
Sustaining Ad-Driven P2P Streaming Ecosystems
A Market-Based Approach

Sung-Han Lin, Ranjan Pal, Bo-Chun Wang, Leana Golubchik
Department of Computer Science, University of Southern California

{sunghan, rpal, bochunwa, leana}@usc.edu

Abstract—Inconsistent quality of service is a significant prob-
lem in P2P-based video streaming systems. Pauses in playback
are common for low capacity peers as they often upload relatively
little compared to high capacity peers, and thus suffer from
the ‘lack of reciprocity’ problem. In this work, we propose an
Ad-driven Streaming P2p ECosysTem (ASPECT) that aims to
eliminate the problem of playback pauses by adopting ‘reduced
advertisement viewing duration’ as a positive incentive for peers
to provide high upload rates. ASPECT rewards high capacity
peers by reducing their advertisement viewing duration, when
they provide more opportunities for lower capacity peers to
download data. We build our research problem on a utility-
theoretic market-based model, where the market stakeholders
consist of a content provider, an advertisement provider, and
network peers. Using concepts from game theory, we determine
the system parameters to reach market efficiency, and study
the practical implications of equilibria on the satisfaction of
stakeholders’ interests. From a system design perspective, one
of our primary goals is to compute the equilibria advertisement
viewing durations, that offer sufficient incentives for network
peers to continue contributing. We evaluate ASPECT through an
extensive simulation-based study. The results demonstrate that
ASPECT mitigates the ‘playback pause’ problem for peers by at
least 80% compared to existing approaches, results in appropriate
advertisement viewing durations for all peers based on their
contributions, and at the same time generates sufficient profit
for the advertiser to be part of the market.

Keywords—P2P, Game Theory, QoS, Advertisement, Market

I. INTRODUCTION

Peer-to-Peer (P2P) based video streaming systems have
been developed and deployed in order to address scalability
problems that exist in client-server based streaming architec-
tures. However, the quality of service (QoS) of P2P-based
approaches is highly dependent on resources available to
peers, and high and consistent QoS (where video playback
proceeds without pauses) is still lacking. A peer experiences
video pauses when data blocks are missing from the buffer
at the time they are needed for display. For instance, in a
BitTorrent-like system (which is the focus in this work), two
main reasons for missing blocks are (1) a poor choice of
blocks requested, on the part of the block selection algorithm
and/or (2) insufficient download rates (due to not receiving
data from neighbors). A number of block selection algorithms
- that can make appropriate block selection choices - have
been developed (see Section I-C); however, a solution for
insufficient download rates is still lacking, particularly for low
capacity peers. We also note that the works in [1], [2] have
shown that the number of peers with high upload capacities
significantly affects the performance of P2P-based streaming
systems, particularly when free-riders exist in the system.
Thus, our goal is to motivate high capacity peers to stay in
the system and improve the overall system performance. To
achieve this, we maintain their QoS and provide incentives
to contribute their upload resources, to increase QoS of low
capacity peers.

In this work, we focus on the following goals: (1) develop
mechanisms that provide sufficient download rates for low
capacity peers as well as high capacity peers so as to improve
overall video streaming quality, and (2) the proposed mech-
anisms (in some sense) should reward peers that contribute
greater resources more than those who contribute fewer re-
sources. To accomplish the first goal, our mechanism should
allows high capacity peers to obtain sufficiently high download
rates so that they can experience streaming (nearly) without
pauses, and then (after achieving high QoS) “release” whatever
additional download rates they might be able to obtain to
low capacity peers. To achieve the second goal, we need to
identify proper incentives for peers, to enable such resource
re-allocation. This is not straightforward for the following
reasons.

Traditional strategies in P2P sharing systems use download
rates as an incentive. For instance, a Tit-for-Tat (TFT) type
strategy is often successful in P2P file-sharing systems, where
higher download rates are used as an incentive to encourage
peers to contribute their upload resources, and where lack
of contribution results in longer download time. However, in
streaming systems, these types of strategies could result in
unacceptable QoS with relatively frequent video pauses [3]–
[5]. To address the video pause problem, many efforts have
focused on incentivizing peers to contribute to the overall
increase in upload bandwidth capacity. For instance, [6]–[8]
use video quality as an incentive for peers to contribute.
However, given how TFT-based mechanisms currently behave,
increasing overall upload capacity does not always result in
low capacity peers obtaining sufficient download rates for
smooth playback. Often, only high capacity peers end up with
the increased download rates; consequently, video pauses are
still a significant problem for low capacity peers. Another
problem with using video quality as an incentive is that
high capacity peers have no incentive to contribute higher
upload rates, beyond the point which provides them with un-
interrupted streaming. Thus, if there are no other incentives be-
yond video quality, high capacity peers only need to contribute
sufficient upload capacity to achieve download rates needed for
satisfactory video quality, resulting in degraded overall system
performance.

In summary, incentivizing high capacity peers to contribute
greater upload resources in return for higher download rates
only works upto a point in streaming systems (as download
rates higher than the video playback do not result in higher
QoS); beyond that, other forms of incentives are needed.
To this end, in this work we investigate the proper use of
advertisements (and corresponding challenges) as incentives
for mitigating the QoS problem in streaming P2P systems.

A. Advertisements as Incentives

Providing advertisements (ads) to customers is a popular
business model in video streaming services. Some service
providers (such as YouTube and Hulu [9]) offer free on-line

video delivery services but force customers to view fixed
duration of ads (i.e., of the same duration for all users) at
the beginning or in the middle of a video. For instance, Hulu
inserts roughly 2 minutes worth of ads every 30 minutes, and
delivers on average 82.3 ads per month to each customer [10].
Each of the ads is 15 or 30 seconds long [11]. In contrast, one
could consider using variable length ads as an incentive to
contribute resources, i.e., users that contribute more resources
view shorter duration ads, and users that contribute fewer
resources view longer duration ads, e.g., as proposed in [12],
which reward peers with high upload rates with shorter ad
duration. However, due to the commonly observed ‘the rich get
richer and the poor get poorer’ phenomena in P2P networks,
increasing overall upload capacity does not imply increasing
download rates of low (upload) capacity peers, needed to
reduce video pauses. As a result, peers with high upload rates
are disproportionately rewarded with high download rates and
fewer ads. Therefore, our paper focuses on the problem of
increasing the download capacity for peers that (due to their
low upload capacities) do not obtain sufficient download rates
to reduce video pauses and improve QoS. To mitigate the free-
riding effects, our proposed mechanisms are still based on a
TFT-type strategy (see Section IV-A). (In general, malicious
behavior is beyond the scope of this paper.) We propose an Ad-
driven Streaming P2p ECosysTem (ASPECT) using BitTorrent
as our base system, where all peers (i) pursue satisfactory QoS,
and (ii) accept an appropriate amount of ads in return.

B. A Market-Based Approach

A key challenge we address in this paper is to seek a
reward function that provides sufficient incentives for peers to
keep contributing. A simple approach would be to reward peers
with reduced ad view durations, in a manner proportional to
how much download bandwidth they “released” (e.g., using
parameter tuning as discussed in Section II-B). However,
such a reward function may not be sufficient (e.g., maximize
individual peer utilities as discussed in Section III-B) for peers
to stay in the system, and more importantly for the content
provider and the advertisement (ad) provider to continue pro-
viding services (e.g., reaching market efficiency as discussed in
III-C). Thus, the challenge is to design a function that jointly
satisfies all peers, the content provider, and the ad provider.
To achieve this goal, in Section III, we view ASPECT as a
market-based model, where our market consists of a single
content provider, a single ad provider, and multiple network
peers. Our primary intuition behind adopting a market-based
approach is its potential to arrive at incentive mechanisms that
enable peers to voluntarily contribute upload capacities.

