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Abstract
With growing data volumes generated and stored across geo-
distributed datacenters, it is becoming increasingly ineffi-
cient to aggregate all data required for computation at a sin-
gle datacenter. Instead, a more recent trend is to distribute
computation to meet data locality, thus reducing the resource
(e.g., bandwidth) costs while improving performance. Con-
sequently, new challenges are emerging in job scheduling,
where each job runs across multiple geo-distributed data-
centers and, requiring coordination among datacenters. In
this paper, we propose novel job scheduling algorithms that
coordinate job scheduling across datacenters with low over-
head, while achieving near-optimal performance. Our exten-
sive simulation study, using realistic job traces, shows that
the proposed scheduling algorithms result in up to 50% im-
provement in average job completion time over the Shortest
Remaining Processing Time (SRPT) based approaches.

1. Introduction
Data intensive jobs run by cluster computing systems (e.g.,
Hadoop[3], Spark[39], Dryad[17]) have recently generated
significant workloads for datacenters, providing services
such as web search, consumer advertisements and product
recommendations, user behavior analysis and business intel-
ligence. These jobs are composed of numerous tasks. Each
task reads a partition of input data and runs on available
computing slots in parallel; the job is finished upon the com-
pletion of all of its tasks [5, 7, 8]. To serve the increasing
demands of various data analytics applications, major cloud
providers like Amazon[1], Microsoft[4] and Google[19]
each deploy from tens to hundreds of geo-distributed dat-
acenters; AT&T has thousands of datacenters at their PoP
locations.

[Copyright notice will appear here once ’preprint’ option is removed.]

Conventional approaches performcentralized job execu-
tion, with each job running within a single datacenter. In
such case, when a job needs data frommultipledatacenters, a
typical approach is to first collect all the required data from
multiple datacenters at a single location, and then run the
computation at that datacenter [11, 13, 16, 20, 25]. However,
as data volumes continue to grow in an unprecedented man-
ner, such an approach results in the substantial network traf-
fic [27, 35, 36] and the increased job completion time [14].
Moreover, it is becoming increasingly impractical to repli-
cate a large data set across multiple datacenters [24]. Finally,
some data are restricted to certain datacenters due to security
and privacy constraints (e.g., must be kept within a particular
nation [35, 36]), and therefore cannot be moved.

Consequently, instead of data aggregation at a single data
center, a recent trend is to conductdistributed job execution,
i.e., running a job’s tasks at the datacenters where the needed
data are stored, and only aggregating the results at job com-
pletion time. Recent research efforts show that distributed
job execution achieves 250× bandwidth savings [35, 36]
and reduces the 90th− percentilejob completion time by
a factor of 3 [14]; moreover, 3− 19× query speed-up and
15−64% reduction in bandwidth costs can be achieved [26].

Although promising, distributed job execution poses new
challenges for job scheduling. Since a job’s completion time
is determined by its last completed task across the datacen-
ters, finishing a portion of the job quickly at one datacenter
does not necessarily result in faster overall job completion
time. In addition, potential skews in number of tasks per job
processed at a particular datacenter (as determined by the
data stored there) further complicate matters. Hence, prior-
itizing a job’s tasks at one datacenter when its counterparts
at other datacenters dominate the overall job completion is
“wasteful” (in the sense that prioritizing a different job may
have led to better overall average completion time).

Consequently, unlike in the single-server-single-queue
scenario, classical Shortest Remaining Processing Time
(SRPT) scheduling [9, 30, 31] fails to optimize the average
job completion time in the case of multiple datacenters with
parallel task execution. To provide insight into sub-optimal
behavior of SRPT (and its natural extensions to the multi-
ple datacenter scenario), we present motivating examples in
Section 2, and then show in Section 5 that SRPT-type tech-
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niques’ scheduling of jobs based only on their sizes results
in even worse behavior under heterogeneous datacenters.

To address the challenges outlined above, in this pa-
per, we focus on job scheduling algorithms designed for
the multi-datacenter parallel task execution scenario. Even
single-server-single-queue versions of this scheduling prob-
lem have been shown to be strongly NP-hard [29] or APX-
hard [12]. Thus, our efforts are focused on principled heuris-
tic solutions that can be (experimentally) shown to provide
near-optimal performance. Specifically, our contributions
can be summarized as follows.

• We illustrate why natural SRPT-based extensions leave
significant room for performance improvements, which
provides insights for better approaches. (Section 2)

• We propose a light-weight “add-on”, termedReordering,
that can be easily added to any scheduling algorithm to
improve its performance by delaying parts of certain jobs
without degrading their response times, while providing
opportunities for other jobs to finish faster. We prove
that executingReorderingafter any scheduling algorithm
would result in performance that is not worse than the
one withoutReordering. (Section 3)

• We construct three principles for designing a job schedul-
ing algorithm aimed at reducing the average job comple-
tion time in our setting. Armed with these design prin-
ciples, we developWorkload-Aware Greedy Scheduling
(SWAG), that greedily serves the job that finishes the
fastest by taking existing workload at the local queues
into consideration. (Section 4)

• As a proof of concept, we implement a prototype using
our proposed algorithms under Spark [39] while address-
ing several system implementation issues (Section 5). We
also conduct extensive large-scale simulation-based ex-
periments using realistic job traces under a variety of set-
tings (Section 6). Our results show thatSWAGandRe-
orderingachieve as high as 50% and 27% improvements,
respectively, in average job completion time as compared
to the SRPT-based extensions. The results also show that
the proposed techniques achieve completion times within
2% of an optimal solution (as obtained through brute-
force for comparison purposes), while requiring reason-
able communication and computation overhead.

2. Background and Motivation
In this section, we first present an overview of the distributed
job execution framework in a geo-distributed datacenter sys-
tem. Next we provide a motivating example to illustrate the
needs for better scheduling approaches.

2.1 Job Scheduling across Geo-distributed Datacenters

Figure 1 depicts the general framework for distributed job
execution in geo-distributed datacenters. Our system con-
sists of a central controller and a set of datacentersD span-
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Figure 1. System Architecture of Distributed Job Execution

ning geographical regions, while the system serves the jobs
running with input data stored across the geo-distributed dat-
acenters. Each job (arriving at the central controller) is com-
posed of small tasks that process independent input parti-
tions and run in parallel [5, 7, 8].

