller’s market

for desired trade-off between revenue and reliability; Tto

E

{
l

}
only significantly impacts revenue, which increases as the
value of Tto

E

{
l

} increases. However, such increase is negligible

once the value of Tto

E

{
l

} exceeds a certain value; 3) In both

buyer’s and seller’s markets, efficiency in our mechanism is
not significantly affected by the above two parameters; 4)
Our mechanism outperforms ASM by an average of 14.2% in
revenue, 24.3% in efficiency, 13.6% in slowdown, and 14.1%
in waste, to which the bidding flexibility contributes 35% of
the revenue improvement, 36% of the slowdown improvement,
and 35% of the waste improvement.

VI. RELATED WORK

Since the start of the Amazon’s Spot Market (ASM) in
December 2009, its cost-saving property inspired researchers
to develop provisioning, scheduling, and allocation algorithms
for client applications. Meanwhile, its reliability problem
(i.e., unexpected service termination due to out-of-bid events)
motivated researchers to investigate fault-tolerant mechanisms
for better quality of service.
A number of works focus on DCSMs’ pricing strategy as

well as on trying to understand the underlying principles.
We give a brief overview of these efforts. [11] shows that
the spot price is typically generated at random within a tight
bound of a hidden reserve price, thus cannot reflect the real
market demand and supply. Javadi et al [17] studied the price
pattern of ASM for a one year period, and observed the bi-
modality in the price distributions for all instance types, based
on which they proposed a model with 3 or 4 components to
capture characteristics of spot prices. They also discovered that
inter-price time is around 60 minutes. In [22], the researchers
study the profit-reliability trade-off in ASM using an order-
statistics approach. In addition, they also illustrate and prove
the hardness of pricing in ASM with the goal of profit
maximization. In [13], Gelenbe et al studied the local/remote
cloud in consideration of Quality-of-Service.
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From customers’ prospective, several works investigate how
to utilize ASM for reliable and cost-effective service (e.g.,
MapReduce [12] and migration [26]). In [25], Wee shows
that Spot price is 52.3% lower on average than the on-demand
price.
In the ASM, cost-reduction can be achieved by optimal

resource allocation [28] and appropriate provisioning [10][24].
Meanwhile, due to relatively low reliability in the ASM envi-
ronment, fault-tolerant mechanisms (e.g., checkpointing [27])
are also studied. Other research directions include exploiting
statistical approaches for market prediction, with the goal
of performance and availability guarantees [19] and SLA
satisfaction [9].
Other spot markets have also emerged in recent years. In

[23], Google implemented a similar idea using a clock auction,
and spotcloud.com [2] is a Priceline-style online cloud market
for multiple providers to sell their unused capacity, where users
pay what they bid for the instances instead of a uniform price.
Our work differs from all the works mentioned above in

the sense that we are proposing an improved mechanism for
DCSMs in consideration of four performance metrics, namely
revenue, efficiency, slowdown and waste. Such mechanism
is truthful and featured with bidding flexibility, with the
goal of improving the performance of DCSMs. We conduct
experimental studies with extensive settings, as well as a com-
prehensive comparison study against current ASM mechanism.
The results show that our mechanism achieves significant
performance improvement over ASM, and provide service
providers with insights for better design and implementation
of auction mechanisms for DCSMs.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we focus on mechanism design for DCSMs
with a single service provider. A truthful mechanism based
on a repeated uniform-price auction is proposed, and bidding
flexibility is also incorporated in this mechanism. Accordingly,
a bidding adjustment model is introduced to make use of
such flexibility. Our proposed mechanism is evaluated by four
performance metrics, namely revenue, efficiency, slowdown
and waste. The first two metrics are commonly used metrics
in auction theory, and the last two metrics are introduced to
evaluate the Quality of Service of a DCSM with our proposed
mechanism. We prove that our approach achieves optimal effi-
ciency among all single-price auctions in DCSMs. We conduct
parameter tuning studies and a comprehensive comparison
study against ASM, and the results showed our mechanism
achieves significant performance improvement over ASM.
Specifically, The results show that (1) The bidding adjustment
model helps increase the revenue by an average of 5.4%, and
decrease the slowdown and waste by an average of 4.9% and
5.7%, respectively; (2) Our model with a repeated uniform
price auction outperforms the current Amazon Spot Market
by averagely 14.2% in revenue, 24.3% in efficiency, 13.6% in
slowdown, and by 14.1% in waste.
Future work includes two directions. From the auction

theory perspective, we plan to consider markets with multiple

types of instances and design corresponding approximation
algorithm that can be used to estimate bounds on the four
metrics (as defined in this paper). Moreover, we are devel-
oping performance models that can capture the dynamics of
winners and losers in DCSMs and consequently can be used
to analytically compute the four performance metrics.
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