In our market setting, the content provider invests in infras-
tructure to provide streaming services, and signs a contract
with the ad provider to show a minimal length of ads to
all peers. The peers play a non-cooperative game amongst
themselves, each being selfish and wanting to maximize their
utility, where the utility is a monotonically increasing function
on download rates they receive (benefit) and the length of ads
they have to view (cost). To reduce the investment and earn
more profit, the content provider would want to have more
peers staying in the system and contributing their bandwidth.
However, as discussed above, high capacity peers are not
satisfied if their ads are not significantly fewer than the ads
viewed by peers whose upload capacities are significantly
smaller (due to the minimal ad duration requirement from
the ad provider). Therefore, from a system design perspective,
the purpose of the game is to arrive at a reward function at
market equilibrium (see Section III) that leads to appropriate
ad durations for peers and maximizes the sum of their utilities,
and at the same time individually satisfies every peer.

Conditioned on the existence of an equilibrium point
existing in the peers’ game, ASPECT provides significant
motivation for high capacity peers to “release” their download
rates in return for viewing shorter duration ads. At the same
time, low capacity peers are willing to improve their QoS
without significantly increasing their ad view durations. More
importantly, our result achieves market success, where the
content provider is able to make its desired profit while
providing sufficient incentives for peers to stay in the system
(e.g., more peers staying in the system leads to greater revenues
from ad viewing) and at the same time not violating the
agreement made with the ad provider (i.e., ensuring that a
pre-specified minimal duration of ads is viewed by all peers).

C. Related Work

Providing incentives for peers to contribute their capacities,
in the hope of improving QoS, is a focus of many existing
efforts with a variety of approaches [6], [12]–[15]. For in-
stance, the work in [6] focuses on coding/MDC schemes in
the context of TFT-type strategies, where peers contributing
higher upload rates are rewarded with higher video quality. In
[13], the authors propose a score-based incentive mechanism
by converting users’ contributions into scores and mapping
scores into ranks, used by a peer selection mechanism for
choosing which neighbors to upload to. The authors of [12]
propose a system using ads as an incentive, which uses a
token-based scheme for trading data between peers. Peers con-
tributing greater upload resources can obtain tokens to reduce
ad viewing time. However, none of these works guarantee to
improve QoS of low capacity peers. Moreover, unlike our effort
(which is decentralized and uses only information local to a
peer), the work in [12] requires the use of a central server and
information exchange between peers.

There are also a number of efforts focusing on QoS in
BT-like systems [16]–[20]. For instance, the works in [19],
[20] suggest that the block selection strategies should favor
blocks that are closer to the current playback point. (The works
on block selection strategies are orthogonal to ours, and we
believe ASPECT can be integrated with those proposed in
[19], [20].) The analysis in [16] indicates that a TFT-based
strategy may not be suitable for Video-on-Demand (VoD)
applications, because younger peers may not have sufficient
data to share with older peers, resulting in overloading of older
peers. Consequently, in [17], algorithms are proposed for load
balancing requests between peers. In [18], peers increase the
number of neighbors chosen during random selection when
such peers already have high QoS. At a high level, this is
similar to our effort, in a sense of allowing peers to not be
purely selfish. However, this work does not provide incentives
for peers to do so, and it runs the risk of decreasing the
download rates (and hence QoS) of high capacity peers, due
to lowered contributions to their high capacity neighbors. In
contrast, ASPECT does not decrease the high (upload) capacity
peers’ ability to obtain blocks in time to avoid video pauses.
Rather, we provide incentives for high (upload) capacity peers
to help others, when they are able to.

Another effort [21] designs a semi-distributed algorithm to
optimize fairness among peers in P2P live video systems. In
its optimum case, low capacity peers have to contribute all of
their capacity, but high capacity peers only have to contribute a
portion of their capacity (although still higher amount than that
of low capacity peers) for maintaining system performance.
Thus, low capacity peers (overall) contribute less than high
capacity peers while obtaining the same QoS.

In summary, ASPECT differs from the above described
efforts in that it reduces video pauses by “shifting” download

rates from high capacity peers to low capacity peers while
encouraging this “donation” by providing fewer ads to peers
who do that. The total amount of ad viewing remains constant
as the peers that take advantage of these “donations” view
more ads in return for improved QoS. Moreover, ASPECT not
only takes peers’ well being into consideration, but also that
of content and ad providers by achieving market efficiency (as
detailed in Section III).

D. Main Contributions

Our research contributions can be summarized as follows.

• In contrast to many other efforts, that reduce video
pause occurrences by downgrading video quality for
low capacity peers, we propose a mechanism (see Sec-
tion IV-B) to increase opportunities for peers to obtain
sufficient download rates so as to significantly reduce
video pauses. This approach nearly eliminates video
pauses by increasing download rates for all peers. To
determine the duration of ads for peers to view, we
quantify the amount of “donation” from high capacity
peers and the amount of “help” to low capacity peers
(see Section IV-C). All proposed mechanisms work
in a completely decentralized manner, without the
need of additional support from service providers. The
proposed mechanism, implemented within Ad-driven
Streaming P2p ECosysTem (ASPECT), allows peers
to trade their capacities and ad durations.

• We mould ASPECT into a market-based model that
consists of a content provider, an ad provider, and
multiple peers, and show that ASPECT is able to
achieve market success. Our model facilitates study
of properly designed incentives needed to encourage
continued contributions from peers at market equilib-
rium. It also shows the existence of market equilibrium
points (see Section III). A reward function is used to
maximize the sum utility of all peers at equilibrium
and reach market efficiency (see Section III). Thus,
ASPECT provides incentives to encourage high capac-
ity peers to continue helping low capacity peers, where
low capacity peers “make up” for higher capacity
peers, who view shorter duration ads (in exchange for
obtaining higher download rates). Moreover, ASPECT
enables the content provider to achieve its desired
profit by providing sufficient incentives for all peers
to stay in the system without violating the agreement
with the ad provider (i.e. ensuring that a pre-specified
minimal duration of ads should be viewed by all
peers).

II. OVERVIEW OF ASPECT

In this section, we first present an overview of ASPECT
that uses ‘duration of advertisements’ as an incentive to keep
peers contributing to the system. We then describe our trading
mechanism to exchange peer download rates with ad durations.
In this regard, we state our proposed peer reward function, and
discuss the importance and difficulty of finding such a function
in our work. An illustration of ASPECT is provided in Fig. 1.

A. A Case for Bandwidth Re-allocation

In order to increase the download rates of low capacity
peers for achieving better QoS, ASPECT utilizes advertise-
ments to provide incentives.

Video Servers Ad Server

X
Release X

All other Peers

Content Provider

Reward

for viewing

fewer ads

 Watch more

ads due to getting help

...

Fig. 1. Overview of ASPECT

time

On-Demand Video Advertisement

The minimal

requirement

The default

skip point

Lm LD LM

Fig. 2. On-demand Videos are Interleaved with Advertisements in ASPECT

1) Advertisement Basics: As in a regular hybrid P2P sys-
tem, the content provider uses servers to deliver videos (with
each video placed on one or more servers). After obtaining
some initial blocks from the video servers, peers begin to
exchange blocks with other peers. Here, we assume that
the content provider also uses a P2P mechanism to deliver
advertisements. These ads could come from an ad server,
shared by many swarms (groups of peers viewing the same
video). However, for ease of illustration, we only focus on
one swarm in this paper. Ad blocks are shared and consumed
as the video content blocks, at the same playback rate. Thus,
it might also lead to experiencing video pauses during viewing
ads.