The main focus of this paper is the development of an
effective job scheduling mechanism for geo-distributed dat-
acenters. In our system, job scheduling decisions are made
(and potentially re-evaluated) at job arrival and departure in-
stants1 , and involve two levels of schedulers: (1) The global
scheduler residing in the central controller, makes job-level
scheduling decisions for all jobs in the system2, and assigns
a job’s tasks to the datacenters that host the input data.3

(2) The local scheduler at each datacenter has a queueqd

that stores the tasks assigned by the global scheduler, and
launches the tasks at the next available computing slot based
on the job order determined by the global scheduler (or the
local scheduler itself). In addition, all datacenters report their
progress to the central controller, in support of global job
scheduling decisions. The job-level scheduling decisionsare
therefore made by the coordination of the global and local
schedulers (depending on the scheduling technique as de-
scribed later) and are a function of the set of current jobs
J, their tasks, and local queue information data reported by
the datacenters. A job is considered completed only after all
of its tasks are finished; therefore the job completion time is
determined by its last completed task. Our goal is to reduce
the average job completion time.

Fully replicating data across all datacenters in today’s
systems is quite costly, in terms of storage space and in
overhead for maintaining consistency among the copies [24].
Instead, recent systems [24] opt for a single primary copy
plus multiple partial copies based on coding techniques and
replication policies. In our system, each task is assigned to
the datacenter that holds its primary copy of the input data.
We refer to the subset of the job’s tasks assigned to the
same datacenter as the job’ssub-jobat that datacenter. Let

1 We illustrate later in Section 5 that this is sufficient.
2 In some cases the global scheduler delegates the job-level scheduling to
the local schedulers as discussed later.
3 Some local jobs may go directly to the datacenter where all of their
required data is located. We assume that each datacenter reports information
about local jobs to the central controller as the jobs arrive.
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v j,d denote the sub-job composed of jobj ’s tasks that are
assigned to datacenterd. The order in which these sub-jobs
are served at each data center is determined by the job-level
scheduling decisions, where the local scheduler continues
launching the task of the first sub-job in the queue whenever
a computing slot becomes available unless the order of sub-
jobs is updated. When such modifications occur, we assume
no preemption for a task execution when it’s running4 , but
a job (or sub-job) execution can be preempted, i.e., the tasks
of other jobs (or sub-jobs) can be scheduled to run before the
non-running tasks of the currently running job (or sub-job).

To facilitate global scheduling decisions, each datacenter
reports its current snapshot (including the progress of the
sub-jobs in service and those in the queue) to the central
controller. For simplicity of presentation and evaluation, we
assume that this information is guaranteed to be delivered in
time and accurate. In addition, we assume that our system
primarily serves the jobs with single-stage tasks; we discuss
how our system can be extended to serve the jobs with multi-
stage tasks in Section 8.

2.2 Motivating Example

We now present a simple example to illustrate how the vari-
ous scheduling techniques work and the differences of their
scheduling results. Table 1 describes the example settings
(job arrival order, number of tasks per job and their distribu-
tion among the data centers); Figure 2 provides the schedul-
ing results obtained by the various scheduling techniques de-
scribed in this paper. In this example, there are three jobs
arriving to the system at different times, with Job A fol-
lowed by Job B, followed by Job C. At the time the sched-
uler makes the scheduling decision, these three jobs all have
some tasks that are not yet launched. The jobs’ remaining
sizes5 in each datacenter are also given in Table 1. In this
example each datacenter has a single compute slot, i.e., the
datacenter serves one task at a time.

Let the completion time of jobi be r i = fi − ai , where
fi and ai are the time instants of finishing the jobi (or,
finish time) and jobi’s arrival, respectively. Then, the av-
erage job completion time ofn jobs is 1

n ×∑n
i=1 r i =

1
n ×

∑n
i=1 ( fi−ai) =

1
n×{∑

n
i=1 fi−∑n

i=1ai}. We can view reduc-
ing the average job completion time as reducing the sum
of the finish times,∑n

i=1 fi (or equivalently,1n ×∑n
i=1 fi), as

∑n
i=1ai is constant. For simplicity of exposition, we discuss

the remainder of the example in terms of reducing average
finish time (rather than the average completion time).

We further define a sub-job’sfinish instant ij,d as the
queue index at which sub-jobv j,d ends, which is computed
as iz,d + |v j,d|, wherevz,d is the sub-job that is right next to
v j,d while being earlier in the queue, and|v j,d| is the size

4 Non-preemptive task execution is common in conventional cluster com-
puting systems [3, 39] as the tasks are typically of short duration and hence
switching cost is (relatively) large.
5 Here, a job’s remaining size is its remaining number of tasks that are not
launched yet.

(remaining number of tasks) of sub-jobv j,d. The sub-job’s
finish instant is a relative measure and a monotonic indicator
of its finish time;6 specifically, given thatia,d < ib,d∀a,b∈
J, sub-jobva,d finishes no later than sub-jobvb,d does. In
addition, a job’s finish instant is the maximum finish instant
of all its sub-jobs, i.e., maxd i j,d,∀d ∈ D. In this example, if
we were to use a First Come First Serve (FCFS) scheduling
approach, the finish instants of Jobs A, B, and C would be
10, 18 and 11, respectively, which results in an average job
finish instant of 13.

2.3 SRPT-based Extensions

In the single-datacenter scenario - or more specifically
single-server-single-queue with job preemption scenario- it
has been shown that Shortest-Remaining-Processing-Time
(SRPT) minimizes the average job completion time[9, 30,
31] by selecting the job with smallest remaining size first.

To the best of our knowledge, the problem of schedul-
ing jobs across multiple datacenters has not been solved nor
extensively studied. It is natural to consider SRPT-based ex-
tensions to multi-datacenter environment, as we will present
next. However, we illustrate in Section 2.3.3 their shortcom-
ings as the motivation for better approaches.

2.3.1 Global-SRPT

The first heuristic is to run the SRPT in a coordinated man-
ner, which performs SRPT and computes the jobs priority
based on the jobs’ total remaining size across all the datacen-
ters. We call this heuristic asGlobal-SRPT. Glogbal-SRPT
runs at the central controller, as it requires the global state
of the current jobs’ remaining tasks across all the datacen-
ters. Then central controller passes the job order computed
by Global-SRPT to all the datacenters, where each datacen-
ter scheduler updates its sub-jobs order in the queue based
on the new job order.