Like general TV commercials, we use fixed-length ads
in the middle of videos, as illustrated in Fig. 2. However,
like YouTube, we allow viewers to skip the ads after a skip
point (i.e., a skip button will appear). An ad provider has an
agreement with the content provider for the minimal duration
of ads (Lm) viewed by all peers, so the default skip point
should always appear after the agreed-upon length. On the
other hand, the fixed-length ads should also not exceed a
common length upper bound, LM , in order to prevent peers
from leaving the system due to too much interruption. For
instance, the length of current ads on TV is ≈ 31% of real
content [22]. Thus, the content provider has a closed interval
of the ad duration at its disposal within which to operate.

2) Incentive Principle: In general, peers have heteroge-
neous capacities (both, upload and download rates), as illus-
trated in Fig. 1. In ASPECT, we provide sufficient download
rates to all peers by creating the following incentive principle:
The content provider rewards peers that “release” some of the
download capacity (“due to them”) to the system, in exchange
of shorter ad durations. (Section IV-B describes in detail the
concept of “releasing” download capacity by a peer.) Peers that
“acquire” the “released” download capacity from the system
are asked to view longer ad durations by delaying the skip
point. The amount of duration the content provider advances
the skip point of ads for each “acquiring” peer, is a function
of the amount of download capacity “releasing” peers release
to corresponding “acquiring” peers.

B. Trading Download Capacity with Advertisements

Even though we enable peers to release their download
capacity in order to reduce ad lengths, they still need ap-

propriate incentives to do so. For instance, if peers cannot
significantly reduce the duration of ads, they will not continue
to release their download capacities. On the other hand, if
peers have to view significantly longer duration ads for only a
small improvement in QoS, peers might not want to stay in the
system at all. Therefore, it is important to strike an appropriate
balance between ad-durations and QoS.

1) Reward Function: For the purposes of trading download
capacity with advertisements, we define a reward function to
properly calculate the ad durations based on peers’ contribu-
tions. We use the term ‘reward function’ because high capacity
peers can be rewarded with shorter ad durations for releasing
download rates (Cn ≥ 0), and consequently, low capacity peers
will be rewarded with better QoS by receiving download rates
(Cn ≤ 0) in return for longer ad durations. If the default ad
duration before skip point is LD, the actual skip point assigned
to peer n, Ln, is calculated as:

Ln =

{
min(LD − λ ∗ Cn, LM) if Cn < 0;

max(LD − λ ∗ Cn, Lm) if Cn > 0.
(1)

Here Ln is the reward function for peer n, and λ > 0 is the
parameter used for translating download rate to ad length. For
simplicity, here we use a linear function for Ln; this can be
extended to a number of other functions.

2) Resolving Parameter Estimation Challenge Using Game
Theory: In order to provide sufficient incentives for peers to
pursue the change in ad durations, we need to find a proper
combination of LD and λ that will result in peers experiencing
a sufficient QoS improvement if they view longer duration ads
or have peers receive a sufficient reductions in ad durations
if they release download rates. However, it is difficult to set
this parameter combination. To illustrate this fact, we use
a simple simulation-based experiment, based on the model
discussed on Section V. This experiment uses a 30-minute
video, where LM is 7 minutes and Lm is 0. When we set
LD = 3.5 minutes, the actual ad durations viewed by peers
with different upload capacities (under various λ values) are
illustrated in Fig. 3. As we can see in Fig. 3, in some parameter
combinations, peers cannot obtain too much differentiated
rewards from their contributions compared to other peers’
contributions. For instance, low capacity peers view all 7
minutes of ads as λ increases. This means that irrespective
of the download capacity they receive, they only need to view
a fixed duration of ads. High capacity peers, however, do not
experience significant differences in ad durations, as a function
of λ because their ad durations are already close to zero (i.e.,
Lm). This illustrates that an improper parameter combination
leads to peers having insufficient reductions in ad durations or
insufficient improvements in QoS.

Moreover, since thus far we have not considered the
satisfaction of content and ad providers (which can be an
important objective for sustaining an ad-driven video streaming
ecosystem), an important challenge is to determine parameter
values for a reward function that jointly satisfies all stakehold-
ers, including peers, the content provider, and the ad provider.
In order to address this challenge we resort to game theory
for arriving at the ideal parameter settings for the reward
function, i.e., to determine appropriate LD and λ values.

To this end, we first model ASPECT as a market, where
the goal is to design a strategic mechanism that helps us
determine parameters values of the reward function, enabling
all participants (the peers, the content provider, and the ad
provider) to jointly satisfy their interests, given their require-
ments (see Section III). We then realize ASPECT in the context
of a real protocol - namely a BitTorrent-like video streaming

 0

 1

 2

 3

 4

 5

 6

 7

256 384 512 768 1024 2048

 A
d
v
e
rt

is
e
m

e
n
t
(M

in
s
)

Peer Class

λ = 0.2
λ = 0.4
λ = 0.6
λ = 0.8
λ = 1.0

Fig. 3. Advertisements viewed as a
function of λ

 2 3 4 5 6 7LD
 6

 7

 8

1/λ

 0

Utility

Fig. 4. Utility results from valid
reward functions of advertisements

system - with modifications achieving the desired incentives
(see Section IV). Our extensive simulation-based study of the
resulting benefits is given in Section V.

III. MARKET FOR P2P VIDEO STREAMING

Here, we design a game to determine proper parameter
values for the reward function in Eq. (1) that provide sufficient
incentives for peers to participate in the system and at the
same time satisfies the interests of the content provider and
the ad provider. We first describe the environment. Then, we
formulate the peer utility functions that take individual peer
download rates and ad durations corresponding to the received
rates as arguments. Finally, we describe the details of the game
and the notion of market efficiency.

A. The Environment

In our market setting, there is a content provider, an ad
provider and a set of N peers interested in an on-demand video
that streams at a constant bit rate Cv , and is provided by the
content provider. The content provider invests in servers pro-
viding contents at a total upload capacity Oc. The ad provider
pays the content provider for a fixed length of ads LM , and a
guaranteed minimal viewing period requirement Lm, per peer,
as illustrated in Fig. 2. The content provider chooses the default
skip point LD for all peers, where Lm < LD, and encourages
peers to increase their contributions by enabling the skip point
to appear earlier. We have a non-cooperative game among the
peers, each of which is a rational, strategic player, that wants to
maximize its utility (as discussed in Section III-B). Each peer
acts both as a consumer, which receives video blocks from
the servers and other peers, and a provider, which provides
received blocks to others. Based on the received download
rate Di, peer i uses its utility function to choose the mean
download rate change Ci it wants to release/receive (benefit),
and the length of ads it has to view (cost).

B. Peers’ Utility Functions

We define the utility of peer i as Ui, which is a function
of its download rate and the length of ads it needs to view.
Generally, peers have heterogeneous preferences on download
rates and ads. So, we discuss them separately and combine
them in the end.