In our motivating example, the total remaining tasks for
JobA,B,C are 12,11,13, respectively, so the job order com-
puted by Global-SRPT isB→ A→C, which is enforced by
each datacenter as shown in Figure 2(b). Since Global-SRPT
gives higher priority to the jobs with fewer tasks and finishes
them as quickly as possible, it avoids the cases that small
jobs are blocked behind the large jobs and spend lots of time
waiting. As a result, Global-SRPT achieves better average
job finish instant (37

3 as in the example) compared to that of
the default scheduling FCFS (13 as in the example).

2.3.2 Independent-SRPT

Since SRPT is designed for single-scheduler scenario, our
second heuristic is to enable each datacenter scheduler to
perform SRPT on its own, with the hope that each datacenter
reduces average completion time for its sub-jobs. We call
this Independent-SRPT, as the datacenter prioritizes its sub-

6 We will discuss the assumptions that make a job’s finish instantequal to its
finish time in Section 3, and how our system addresses those assumptions
in Section 5.
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Job ID Arrival Sequence Remaining Tasks in DC1 Remaining Tasks in DC2 Remaining Tasks in DC3 Total Remaining Tasks
A 1 1 10 1 12
B 2 3 8 0 11
C 3 7 0 6 13

Table 1. Settings of The Example: Job Set, Arrival Sequence and Task Assignment
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(a) FCFS
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(b) Global-SRPT
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(c) Independent-SRPT
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(d) SWAG
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(e) Global-SRPT w/Reordering
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(f) Independent-SRPT w/Reordering

Figure 2. Results of The Example: Job Orders and Finish Instants Computed by Different Scheduling Algorithms

jobs based on the their sizes and updates the queue order
independently from the information of other datacenters.

In the example, according to the jobs’ remaining number
of tasks for each sub-job, their priorities at each datacenter
may not be the same. In datacenter 1, the priority isA→
B→C, while the priority in datacenter 2 and datacenter 3 are
B→A andA→C, respectively (as shown in Figure 2(c)). By
reducing the finish instant of the sub-jobs in each datacenter,
Independent-SRPT achieves37

3 for average job finish instant
in the motivating example, which is better than FCFS (13).

2.3.3 Shortcomings of SRPT-based Extensions

Both Global-SRPT and Independent-SRPT improve the av-
erage job completion time by favoring small jobs. However,
since each job may have multiple sub-jobs across all the
datacenters, the imbalance of the sizes among the sub-jobs
causes the problems for SRPT-based scheduling.

Take Global-SRPT for example, in Figure 2(b), we see
that jobA’s sub-jobs in datacenter 1 and 3 finish even before
its sub-job at datacenter 2 starts. Since the job’s completion
time is determined by the last completed sub-job across
all datacenters, we can actually defervA,1 and vA,3 a bit
without hurting jobA’s finish instant, while it can yield the
compute resources to the tasks of other sub-jobs, say job
C in this example. The same observation is also valid for
Independent-SRPT in the example, in whichvA,1 can yield

to vB,1 and vC,1 in datacenter 1, andvA,3 can yield tovC,3

in datacenter 3, without delaying jobA’s finish instant as
depicted by Figure 2(f).

As illustrated in the above example, both Independent-
SRPT and Global-SRPT leave significant room for improve-
ment as they waste resources in serving some sub-jobs while
their counterparts at other datacenters are delayed due to im-
balanced job execution. Next, we first propose a mechanism
in Section 3 to improve the result of scheduling by elimi-
nating the waste of resources in imbalanced job execution.
Then we develop a new scheduling solution in Section 4 that
leads to further improved scheduling results.

3. Reordering-based Approach
Recall that one insight into why the SRPT-based heuristics
do not result in better performance is that they fail to con-
sider the competition for resources faced by each of its com-
ponent sub-jobs, as only the “slowest” sub-job determines
the response time of the job. Consequently, there is no gain
from lowering the response time of a sub-job at datacenterd
if it has a counterpart at datacenterj with a higher comple-
tion time. In that case, we might as well delay this sub-job, in
favor of other sub-jobs at datacenterd which have “faster”
counterparts at other datacenters. This brings us to the no-
tion of reordering the sub-jobs for the jobs, in a coordinated
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manner, based on how the sub-jobs of a job are progressing
at various datacenters.

Specifically, we developReordering, as an auxiliary
mechanism to reduce the “imbalance” (in terms of their po-
sition in the local queues) of a job’s sub-jobs.Reordering
can work as an “add-on” to any scheduling solution. The ba-
sic idea behindReorderingis to continue moving sub-jobs
later in a local queue, as long as delaying them does not in-
crease the overall completion time of the job to which they
belong; this, in turn, gives other jobs an opportunity for a
shorter completion time.

Algorithm 1 presents the pseudo code ofReordering, and
its actual mechanism works as follows. Given the sub-jobs’
queue order, as computed by any scheduling algorithm, in
each iterationReorderingstarts by identifying the datacenter
targetDCwith the longest queue length (Step 5) and targets
the last sub-jobtargetJobin its queue, which has the maxi-
mum value ofitargetJob,targetDC in the queue (Step 6). We add
targetJobto N (Step 7), which is a queue data structure that
keeps the sequence of its elements based on their arrival, and
extract all of the sub-jobs associated with JobtargetJobfrom
the corresponding datacenter (Step 8). The same procedure
continues until all current jobs in the system have been added
into N (Step 9). The final job order computed byReordering
is the reverse order ofN (Step 10).

2 ReorderingAlgorithm
1: procedure REORDERING(i j,d,∀ j ∈ J,d ∈ D)
2: U ← J
3: N← /0 // an ordered list
4: while U 6= /0 do
5: targetDC←maxd |qd|,∀d ∈ D
6: targetJob←maxj i j,targetDC,∀ j ∈ J
7: N.pushback(targetJob)
8: qd← qd−|vtargetJob,d|,∀d ∈ D
9: U ←U−{targetJob}

10: return reverse(N)

In our example in Figure 2,Reorderingimproves both
Global-SRPT and Independent-SRPT by delayingvA,1 and
vA,3 until the end of their associated queues after identifying
that DC2 has the longest queue length and sub-jobvA,2 is
the last one in its queue. The delay ofvA,1 andvA,3 does not
degrade JobA’s finish instant as it is determined byvA,2. This
procedure continues by selecting JobC, and finally JobB,
which results inN = A→C→ B. Thus, Reordering returns
B→C→ A, with a mean job finish instant of 12 for both
Global-SRPT withReorderingand Independent-SRPT with
Reordering, as opposed to that of37

3 withoutReordering.
Note that in theReorderingalgorithm, we use a job’s

finish instant to approximate its job finish time. Moreover,
the job finish instant is exactly the job finish time under the
following assumptions: (1)homogeneous task service times,
i.e., all tasks of all jobs have the same duration; (2)homoge-
neous service rates, i.e., all servers in all datacenters serve
tasks at the same rate; and (3)homogeneous data centers,

i.e., all datacenters have an equal numbers of computing
slots with the same configurations.

Under the above stated assumptions,Reorderingwould,
at the very least, not result in degradation in completion time.

Theorem 1:Reordering provides non-decreasing perfor-
mance improvement for any scheduling algorithm.

Let fx be jobx’s finish instant represented by the queue
position; that is,fx =maxy∈D ix,y. LetO to be any scheduling
algorithm applied to the datacenters andhO be the resulting
overall job finish instant; that is,hO = 1

|J| ×∑x∈J fx. Let R
denote theReorderingalgorithm andhO,R to be the overall
job finish instant of executing algorithmO and algorithmR
sequentially. Theorem 1 states thathO,R≤ hO no matter what
scheduling algorithmO is.

Proof: We provide an intuitive proof based on Mathe-
matical Induction on the number of jobs. Whenn = 1, the
theorem obviously holds. Assume the theorem holds when
n= k. We defineh(k) as the overall job finish instant when
the number of jobs isk. So,hO,R(k)≤ hO(k). Whenn= k+1,
suppose we first process joba, since it is identified from the
data-center with the longest queue, after being processed,
its finish time f

′

a is the same asfa, which is job a’s fin-
ish instant before applyingReordering. For the other jobs,
based on step 3 we know thathO,R(k) ≤ hO(k). Therefore,

hO,R(k+1) =
k×hO,R(k)+ f

′
a

k+1 ≤ k×hO(k)+ fa
k+1 = hO(k+1).

The above Theorem proves thatReorderingimproves,
or does no harm at least, the average job finish instant for
any job scheduling algorithm. With the assumption that job
finish instant can estimate the job finish time,Reordering
improves the average job finish time, and the average job
response time as the result. In Section 5 we discuss how
we address these assumptions for a system prototype, and
evaluate it in Section 6.

In summary, we emphasize thatReorderingis an add-
on mechanism that can be easily used with any scheduling
approach to improve (or at the very least not harm) overall
average job completion time. We leave further discussions
aboutReordering’s usages until Section 8.

4. Workload-aware Approach
Given the “do no harm” property ofReorderingas described
above, it is naturally a conservative approach (to modifying
the original scheduling decisions), with results depending
significantly on the original scheduling algorithm to which
the reordering process is applied. However,Reorderingstill
leaves rooms for improvement. In the motivating example in
Section 2, both Global-SRPT (Figure 2(e)) and Independent-
SRPT (Figure 2(f)) came up with the job order ofB→C→
A. We observe that the scheduling performance would be im-
proved if we switched the order of jobB and jobC, and result
in the new job orderC→ B→ A. Doing so would bring per-
formance improvement for jobC while hurting the comple-
tion time of jobB, which is against the principle of Reorder-
ing, yet the net effect results in overall performance improve-
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ment as shown in Figure 2(d). This observation motivates us
to develop the more aggressive approach thanReordering,
termedWorkload-Aware Greedy Scheduling (SWAG), which
schedules the jobs greedily based on their estimated finish
time. We first discuss the design principles forSWAG, and
then present its algorithm details.

4.1 SWAG Design Principles

Recall that a job’s completion time is composed of the wait-
ing time as well as the service time, and the traditional SRPT
results in the shortest total waiting time for all jobs by greed-
ily scheduling the job with the shortest remaining process-
ing time over the long ones. Therefore SRPT optimizes the
average job completion time since the jobs’ service times
are fixed.7 This insight is common for all job scheduling
in reducing the average job completion time, yet it sets the
ground of our first design principle forSWAG.

First Principle: In order to reduce the total waiting time
and further reduce the response time, jobs that can finish
quickly should be scheduled before the other jobs.

However, as shown in Section 2.3.3, following the first
principle by favoring the small jobs only is sub-optimal
in the multiple-scheduler-multiple-queue scenario, due to
the imbalance between the sizes of the sub-jobs across the
datacenters and the fact that the finish time of a job depends
only on its last completed sub-job. In fact, a small job with a
large sub-job may not finish as quickly as a large job with
many small sub-jobs. Therefore it leads us to the second
design principle.

Second Principle:Since the small jobs are not guaran-
teed to finish quickly (as is the case in the single-scheduler-
single-queue scenario), we should consider scheduling jobs
more as a function of sub-job sizes rather than the size of the
overall job.

The first two principles guide us to select the job finishing
the quickest under the condition that it occupies the entire
system. However each datacenter has different workload
at the scheduling decision instant, which also impacts the
waiting time that each sub-job suffers. This gives us the final
design principle forSWAG.

Third Principle: Since the sub-jobs of a job experience
different delays at different datacenters, we should also con-
sider the local queue sizes in assessing the finish times of
sub-jobs.

Figure 3 presents a simple example to illustrate the
third principle, in which there are two jobsA andB to be
scheduled over 3 datacenters, and there are two tasks al-
ready at the first datacenter. Note that both Global-SRPT
and Independent-SRPT would result in the scheduling re-
sult shown in Figure 3(a) as they both prioritize the jobs or
sub-jobs based on their sizes only. Also note that executing
Reorderingafter Global-/Independent-SRPT does not im-

7 Note that in a traditional scheduling problems a job is an atomic process-
ing unit, as opposed to our problem where a job is composed of small tasks
that can be executed in parallel.
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(b) Better Approach

Figure 3. Motivating Example for Third Principle

prove their performances because the dominating jobs and
sub-jobs are already put at the end of the queue.