As mentioned in Section I, traditional P2P mechanisms
reward peers with high download rates. They believe higher
rates enable peers to peruse better video qualities or to fast
forward the video without freezing. However, there is typi-
cally an (upper) limit for download rates (heterogeneous for
each peer) beyond which the marginal gain for peers keeps
decreasing. For instance, in a constant bit rate video, peers are
unlikely to consider themselves rewarded once their download
rates exceed the video’s bit rate. However, if the download rate
is significantly lower than the video’s bit rate, peers would
be significantly frustrated with their low QoS, as they will
experience frequent video pauses. For practical reasons, we

TABLE I. THE DISTRIBUTION OF UPLOAD BANDWIDTH

UL rate (kbps) 256 384 512 768 1024 2048
Popularity 12% 40% 31% 4% 7% 6%

model the benefit of download rates as (i) a monotonically
increasing concave function (i.e., a Cobb-Douglas function of
one variable [23], [24]), and (ii) a linear function, i.e., for peer
i, Uratei :

(i) Uratei (b) =

{
1

1−γ (b)
1−γ if 0 ≤ γ < 1;

log b if γ = 1,

(ii) Uratei (b) = γb,

(2)

where γ represents a peer’s preference. Here, b is the normal-
ized received download rate:

b = (Di − Ci)/f(Cv),
where f(Cv) is the normalization function based on the video
bit rate Cv . f(Cv) is used to guarantee that all utilities will
sit in the same range. The Cobb-Douglas and linear functions
are popular in the economics literature in modeling utilities of
consumers with respect to resources [24].

Peers are happier if they view shorter ad durations, and are
unhappy if they have to view longer duration ads. Without loss
of generality, we can also model the cost (in a sense a negative
utility for a peer) of ads as a concave or linear function for
peer i, Uadi (a), like in Eq. (2), where a is the normalized
length of an ad. Based on the amount of download capacity
released/received, peers receive a deduction/increase in their
ad viewing durations. Thus, a is defined as:

a = (LD − λCi)/f(Cv),
where parameter λ “translates” download rates to ad lengths.

Based on utility functions Uratei (·) and Uadi (·), the utility
function of peer i, Ui, can be defined as:

Ui = αUratei (b)− βUadi (a) + c, (3)

where α, β, and constant c are used to guarantee that Ui ≥ 0.

C. Non-Cooperative Game among Peers

In this section, we first introduce the settings of the game,
and then show the results of the equilibrium points reached by
parameter combinations through a simulation-based study. We
then discuss which combination is best suited to ASPECT.

1) Game Setting: In this game, peers can choose to stop
requesting blocks from high capacity peers to “release” down-
load rates to other peers, as discussed in Section II-A. Peers
could also keep requesting blocks from high capacity peers
to receive download rates released by other peers. So, in this
game, the strategy parameter for each peer is its download
capacity. They make this decision according to their originally
received download capacities, which only depend on their
upload capacities. For simplicity of the model, we assume the
originally received download rate is proportional to the ratio
of its upload capacity to the overall capacity. Therefore, if the
upload capacity of peer i is Oi, the download rate of peer i,
Di, can be calculated as:

Di = Oi/(

N∑
k=1

Ok) ∗ (
N∑
k=1

Ok +Oc).

(The function for real download rates is discussed in Section
IV-A.) Abstractly, there is a common-pool maintaining “free”
download capacity released by peers. Peers are only allowed

 0

 500

 1000

 1500

 2000

 2500

 3000

256 384 512 768 10242048

D
o
w

n
lo

a
d
 R

a
te

 (
k
b
p
s
)

Peer Class

LD=5.5, λ=0.134
LD=5.5, λ=0.142

LD=6, λ=0.134

Fig. 5. The real download rates of
different peer classes in three valid
equilibrium points

 0

 2

 4

 6

 8

 10

256 384 512 768 1024 2048

A
d
v
e
rt

is
e
m

e
n
t
(M

in
)

Peer Class

LD=5.5, λ=0.134
LD=5.5, λ=0.142

LD=6, λ=0.134

Fig. 6. The durations of ads viewed
by different peer classes in three valid
points

to release their capacities if this common-pool is empty. Peers
cannot obtain download capacities beyond what this common-
pool can offer. In order to achieve fairness, each peer has
an opportunity to be the first to release or receive download
capacities that maximize its utility in different rounds. How-
ever, due to not keeping too much free download capacity
in the common-pool, peers could only change their download
capacity within a fixed window in a given round. This round
is repeated until the game converges to an equilibrium point.

In the game, we set the number of peers to 500, all of
which watch the same 30-minute, 500 kbps on-demand video.
The minimal total duration of ads Lm is 1.5 minutes, and the
maximal duration should not exceed 7 minutes. Peers have dif-
ferent upload capacities, which are drawn from the distribution
given in Table I, that is based on measurements from [25]. (The
same settings are used in our system experiments, discussed
in Section V.) Moreover, peers have different utility functions,
which are uniformly selected from all possible values of γ in
Urate and Uad.

2) Reaching Equilibrium: An equilibrium point of our
proposed game represents the point at which no peer tries to
change their download rates and their ad lengths.

We iterate combinations of parameters (LD and λ) ac-
cording to the game setting in Section III-C1 and find the
equilibrium point for each combination. We observe that for
each combination there is a unique equilibrium point.

3) Reaching Market Efficiency: Market efficiency refers to
the situation when all players in the market are satisfied after an
economic transaction, and the market is at equilibrium. In our
problem setting, the ad provider is satisfied when the length
of ads shown to all peers meets the minimal requirements,
in accordance with the contract with the content provider.
The content provider is satisfied when peers are willing to
contribute their “extra” download capacities in return for
significantly differentiated ad durations. Given this, the content
provider should be able to make its desired profit (e.g., more
peers staying in the system lead to greater revenues from ad
viewing) as well as decrease its investments in infrastructure
due to significant participation of high capacity peers.

Consequently, we observe through simulation experiments
that only three (LD, λ) combinations ((LD = 5.5, λ = 0.134),
(LD = 5.5, λ = 0.142), and (LD = 6, λ = 0.134)) result in
market efficiency (see Fig. 4). However, out of these three
efficient points, we are interested in the point that makes the
content provider most satisfied. We observe this point to be
(LD = 6, λ = 0.134) - it has the most similar (among
peers) download rates received (see Fig. 5), which should
lead to similar (good) QoS as well as the most differentiated
ad durations (see Fig. 6). The reason for focusing on this
point in our system is that our game contains a monopoly
content provider, and thus we choose the point where it is
most satisfied. Extensions to other markets, e.g., an oligopoly,
are possible but are beyond the scope of this paper.

TABLE II. SUMMARY OF NOTATIONS

Dt
i,n the download rate from i to n in time [t− 1, t)

At
i,n the average download rate from i to n up to but not including time t

Rt
n # of neighbors released by peer n at time t

Qt
n # of continuous blocks in peer n’s buffer at the beginning of time t

T length of requesting period/time slot
B # of blocks for 1 sec of video playback
Z the size of one block (Kb)
W t

n the reward for peer n at time t
P t

n the penalty for peer n at time t
I the interval between two ad periods
LD the default duration of ads viewed by all peers in every I period
Lj

n the actual ad duration in the j-th period
α the coefficient used to distinguish peers groups
λ the ratio for translating rate to ads

IV. BITTORRENT SYSTEM IN ASPECT

We gave an overview of ASPECT in Section II and studied
a market-based model to find the parameters for the reward
function in Section III. Here, we focus on the mechanisms
that provide peers in ASPECT the ability to trade download
rates and ad durations in the context of a BitTorrent-based
streaming system. The BitTorrent protocol is the most popular
P2P protocol and provides the general foundation of a number
of widely used P2P systems today; e.g., CoolStreaming [26],
the widely used block-driven P2P streaming protocol, is a
BitTorrent-like protocol. (Another widely used P2P system is
PPLive [27]; however, the details of its design are not publicly
available.) Thus, given publically available information, we
focus our design on a BitTorrent-like system.