In conclusion, all the 3 principles are essential for reduc-
ing the average job completion time. Next, we present how
we constructSWAGbased on these principles.

4.2 SWAG Algorithm

In our design, the central controller runsSWAGwhenever
a new job arrives or departs. The new order of all jobs is
computed from scratch based on the estimated job finish
times. Letqd denote the current queue length at datacenter
d, and|v j,d| denote the size of jobj ’s sub-job at datacenter
d. v j,d = 0 if none of job j ’s tasks is assigned to datacenter
d. In addition, we define themakespan mj for job j as:
mj = maxd(qd + |v j,d|),∀d ∈ D.

ThenSWAG—as detailed in Algorithm 3—greedily pri-
oritizes jobs by computing their estimated finish times based
on the current queue length (accumulated number of tasks to
be served) as well as the job’s remaining size (number of re-
maining tasks). Initially,SWAGcomputes the makespan for
each job based on Equation?? (Step 5). ThenSWAGselects
the job with the minimal makespan (Step 6), appends it into
the job order (Step 7) and updates the queue length based on
the selected job’s sub-job sizes (Step 8). If there are more
than one job with the minimal makespan,SWAGpicks the
one with the smallest total remaining size as a tie-breaker.
SWAGcontinues to greedily add the next job with the small-
est makespan, with respect to the current queue lengths, until
all the current jobs in the system have been added.

4 Workload-Aware Greedy Scheduling (SWAG)
1: procedure SWAG(J,v j,d,∀ j ∈ J,d ∈ D)
2: N← /0 // an ordered list
3: qd← 0,∀d ∈ D
4: while |N| 6= |J| do
5: mj ←maxd (qd + |v j,d|),∀ j ∈ J,d ∈ D
6: targetJob←min j mj ,∀ j ∈ J
7: N.pushback(targetJob)
8: qd← qd + |vtargetJob,d|,∀d ∈ D
9: returnN

In our example presented in Figure 2,SWAGfirst selects
Job C as it has the smallest makespan of 7, as compared to
10 for Job A and 8 for Job B. After that, the queue length for
datacenter 1 and datacenter 3 would be updated to 7 and 6,
respectively, according to Job C’s sub-job size. At this point,
both Jobs A and B result in the same makespan of 10, with
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respect to the new queue lengths. Since Job B has a smaller
remaining size than Job A, it is added after Job C, followed
by Job A . The final job order as computed by SWAG is
C→ B→ A, and the resulting average job finish time is35

3 ,
which is better than that the SRPT-based solutions.

5. Prototype and System Extensions
In this section we describe our prototype implementation
and how we address some system issues.

Prototype: We implemented a system prototype with
Spark[39]. Two main components in our system prototype
are the global controller and the local controller.

The global controller is primarily in charge of comput-
ing the job orders, by runningReorderingor SWAGmodule,
based on the information (e.g., number of remaining tasks of
each job at each datacenter) collected from each local con-
troller. The global controller passes the results of job orders
to each local controller through socket communication. Be-
sides, whenever a new job arrives, it divides the job into sub-
jobs and send the metadata (e.g., the application program ID,
the number of tasks) to each local controller.

The local controller is in charge of feeding the computed
job orders to the local cluster as well as reporting the jobs’
progress to the global controller. Based on the updated job
order, each cluster scheduler assigns the next available com-
puting slots to the tasks of the job with the highest priority
until all of its tasks are launched. In addition to passing new
job orders to the cluster, the local controller sends the global
controller updates of jobs’ progress (e.g., number of finished
tasks for each job), upon receiving requests from the global
controller by reading the logs produced by Spark cluster.

Heterogeneous Datacenter Capacity.In previous sec-
tions we assume all datacenters to be homogeneous in that
they have the same number of computing slots for serving
the tasks. In reality datacenters may have different capacity
in the number of computing slots. Recall that bothReorder-
ing and SWAGrely on queue length as the estimation for
job finish time (e.g., Step 5 in Algorithm 1 and Step 5 in
Algorithm 3), while the same queue length would result in
different job finish time if equipped with different number of
computing slots.ReorderingandSWAGcan easily adapt to
heterogeneous datacenter capacity by normalizing the queue
length of each datacenter by their number of computing
slots. For example, Step 5 in Algorithm 1 can be updated
astargetDC←maxd [

|qd|
cd

],∀d ∈D, and Step 5 in Algorithm

3 can be updated asmj ← maxd [
(qd+|v j,d|)

cd
],∀ j ∈ J,d ∈ D,

wherecd represents the number of computing slots in data-
centerd. The intuition is that the datacenters with more com-
puting slots spend shorter time finishing serving the same
workload than the datacenters with less computing slots.

Heterogeneous Tasks Duration.In above presentation
we assumed that all tasks across all jobs were of the same
duration. However, previous works [5, 7, 8] show that tasks
duration could be heterogeneous within and across jobs in

a real system due to various reasons. We address this by
having the local scheduler of each datacenter select the task
with the longest expected duration that is not yet launched
for the sub-job with the highest priority determined by the
job scheduling. The rationale behind this method is to start
the larger tasks earlier in order to reduce the makespan
across all tasks of a particular sub-job.

Inaccuracies in Task Duration Estimation.The way we
address heterogeneous tasks duration (task-level scheduling
by local schedulers) relies on reasonably accurate estimation
of task durations. Unfortunately, there is no guarantee that
the estimations at the scheduler are accurate because tasks
duration are subject to many dynamic factors[5, 7, 8], in-
cluding I/O congestion and performance interference among
concurrent tasks. The typical approach to this problem is to
use the finished tasks’ duration to estimate the duration of
the remaining tasks of the same job[5, 7, 8]; it is reported
that the estimation accuracy with such approaches reaches
≈ 80%, as the jobs get closer to the completion[8]. Here, we
do not assume a specific estimation mechanism for task du-
ration, but rather (in Section 6) evaluate the sensitivity of our
system’s performance to the estimation accuracy.

Scheduling Decision Points.The heterogeneous nature
of tasks duration and the (potential) lack of accuracy in their
estimation indicate that in a real system we should consider
(re)evaluating scheduling decisions at task departure points
(in addition to job arrival and departure points). However,
our simulation study indicates that the heterogeneous na-
ture of tasks duration and the inaccuracies in their estimation
only have a marginal impact on the scheduling results. Since
the frequency of task departures can be a few orders of mag-
nitude larger than that of job arrivals and departures, running
of job-level scheduling at such high frequency would incur
substantial overhead, particularly as job-level scheduling is
performed by the central controller. Consequently, we con-
clude that in a real system it is sufficient to consider schedul-
ing decisions upon job arrivals and departures.

6. Performance Evaluation
In this Section we conduct an extensive simulation study,
with realistic job traces, for the proposed scheduling ap-
proaches (SWAGand Reordering) compared to the tradi-
tional solutions (FCFS and SRPT extensions) with regard to
performance improvement and fairness (Section 6.2), over-
head evaluation (Section 6.3) and sensitivity analysis (Sec-
tion 6.4). Our results show thatSWAGandReorderingim-
prove SRPT-based approaches by 50% and 27%, respec-
tively, over a wide range of settings.

6.1 Experiment Settings

The main performance metric we focus on is average job
completion time, which is defined as the average elapsed
duration from the job’s arrival time to the time instant at
which the job has all its tasks completed and can depart
from the system. Average job completion time is a common

7 2016/12/10



Trace Type Avg. Job Size Small Jobs
(1−150 tasks)

Medium Jobs
(151−500 tasks)

Large Jobs
(501+ tasks) Trace Characteristic

Facebook[5–8] 364.6 tasks 89% 8% 3% high variance with a few extremely large jobs
Google[2, 28, 33] 86.9 tasks 96% 2% 2% small variance with a few large jobs

Exponential 800 tasks 18% 29% 53% moderate variance in job sizes

Table 2. Job Traces

metric for data analytics systems; this is a reasonable metric
when focusing on customer quality-of-service. In addition,
we also evaluate the jobs’slowdown, which is defined as the
job completion time divided by the job service time. We use
slowdown as a metric for evaluating fairness among jobs of
different sizes, as detailed in Section 6.2. All performance
results are presented with confidence intervals of 95%±5%.

We compare the performance of: FCFS, Global-SRPT,
Independent-SRPT, Global-SRPT followed byReordering,
Independent-SRPT followed byReordering, andSWAG. We
also show the results generated by Optimal Scheduling,
which are obtained through an offline brute-force search,
i.e., with full knowledge of future job arrivals and actual
tasks duration. We use the results from Optimal Scheduling
as an upper-bound on the response time improvement that
can be achieved through better scheduling, to investigate
how much room for improvement is left. We run FCFS as
our baseline scheduling approach, for comparison purposes
only. For clarity of exposition, we present our results as the
normalized average job completion time of each algorithm,
i.e., normalized by the average job completion time achieved
by the FCFS approach for the same setting.

Workload: We use synthetic workloads in our experi-
ments with job size distributions obtained from Facebook’s
production Hadoop cluster [5–8] and Google cluster work-
load trace[2, 28, 33], as well as the Exponential Distribu-
tions, referred to as Facebook trace, Google trace and Expo-
nential trace, respectively. Table 2 summarizes the job traces
we use in our simulation experiments. We adjust the jobs’
inter-arrival times for both workloads based on Poisson Pro-
cess in order to make the two workloads consistent in terms
of system utilization. The default settings for the averagejob
size is 800 tasks, and we tune the inter-job-arrival time to ob-
tain the workload with certain system utilization.

Tasks Duration: The tasks duration in our simulations
are modeled by Pareto distribution withβ = 1.259 accord-
ing to the Facebook workload information described in [8],
and average task duration to be 2 seconds. In our simulation
experiments, we investigate the impact of inaccurate estima-
tion of task duration in Section 6.4.

Task Assignment:To evaluate the impact of imbalance
due to task assignment, we use Zipf Distribution to model
the skewness of task assignment among the datacenters. The
higher the Zipf’s skew parameter is, the more skewed that
tasks assignment is (i.e., constrained to fewer datacenters).
We also consider two extreme cases where tasks of each job

are: (i) distributed uniformly across all datacenters, or (ii)
assigned to only one datacenter. The default setting for the
skew parameter is 2, while we investigate how skew of task
assignment affects the performance in Section 6.4.

System Utilization: We define the percentage of occu-
pied computing slots as our system utilization. Multiple fac-
tors contribute to the system’s utilization: job inter-arrival
time, job size, task duration, and task assignment.

Other Default Settings: In our experiments the default
number of datacenters is 30, with 300 computing slots per
datacenter. Such default system settings result in≈ 78% sys-
tem utilization, which allows us to explore how the system
performance behaves at reasonably high utilization.

6.2 Scheduling Performance Results

Figure 4(a), 4(c) and 4(e) depict the average job comple-
tion time (normalized by that of FCFS), using the Facebook
trace, Google trace and Exponential trace respectively. We
vary the average job inter-arrival times and observe how per-
formance characteristics react to different system utilization.

Performance Improvements of ReorderingOur exper-
iment results first confirm thatReorderingdoes result in re-
duction of average completion time for SRPT-based heuris-
tics, as stated byTheorem 1. The performance improvements
for SRPT-based heuristics due toReorderingreaches as high
as 27% under highly utilized settings, and is up to 17% under
lower utilization. Finally, the results also show thatReorder-
ing is more beneficial to Independent-SRPT than to Global-
SRPT. This is intuitive as Independent-SRPT does not co-
ordinate between the sub-jobs of a job and thus results in
a higher imbalance between the sub-jobs; this creates more
opportunities forReorderingto improve performance.