As discussed in Section II, peers should be able to “release”
unneeded download rates to low capacity peers in exchange for
shorter ad durations. Thus, in this section, we first describe the
components of a BitTorrent-like system that are particularly
responsible for peers’ download rates. Than, we introduce our
proposed mechanism, with the goal of sufficiently increasing
download rates for low capacity peers, but without sacrifice
QoS of high capacity peers. Moreover, we propose a decen-
tralized method to quantify peers’ download rate changes,
and combine the parameters studied in Section III to achieve
differentiated ad durations.

A. BitTorrent-like Video Streaming Systems

In a hybrid BitTorrent-like system, peers obtain video
blocks from the content provider’s servers as well as exchange
blocks with other peers, i.e., their neighbors in an overlay
network. Peers have a strategy, to which we refer as a “Peer
Selection” mechanism, for selecting from which neighbors to
unchoke1. In order to encourage peers to contribute resources,
BitTorrent-like systems typically adopt a TFT-type strategy,
i.e., bigger contributors are rewarded with larger amounts of
resources. For instance, a peer unchokes several (typically 4
or 5) neighbors that provide the highest download rates to
it, to send blocks to. Additional peers (typically 1) are also
unchoked in a random manner, in order to explore newly
arrived neighbors; this is referred to as optimistic unchoking.
Once a neighbor is unchoked, it needs a block selection algo-
rithm to determine which specific blocks to request. Because
the traditional rarest-first mechanism is not suitable for video
streaming, other block selection algorithms [19], [20], [28],
better suited for streaming, have been designed; these take the
order in which blocks are streamed into consideration and thus
put higher priority on selection of blocks that are needed in
the near future.

Before selecting to which peer to unchoke, peers have a
strategy - we refer to it as a “Peer Request” mechanism in

1A peer is “unchoked” when it is selected to receive data (in response to
its request).

TABLE III. THE AVERAGE DOWNLOAD RATES (KBPS) EXPERIENCED
BY PEERS IN DIFFERENT CLASSES

Upload rate (kbps) 256 384 512 768 1024 2048
Original Download rate (kbps) 440 452 485 659 803 852

New Download rate (kbps) 525 526 528 529 546 551

the remainder of the paper - for selecting from which peers to
request blocks.

Specifically, we modify the Peer Request mechanism,
which is particularly responsible for download rates, and use
a block selection algorithm based on the principles described
in [19], as detailed in Section V.

B. Modified Peer Request Mechanism

Before proposing our mechanism modifications, we de-
scribe our abstraction of the BitTorrent-like video streaming
system used in this paper. (A summary of notation is given
in Table II.) We view the system as operating in slotted time
(with a time slot of length T). At the beginning of each time
slot, peers determine to whom they should send requests and
which of their neighbors’ requests to grant. Specifically, during
time slot t, peer n has download rates, Dt

1,n...D
t
mn,n

2, from its
mn neighbors. Given that a constant bit rate video requires B
blocks for one time slot of playback, peer n’s total download
rate should be greater than or equal to the video bit rate, i.e.,

mn∑
i=1

Dt
i,n ∗ T ≥ B ∗ Z, (4)

where Z is the size of one block; otherwise, peer n might
suffer from video pauses.

In order to shift un-needed download rates to low capacity
peers, we take the following approach. When excess download
rates (i.e. more than the required rate) are perceived by a
high capacity peer n, given appropriate incentives (see Section
IV-C), n forgoes on requesting blocks from some of its
high capacity neighbors (i.e., those that provide n with high
download rates). We refer to this as “releasing” a neighbor,
and attempt to release as many neighbors as possible without
affecting the quality of n’s video playback. Specifically, we do
this in an adaptive manner, where peer n increases the number
of neighbors released only if its download rate satisfies the
video playback requirement (i.e., no video pauses). Moreover,
in order not to experience video pauses caused by insufficient
download rates due to over-releasing of neighbors, peer n
releases an additional neighbor only if it has already cached
more than sufficient blocks in its buffer. Let Qtn be the number
of continuous blocks3 in peer n’s buffer at the beginning of
time slot t. Then, we set sufficient blocks in the buffer as
Qtn ≥ 2∗B∗T , based on the results from Experiment V-B (see
details below). However, when peer n finds that the current
number of released neighbors leads to insufficient download
rates, i.e., Eq. (4) is not true, and the number of continuous
blocks in the buffer is only sufficient to insure one (next) period
for smooth playback, i.e., 2 ∗ B ∗ T > Qtn ≥ B ∗ T , peer n
decreases the number of released neighbors. Lastly, all releases
are voided when peer n determines that it does not even have
sufficient blocks for a single playback period, i.e., Qtn < B∗T .

After determining the number of peers released, Rtn, our
mechanism sorts peer n’s neighbors based on their average

2Given the asymmetric nature of upload/download capacities in users’
connectivity, we assume (as is typically done) that the available download
capacity of peers is not the bottleneck, i.e., the download rates acquired by
peers are determined by the available upload capacity and used mechanisms.

3A set of blocks, starting from the block for the next video frame, has a
continuous sequence without any missed blocks for video playback.

ALGORITHM 1: Modified Peer Request Mechanism at time t
Peer n has mn neighbors, which are sorted on average download
rates At

i,n from high to low, the order is 1...mn;
The number of released neighbors at time t− 1 is Rt−1

n ≥ 0;
if
∑mn

i=1
Dt−1

i,n ∗ T ≥ BZ and Qt
n ≥ 2BT then

Rt
n ← Rt−1

n + 1;
else

if
∑mn

i=1
Dt−1

i,n ∗ T < BZ and 2BT > Qt
n ≥ BT then

Rt
n ← Rt−1

n − 1;
else

if Qt
n < BT then
Rt

n ← 0;
end

end
end
Chose requested peers from left neighbors Rt

n + 1...mn;

download rates, Ati,n, to n and releases Rtn peers with the
highest download rates. We define Ati,n as the average down-
load rate (i.e., historical contribution), obtained by n from
neighbor i (up to but not including slot t); here, we only
consider download rates greater than zero when calculating this
average, as we would like to reflect the average upload capacity
of neighbor i4. We use Iti,n ∈ {0, 1} to indicate whether or
not peer n obtains a non-zero download rate from neighbor i
during time slot t, i.e., Iti,n = 1 indicates that the download rate
is greater than zero. Then, the average download rate obtained
by n prior to time slot t from neighbor i is defined as:

Ati,n =

(
t−1∑
k=1

Dk
i,n

)
/

(
t−1∑
k=1

Iki,n

)
. (5)

We choose to start releasing peers with the highest down-
load rates because their high contributions provide greater
benefits to other peers. In contrast, if we release peers with
the lowest download rates, it is less likely that those donations
could be useful to low capacity peers as they will have lower
upload capacities and fewer useful blocks. The details of our
modified mechanism are given in Algorithm 1. The last row of
Table III also demonstrates the resulting “shift” in download
capacity allocation (with our modified approach from one of
our experiments). As a result of this approach (see details in
Section V), no peer obtains an (un-necessarily) high download
rate, but many peers have an opportunity to obtain download
rates sufficient for playback.

C. The Reward Function for Advertisements

As discussed in Section III, appropriate duration of ads is
a good incentive to motivate peers to continue contributing
upload capacity while releasing unneeded download capacity.
Specifically, in our approach, given a default ad duration that
should be viewed by a peer, the length of peers’ ads can be
reduced as a reward for helping their neighbors or increased as
a penalty for being helped by their neighbors. The mechanism
used to compute rewards and penalties is detailed next.

Rewards. As described in Sections IV-B, a peer helps its
neighbors by releasing neighbors, thus allowing them to obtain
higher download rates and maintain quality of service. A
peer’s reward is computed based on the amount of help
provided through this mechanism to its neighbors. We say
peer n releases Rtn neighbors in time slot t. If peer n did not
release neighbor i, the expected download rate received from

4A download rate of zero might just mean that two peers did not share
blocks during a particular time slot.