Without Reordering, Global-SRPT performs better than
Independent-SRPT in the Facebook trace, while the Google
trace and the Exponential trace display the opposite trend.
Under higher utilization, Global-SRPT outperforms Independent-
SRPT by 27% in the Facebook trace, while in Exponen-
tial trace, Independent-SRPT outperforms Global-SRPT by
32%. This is the result of the fact that the variance of job
sizes in the Facebook trace is significantly higher than that
of the Google trace and the Exponential trace, so Global-
SRPT benefits more from favoring small jobs by considering
the total job size across all datacenters, while Independent-
SRPT performs even poorly by considering only the indi-
vidual sub-job sizes. In the Google trace, however, the gap
between Global-SRPT and Independent-SRPT is not obvi-
ous. Most of the jobs in Google trace are small and so are

8 2016/12/10



 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

39% 46% 58% 68% 78%N
o

rm
a

li
z
e

d
 A

v
e

ra
g

e
 J

o
b

 C
o

m
p

le
ti

o
n

 T
im

e

System Utilization (%)

Global-SRPT
Independent-SRPT

Global-SRPT w/Reordering
Independent-SRPT w/Reordering

SWAG
Optimal

(a) Performance with Facebook Trace

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

Overall Small Medium Large

S
lo

w
d

o
w

n

Independent-SRPT
Independent-SRPT w/Reordering

SWAG

(b) Fairness with Facebook Trace

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

39% 46% 58% 68% 78%N
o

rm
a

li
z
e

d
 A

v
e

ra
g

e
 J

o
b

 C
o

m
p

le
ti

o
n

 T
im

e

System Utilization (%)

Global-SRPT
Independent-SRPT

Global-SRPT w/Reordering
Independent-SRPT w/Reordering

SWAG
Optimal

(c) Performance with Google Trace

 1

 2

 3

 4

 5

 6

 7

Overall Small Medium Large

S
lo

w
d

o
w

n

Independent-SRPT
Independent-SRPT w/Reordering

SWAG

(d) Fairness with Google Trace

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

39% 46% 58% 68% 78%N
o

rm
a

li
z
e

d
 A

v
e

ra
g

e
 J

o
b

 C
o

m
p

le
ti

o
n

 T
im

e

System Utilization (%)

Global-SRPT
Independent-SRPT

Global-SRPT w/Reordering
Independent-SRPT w/Reordering

SWAG
Optimal

(e) Performance with Exponential Trace

 1

 1.5

 2

 2.5

 3

 3.5

 4

Overall Small Medium Large

S
lo

w
d

o
w

n

Independent-SRPT
Independent-SRPT w/Reordering

SWAG

(f) Fairness with Exponential Trace

Figure 4. Performance and Fairness Results with Different Workload Traces

the variance in the job sizes. With such characteristic, the
skews among the sub-job sizes tend to be smaller compared
to the other two job traces, and, therefore, Global-SRPT and
Independent-SRPT perform similar job scheduling decision.

With Reordering, Independent-SRPT performs better
than Global-SRPT in all traces, because Independent-SRPT
benefits significantly fromReorderingthan Global-SRPT
does as mentioned above. The gap between them becomes
significant (10% or more) starting at lower utilization (39%)
in Exponential trace, and reaches 40% under higher uti-
lization. In the Facebook trace, however, the gap is only
significant under higher utilization (68% and 78%). This
is because Global-SRPT performs reasonably well, unlike
Independent-SRPT withoutReordering, in the Facebook
trace. Thus, Global-SRPT withReorderingalso performs
well as compared to the performance in the Exponential
trace. These results also show that the performance ofRe-
orderingdepends on the original scheduling algorithm.

Performance Improvements of SWAG Compared to
SRPT-based heuristics,SWAG’s performance improvements
under higher utilization are up to 50%, 29% and 35% in
the Facebook, Google and Exponential trace respectively,
with at least 12% improvement under lower utilization. The

differences in performance improvements attribute to the
fact that job traces with higher variance in job sizes tend
to have more large jobs, which potentially results in more
sever skews among the sub-jobs. Thus, high-variance job
trace like Facebook trace displays more opportunities that
allow SWAGto achieve higher improvement by selecting
jobs that can finish quickly according to its design princi-
ples. In addition,SWAGoutperforms, by up to 10%, SRPT-
based heuristics withReordering, under various utilization
and in all job traces. Finally,SWAGachieves near-optimal
performance throughout our experiments: the performance
gap betweenSWAGand Optimal is within only 2%.

Fairness among Job Types:Figure 4(b), 4(d) and 4(f)
present the slowdown results for the Facebook, Google and
Exponential trace respectively. We further present the slow-
down for different job types by classifying the jobs based
on their sizes (number of tasks): small jobs (1-150 tasks),
medium jobs (151-500 tasks) and large jobs (501 or more
tasks). The slowdown for FCFS is omitted as it is signifi-
cantly larger than the rest and is more than 15 in all cases.
Also, Global-SRPT and Independent-SRPT have similar re-
sults; thus, we only include the results for one of them.
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Figure 5. Scheduling Overhead Results
We note that that all scheduling approaches have the same

trends, i.e., that small jobs have the smallest slowdown while
large jobs have the largest slowdown. As expected, this is
naturally due to the fact that all algorithms essentially fa-
vor smaller jobs in order to reduce the average job comple-
tion time. In addition, the major differences of slowdown
between the scheduling solutions exist in large jobs.

In Facebook and Exponential trace, the slowdown of
large jobs for Independent-SRPT is 40% more than its
overall slowdown, while the gap is no more than 30% for
Independent-SRPT withReorderingand no more than 25%
for SWAG. Google trace displays significant gap of slow-
down between large jobs and overall jobs. This is because
most of the jobs in Google trace are small jobs, therefore
the few large jobs are often queued for a long time while
the system is serving many small jobs as determined by the
scheduling solutions. However, Independent-SRPT withRe-
ordering andSWAGstill maintain relatively low slowdown
compared to Independent-SRPT. Hence, we conclude that
ReorderingandSWAGimprove performance without signif-
icantly sacrificing performance of large jobs.

We also observe thatReorderingimproves the original
scheduling approach by mainly improving performance of
large jobs. This is because small jobs get to be served earlier
than the other even afterReorderingis performed, while
Reorderingprovides the opportunity for some large jobs to
get served earlier by delaying some other sub-jobs.

We use the Exponential trace for the following overhead
and sensitivity evaluation as it displays moderate character-
istics compared to the other two.

6.3 Overhead Evaluation

We evaluate our system overhead on the following aspects.
Computational Overhead. We obtain this by monitor-

ing the execution time due to running of the scheduling al-
gorithms during each scheduling decision point.