ALGORITHM 2: Penalty for peer n at time t
Peer n has mn neighbors, and its upload rate to one neighbor is Un;
The average download rates of neighbors are At

1,n...A
t
mn,n;

The download rates in time slot t are Dt
1,n...D

t
mn,n;

for Neighbor from i = 1→ mn do
if Dt

i,n > 0 and At
i,n > α ∗ Un then

P t
n+ = Dt

i,n ∗ (1− 1/mn)
end

end

i can be estimated as Ati,n, which is the historical average
download rate from i. Thus, as in Algorithm 1, where peer
n sorts neighbors (from high to low) based on their historical
average download rates and releases the first Rtn neighbors, the
donation from peer n (or the reward that peer n could obtain)
at time t can be computed as:

W t
n =

∑Rt
n

i=1A
t
i,n. (6)

Penalties. A peer’s penalty corresponds to the download rates a
peer obtains as a result of its neighbors’ “donations”. Given the
decentralized nature of our system, it is difficult to determine
how much a neighbor’s donation eventually increases a peer’s
download rate. Therefore, we use peers’ local information to
estimate this benefit, based on an expectation of how much
download capacity a peer would not have obtained without
our approach, as detailed next.

As we discussed in Section IV-B, peers form a cluster with
neighbors that have similar capacities and consequently seldom
exchange blocks with peers from other clusters, other than
through optimistic unchoking. Thus, we treat the download
rates obtained by peer n from peers in higher capacity clusters,
other than those obtained through random selections, as being
obtained due to “donations” made by higher capacity peers.
Consequently, to determine the amount of download rates
obtained through “donations”, we need to determine how
much is obtained through optimistic unchoking. To this end,
we approximate the probability of a peer being chosen (to
receive data) by neighbor i through the random selection by

1
mi−4 ≈

1
mi

, where mi is the number of peer i’s neighbors.
Since peer n does not know how many neighbors peer i has,
we make the simplifying assumption that all peers have a
similar number of neighbors; that is, in Algorithm 2, we set
mi = mn,∀i. Thus, if peer n obtains a download rate of
Dt
i,n from a higher capacity neighbor i in time slot t, then we

estimate the “donated” download rate (from i to n) as being
Dt
i,n ∗ (1− 1

mn
).

What remains (before we can characterize the overall
penalty) is to determine an appropriate cluster for each peer.
We do this based on historical data, i.e., the average download
rate, Ati,n, of neighbor i. Specifically, given that peer n’s
average upload rate to a neighbor is Un, we consider neighbor
i to be in the same cluster with peer n if Ati,n ∈ [Un/α, α∗Un],
where α is a scaling parameter. Since a peer only receives
“donations” from neighbors in clusters with higher capacities,
we only account for a “donation” when it comes from a peer
with a download rate higher than α∗Un. Thus, the summation
of the average download rates from higher capacity peers is P tn,
as detailed in Algorithm 2. In our experiments, we set α = 1.5
as the high upload capacities are at least 1.5 times higher than
the low upload capacities, as listed in Table I. (In real systems,
service providers can adjust this value according to their users’
bandwidth capabilities as typical users are unlikely to change
their upload bandwidth frequently.)

The duration of ads. Once we determine the reward and the
penalty, we combine them in computing the duration of ads
a peer should view. Given an ad period, to be viewed after
every I time slots of content, the content provider determines
the default total ad duration LD and divides it equally among
the ad periods. According to the contract, the content provider
has a lower bound Lm and an upper bound LM for the total
ad duration to be viewed by a peer. Thus, if there are L ad
periods, the actual ad duration in the j-th period to be viewed
by peer n, Ljn, is determined as follows:

L
j
n =

1

L
min

max

LD − λ ∗
1

I

tj∑
k=tj−I

(W
k
n − P

k
n), Lm

 , LM

 ,

(7)
where tj is the start time of the j-th ad period.

In Section III, we discuss that the pair of parameters
(LD = 6 and λ = 0.134) provides the best market efficiency.
Therefore, here, we adopt this pair of parameters in Eq. (7)
and test if those parameters could enable our modifications
to provide satisfactory service to peers, the content provider,
and the advertisement provider. The corresponding detailed
simulation study is described in Section V.

We note that our mechanisms for computing rewards and
penalties require only local information. Therefore, our mech-
anisms do not require the use of central servers or information
exchange between peers, which are needed in [12].

V. EVALUATION

Our goal in this section is to evaluate the utility of
ASPECT. To this end, we perform simulation-based experi-
ments, in a controlled environment, in order to demonstrate
the characteristics of our mechanisms and gain insight and
understanding of the corresponding system.

We now describe how we implement the baseline approach
(i.e. the original BitTorrent-like video streaming system dis-
cussed in IV-A) in our simulation environment as well as how
we integrate our modified mechanisms (as described in Section
IV-B) into this baseline approach. Briefly, we implement all
peer client and server functionalities where simulated peers
actually exchange information and data (as real peers do).
However, since this is a simulated environment, peers do not
actually play the videos, but only check that the required
content is in the buffers when it is needed. A video pause
is detected if it happens that a required block is not in the
buffer. A summary of default parameter settings used here is
given in Table IV.

In the simulations, after joining the system, a peer will re-
registers itself and retrieves a set of random peers (at most
50 in our system) every 200 seconds from the tracker. In the
BitTorrent protocol, a peer can only choke and unchoke peers
once every 10 seconds to avoid oscillations. Therefore, we
adopt 10 seconds as the interval T for peer’s actions. To update
block information, peers exchange bit-maps of blocks they
have with their neighbors at the beginning of every interval.
Then, peer n sends request messages to its neighbors that have
blocks peer n does not have. Peer n will unchoke 4 peers that
have the highest download rates to peer n for the 10 seconds
prior to the next round of bit-map exchanges. For optimistic
unchoking, peer n also re-selects the (randomly) unchoked
neighbors every 10 seconds. After peer n is unchoked, it
chooses missed blocks to download. Recall that our focus is
on reducing video pauses as caused by insufficient download
rates. Hence, we adopt an existing block selection algorithm
as described in [19]. In this basic block selection algorithm,
peers request blocks to be used in the near future first, and

TABLE IV. THE PARAMETERS USED IN THE EXPERIMENTS

of peers in the system (N) 500
Length of an action interval (T) 10 seconds
Recorded simulation time (Ts) 1800 seconds
Max Advertisement : real content 0.31 : 1
Video bit rate 500 kbps
Upload bandwidth of content server 10240 kbps
Blocks per second 4
Number of peers unchoked by the server : a peer 20 : 5
α (the value used to distinguish peers’ groups) 1.5
LD (the default duration of ads) 6 minutes
λ (the ratio for translating rate to ads) 0.134

then use the rarest-first approach for those blocks that will not
be needed in the near future. For instance, if video playback
time of peer n is at tn seconds, then peer n will give blocks
in the [tn, tn + T ∗ 2] interval higher priority. If no block in
[tn, tn + T ∗ 2] period can be selected for download, peer
n will use rarest-first algorithm to fetch blocks after time
tn + T ∗ 2. The central video server acts like another peer,
with the difference being that it can unchoke a greater number
of peers due to having higher upload capacity. (We provide
details below.) All these mechanisms continue/repeat until the
end of a simulation run.

Our modifications follow a similar design. However, the
modified Peer Request algorithm insures that high capacity
peers stop sending block request messages to some of the other
high capacity peers. The specifics of how (and how many)
high capacity peers are released are described in Section IV-B.
Finally, having peers “donate” to others (as described earlier)
introduces different duration of ads viewed, as detailed below.

To make sure that video pauses are not due to not having
sufficient overall resources, but are rather due to inappropriate
allocation of those resources, we only focus on experimental
settings where there is sufficient total upload bandwidth to
satisfy the total download demand. In our experiments, we
set the total number of peers to 500, based on traces from
the PPLive Project [30]. Upload capacities of peers are drawn
from the distribution given in Table I. A central video server,
that originally provides the content, has an upload capacity
of 10240 kbps in our experiments. We consider single-layer
video with constant bit rate (CBR) encoding in our simulations.
In our experiments, the video bit rate is set to 500 kbps, as
measured in [2]. We do not consider variable bit rate (VBR)
videos in our simulations because we want to understand how
much reduction of video pauses comes from our modifications,
not from the low download rate requirements at some times.
To focus on the above stated goals, we mostly consider a
single streaming rate in our experiments; however, we do
address heterogeneous streaming rates in Section V-B below.
Based on the video bit rate and the upload capacity of the
central video server, we have the video server unchoke 20
peers simultaneously, where all the unchoked peers can obtain
sufficient download rates for video playback directly from the
video server. According to [31], the average video viewing
time per a user’s visit is more than 22 minutes. Thus, for
simplicity of exposition, we assume that there is no peer churn
in our 30-minute simulation period. Moreover, we have no
free-riders in our experiments (as that is not the focus of
this work). Given these settings, the total upload capacity is
sufficient for all peers to view video playback smoothly if the
upload resources are allocated properly.

According to [22], the length of current ads on TV is ≈
31% of real content. For instance, in our 30-minute simulation
period, there is typically only ≈ 23 minutes of real content
with ≈ 7 minutes of ads. So, we set the maximal ad duration
(LM) to 7 minutes, and the minimal required length (Lm) to
1.5 minutes. The default duration (LD) and λ obtained from
our market-based model are 6 minutes and 0.134 respectively.

 0

 2

 4

 6

 8

 10

 12

 14

 16

256 384 512 768 1024 2048

V
id

e
o
 p

a
u
s
e
 (

%
)

Peer Class

Old BT System

Fig. 7. Video pauses always happen
on low capacity peers

 1

 3

 10

256 384 512 768 1024 2048

V
id

e
o
 p

a
u
s
e
s
 (

%
)

Peer class

Original Peer Request
Modified (Q = BT)

M (Q = 2BT)
M (Q = 3BT)
M (Q = 4BT)

Fig. 8. Video pauses after applying
our Peer Request mechanism

 200

 400

 600

 800

256 384 512 768 10242048

D
o
w

n
lo

a
d
 r

a
te

s
 (

k
b
p
s
)

Peer class

Original Peer Request
Modified Peer Request

Fig. 9. The download rates of each
class before and after applying our
Peer Request mechanism

 0

 2

 4

 6

 8

 10

256 384 512 768 1024 2048

A
d
v
e
rt

is
e
m

e
n
ts

 (
M

in
)

Peer Class

Our Mechanism

Fig. 10. The duration of ads for each
class after our mechanisms

The primary evaluation metric, used in the remainder of
this section, is the percentage of time the streamed video
was paused, defined as follows. Given N peers in the system
viewing video for length Ts, if the total length of video
pauses experienced by peer i during this experiment is Vi,
the percentage of video pauses for all N peers in the system
is computed as:

% of pause time =
∑N
i=1 Vi/(N ∗ Ts) ∗ 100%. (8)

In order not to have initial “warm-up period” results skew
the outcome, we run each simulation for 2400 seconds, and
only record the results from the last 1800 seconds, where
each peer has already learned around 1/3 of the peers in the
system and peers already form their clusters. Moreover, most
simulation results presented in this section are obtained with
95%±5% confidence intervals5. Due to lack of space, we only
show a subset of our results in what follows; however, results
for other settings are qualitatively similar.

A. Buffer Starvation

In this experiment, we show peers with lower capacity
experience frequent video pauses. We simulate the baseline
approach, i.e., an original BitTorrent-like video streaming
system, and record the percentage of video pauses of different
classes, i.e., as in Eq. (8) but on a per class basis, as shown
in Fig. 7. For instance, low capacity peers experience more
than 3 minutes of video pauses in a 30-minute video (such
as a typical TV show), particularly peers in the 256 kbps
class, who experience almost 4 minutes of video pauses. On
the other hand, high capacity peers seldom experience a video
pause. This experiment demonstrates that buffer starvation (and
subsequent video pauses) is potentially a significant problem
in P2P-based video streaming systems.

B. Peer Request Modification

As shown in Section V-A, the video playback quality
of low capacity peers is affected by the high frequency of

5Results for the 2048 kbps class are obtained with lower confidence - video
pauses rarely occur for that class, and hence, it is difficult to obtain simulation
results with high confidence intervals.

video pauses. In this experiment, we demonstrate that our
proposed Peer Request mechanism can significantly reduce
video pauses experienced by low capacity peers. We compare
the percentage of video pauses experienced by the different
classes of peers under the original Peer Request mechanism
with those under our modified version; the results are depicted
in Fig. 8. As noted in Section IV-B, a peer starts to release
its neighbors after the number of continuous blocks cached in
its buffer, Q, is larger than a threshold. Therefore, in Fig. 8,
we also demonstrate the performance of our modified versions
when different thresholds are used. Here, we observe that our
mechanism reduces video pauses under all thresholds used in
our experiments. Generally, our mechanism can significantly
reduce video pauses of peers in the 256 kbps class (i.e.,
to reduce more than half of pauses experienced under the
original BitTorrent-like approach). Moreover, video pauses
of peers in the 384 kbps class are nearly eliminated (i.e.,
only around 1 percent of video pauses are left). However,
the performance of our mechanism highly depends on the
threshold, particularly when the threshold is very small. As
expected, a smaller threshold increases peers’ probability of
releasing neighbors and increases the download rate of low
capacity peers; however, it makes peers more sensitive to
the download rate changes, resulting in a higher probability
of experiencing video pauses. On the other hand, a higher
threshold enables peers to absorb the change in download
rates, but makes low capacity peers not being likely to obtain
donations from high capacity peers. Therefore, in our work, we
choose a reasonably conservative threshold of twice required
blocks for each time period.

To demonstrate that the video pauses are reduced through
the “donation” of download capacity by high capacity peers,
in Fig. 9, we depict the download rates obtained by peers in
different classes. This figure shows that low capacity peers
can increase their download rates, once some of the capacity
is “released” by high capacity peers. For instance, peers in the
256 kbps class obtain nearly sufficient download rates for video
playback, thus resulting in significantly fewer video pauses.
(Recall that the video bit rate is 500 kbps.)

Although in our experiments only single-layer video is
used, our approach can be easily extended for systems with
heterogeneous streaming rates through the use of layered video
coding. The main difference in systems with heterogeneous
streaming rates is that high capacity peers may prefer to use
their “un-needed” capacity to view higher rate (and hence
quality) videos rather than release it in order to reduce the
duration of ads viewing. However, as measured in [32], the
highest bit rate used in current video streaming systems
is 9 Mbps, which is smaller than the rate of many cable
Internet connections. Hence, as long as high capacity peers are
interested in viewing shorter duration ads, low capacity peers
can still obtain increased download rates from high capacity
peers through our mechanism.

C. The Duration of Advertisements

In this experiment, we use the parameters LD and λ,
determined in Section III, to adjust the duration of ads (see
Section IV-C). We record the duration of ads viewed by
different classes of peers. As shown in Fig. 10, lower capacity
peers view more than the default length, which is 6 minutes,
while higher capacity peers view significantly shorter duration
ads. However, since the increased/decreased duration of ads is
proportional to the expected download rate change (refer to Eq.
(6) and Algorithm 2), peers will have significant differences
in their ad durations (e.g., peers in 2048 kbps class always
release peers with highest capacities, resulting in significantly

decreased ad durations). Compared to the results in Fig. 3,
which are obtained by simulating with arbitrary parameters,
the parameters from our market-based model deliver the most
differentiated ad durations without violating constrains (i.e.,
these durations are between Lm and LM). Therefore, with
ASPECT, the content provider can still satisfy requirements
from ad providers (i.e., delivering the minimal duration of ads),
while incentivizing peers to contribute resources by offering
differentiated ad durations to peers, based on their resource
contributions as well as the amount of resources they receive.

VI. CONCLUSIONS

We proposed an Ad-Driven Streaming P2P Ecosystems
(ASPECT) in this paper, in the context of P2P video stream-
ing systems, for peers to donate their (un-needed) download
capacity, in order to improve overall QoS in the system.
To support such “re-allocation” of resources, we proposed a
modified Peer Request mechanism, which facilitates donation
(by peers) of potentially available download capacity. To
provide appropriate incentives, we viewed the P2P-based video
streaming system as a market-based model, which encourages
peers to release their download rates for shorter ad durations.
Our simulation-based experiments demonstrated that ASPECT
can significantly reduce video pauses, thus increasing QoS,
while maintaining overall commitment to the ad provider.

In this paper, we focused on the block exchange progress;
thus, we only considered a single channel (i.e., users sharing
the same video) and used a simple block selection mechanisms
designed for video streaming. However, our work can be easily
combined with other block selection mechanisms as well as
extended to a multi-channel scenario. Moreover, our market-
based model can be extended to multiple content providers and
ad providers with various requirements in the market.

REFERENCES

[1] R. Kumar, Y. Liu, and K. Ross, “Stochastic fluid theory for p2p
streaming systems,” in INFOCOM. IEEE, 2007.

[2] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross, “A measurement study
of a large-scale p2p iptv system,” Transactions on Multimedia, 2007.

[3] Y. Xu, E. Altman, R. El-Azouzi, M. Haddad, S. Elayoubi, and
T. Jimenez, “Probabilistic analysis of buffer starvation in markovian
queues,” in INFOCOM, 2012.

[4] Y. Xu, E. Altman, R. El-Azouzi, S. Elayoubi, and M. Haddad, “Qoe
analysis of media streaming in wireless data networks,” NETWORKING,
2012.

[5] A. ParandehGheibi, M. Médard, A. Ozdaglar, and S. Shakkottai,
“Avoiding interruptions a qoe reliability function for streaming media
applications,” IEEE JSAC, 2011.

[6] Z. Liu, Y. Shen, S. S. Panwar, K. W. Ross, and Y. Wang, “Using layered
video to provide incentives in p2p live streaming,” in Proceedings of
the 2007 workshop on Peer-to-peer streaming and IP-TV. ACM, 2007.

[7] J. Mol, D. Epema, and H. Sips, “The orchard algorithm: P2p multicas-
ting without free-riding,” in Peer-to-Peer Computing. IEEE, 2006.

[8] J. Rückert, O. Abboud, T. Zinner, R. Steinmetz, and D. Hausheer,
“Quality adaptation in p2p video streaming based on objective qoe
metrics,” NETWORKING, 2012.

[9] Hulu, “Hulu,” http://www.hulu.com, 2014.
[10] “comscore releases december 2013 u.s. online video rankings,”

http://www.comscore.com/Insights/Press-Releases/2014/1/
comScore-Releases-December-2013-US-Online-Video-Rankings.

[11] “Hulu:15 or 30 Video Commercial,” http://www.hulu.com/advertising/
ad-product/video/15-or-30-video-commercial/, 2014.

[12] B. Wang, A. Chow, and L. Golubchik, “P2p streaming: use of adver-
tisements as incentives,” in Multimedia Systems. ACM, 2012.

[13] P. Hoong and H. Matsuo, “Push-pull incentive-based p2p live media
streaming system,” WSEAS transactions on communications, 2008.

[14] Z. Liu, Y. Shen, K. Ross, S. Panwar, and Y. Wang, “Substream trading:
Towards an open p2p live streaming system,” in ICNP, 2008.

[15] T. Qiu, I. Nikolaidis, and F. Li, “On the design of incentive-aware p2p
streaming,” Journal of Internet Engineering, 2007.

[16] N. Parvez, C. Williamson, A. Mahanti, and N. Carlsson, “Analysis
of bittorrent-like protocols for on-demand stored media streaming,” in
ACM SIGMETRICS Performance Evaluation Review. ACM, 2008.

[17] Y. Yang, A. Chow, L. Golubchik, and D. Bragg, “Improving qos in
bittorrent-like vod systems,” in INFOCOM. IEEE, 2010.

[18] L. D’Acunto, N. Andrade, J. Pouwelse, and H. Sips, “Peer selection
strategies for improved qos in heterogeneous bittorrent-like vod sys-
tems,” in Multimedia (ISM). IEEE, 2010.

[19] A. Vlavianos, M. Iliofotou, and M. Faloutsos, “Bitos: Enhancing
bittorrent for supporting streaming applications,” in INFOCOM, 2006.

[20] Y. R. Choe, D. L. Schuff, J. M. Dyaberi, and V. S. Pai, “Improving vod
server efficiency with bittorrent,” in Multimedia. ACM, 2007.

[21] D. Wu, Y. Liang, J. He, and X. Hei, “Balancing performance and
fairness in p2p live video systems,” Circuits and Systems for Video
Technology, IEEE Transactions on, 2013.

[22] W. Schmidt, “How Much TV Commercial Length has Grown over
the Years,” http://www.waynesthisandthat.com/commerciallength.htm,
2014, [Online; accessed 20-June-2014].

[23] C. W. Cobb and P. H. Douglas, “A theory of production,” The American
Economic Review, pp. 139–165, 1928.

[24] A. Mas-Colell, M. D. Whinston, J. R. Green et al., Microeconomic
theory. Oxford university press New York, 1995, vol. 1.

[25] M. Dischinger, A. Haeberlen, K. Gummadi, and S. Saroiu, “Character-
izing residential broadband networks,” in IMC, ACM, 2007.

[26] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “Coolstreaming/donet: a
data-driven overlay network for peer-to-peer live media streaming,” in
INFOCOM. IEEE, 2005.

[27] G. Huang, “Pplive: A practical p2p live system with huge amount of
users,” in Proceedings of the ACM SIGCOMM Workshop on Peer-to-
Peer Streaming and IPTV Workshop, 2007.

[28] B. Q. Zhao, J. Lui, and D.-M. Chiu, “Exploring the optimal chunk
selection policy for data-driven p2p streaming systems,” in P2P, 2009.

[29] A. Legout, N. Liogkas, E. Kohler, and L. Zhang, “Clustering and
sharing incentives in bittorrent systems,” in SIGMETRICS Performance
Evaluation Review. ACM, 2007.

[30] L. Vu, “Pplive project,” 2008. [Online]. Available: http://cairo.cs.uiuc.
edu/longvu2/pplive.html

[31] S. S. Krishnan and R. K. Sitaraman, “Video stream quality impacts
viewer behavior: inferring causality using quasi-experimental designs,”
in Internet measurement conference. ACM, 2012.

[32] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari,
“Confused, timid, and unstable: picking a video streaming rate is hard,”
in Internet measurement conference. ACM, 2012.