Communication Overhead.This is defined as the addi-
tional messages required by the global scheduler as needed
to be transferred from each local datacenter to the central
controller. Note that this does not include the fundamental
and necessary information needed by the system, e.g., the
metadata of the jobs and the tasks, or the task program bi-
naries. Instead, It includes the information such as the setof
current jobs IDs as well as their remaining number of tasks
associated at each datacenter.

Figure 5(a) depicts the scheduling running time under
various system utilization. The results for FCFS, Global-

SRPT and Independent-SRPT are omitted as they are neg-
ligible compared to the rest. These results suggest that even
under higher utilization (78%), the scheduling running time
of SWAG(4.5ms) is relatively small compared to the average
task duration time (2s). In addition to the scheduling run-
ning time, our prototype confirms that the control message
passing between the global scheduler and the local sched-
uler required byReorderingandSWAGtakes no more than a
few hundred milliseconds. As a result, the delay in schedul-
ing running time and message passing does not significantly
degrade the completion time of the jobs. Note that although
SWAGhas a higher computational (worst-case) complexity
thanReordering(O(n2×m) for SWAGandO(n×m) for Re-
ordering, wheren is the number of current jobs andm is
the number of datacenters), the actual difference in compu-
tational overhead betweenSWAGand SRPT-based heuristics
with Reorderingis not significant, becauseSWAGis able to
keep the number of current jobs (i.e.,n) in the system small,
by scheduling jobs that can finish quickly.

Figure 5(b) depicts the communication overhead in-
curred by each scheduling algorithm. Note that FCFS and
Independent-SRPT do not require any additional informa-
tion from local schedulers, so their overhead is zero. The
communication overhead essentially depends on the number
of current jobs in the system. SinceSWAGsucceeds in keep-
ing the number of current jobs small, it achieves the smallest
communication overhead.

The overhead analysis confirm that the performance gains
from the proposedReorderingandSWAGtechniques come
with acceptable computation and communication overhead.

6.4 Performance Sensitivity Analysis

Impact of Task Assignment In this experiment we study
the sensitivity of scheduling algorithms to the skew in task
assignments. In Figure 6(a), the X-axis represents the skew-
ness of task assignment, with Uniform Distribution being
the least skewed and One-DC Assignment being the most
skewed. Between Uniform and One-DC are the results un-
der different Zipf’s skew parameters.

The general trend in Figure 6(a) is that as the skewness
increases, the performance of the scheduling algorithms first
increases and then decreases. There is not much room for
improvement when all tasks are uniformly distributed across
datacenters. The performance improvement becomes more
significant as the imbalance in task assignments requires
greater coordination of jobs scheduling across the datacen-
ters to reduce the jobs’ completion time. Beyond a certain
skewness level, the imbalance of task assignment becomes
so substantial that most of the tasks from the same job only
span a few datacenters, in which case not much can be done.

As expected, when all the tasks of a job are assigned
to a single datacenter, the execution of Global-SRPT and
Independent-SRPT are essentially the same as they are both
equivalent to performing SRPT on the local datacenters ex-
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Figure 6. Performance Sensitivity Results

clusively. In this case, there is no room forReorderingto
improve SRPT-based approach either.

Among the scheduling algorithms,SWAGand Independent-
SRPT are more sensitive to the changes in skewness of task
assignment than Gobal-SRPT. This is because their schedul-
ing decisions are subject to how the sub-jobs of the other
jobs are ordered at each datacenter, which is directly im-
pacted by the extent of skews among the sub-jobs of the
same job. On the other hand, Global-SRPT considers only
the global view of the job sizes across all the datacenters,
and is therefore less sensitive to how the skewness varies.

Number of DatacentersIn this experiment we investi-
gate how the number of datacenters affects the performance
by varying the number of datacenters while keeping the to-
tal number of computing slots constant. In Figure 6(b), the
performance improvements byReorderingandSWAGgener-
ally increase as the number of datacenters increases, because
more datacenters provide greater opportunities for coordina-
tion of sub-jobs across the datacenters.

Accuracy of Task Duration Estimation In this experi-
ment we study how the error in task duration estimation af-
fects the scheduling algorithms’ results. The estimation error
happens as task execution is subject to unpredictable factors
like I/O congestion and interference as discussed in Section
5, and it has impact on how local schedulers schedule the
tasks because the scheduling decisions are based on esti-
mates of tasks duration. We introduce estimation error to our
experiments based on a uniform distribution with the origi-
nal task duration as the average. For example, if we want
to investigate 75% estimation accuracy, we set the estima-
tion value for task duration to be uniformly drawn from the
range of[0.75,1.25] ∗actual taskduration, so that the esti-
mation error is at most 25% of the actual task duration.

Figure 6(c) shows that the performance improves marginally
as the estimation accuracy for task duration increases. This
is because there is often a high variance in task duration due
to stragglers [5, 7, 8], and the estimation error is not sig-
nificant enough to affect the order of task scheduling much.
Therefore, ourReorderingandSWAGalgorithms are robust
to estimation errors.

7. Related Works
Distributed Job Execution. Relatively little work exists
in the research literature on running applications on geo-

distributed datacenters [14, 27, 35, 36]. Dealer [14]dynam-
ically redistributes poorly performing tasks of a single job
to other datacenters to reduce user-perceived latency. How-
ever, it only uses one datacenter at a time per job phase. In
contrast, our work distributes tasks of a job (upon arrival)
among multiple datacenters, based on data locality, with the
advantage of reducing resource (network, storage) usage.

JetStream [27] focuses on the scenario in which ap-
plications aggregate data across wide-area networks, and
deals with insufficient backhaul bandwidth by applying pre-
processing at each source site before transferring all datato
the central location. In addition to having bandwidth over-
head reduction advantages, our work also dynamically ad-
justs scheduling decisions across datacenters, to furtherre-
duce average job completion time.

The closest works to ours are [35, 36], which propose to
push the analytical queries to where the data are hosted and
optimize their execution plans accordingly. Another work
[26] similar to ours further improves bandwidth usage of
geo-distributed analytics by placing data and computation
across datacenters based on their bandwidth constraints.
None of the above mentioned works address the challenges
of job scheduling in distributed job execution setting; to the
best of our knowledge, our work is the first to address the
job-level scheduling problem in multi-datacenters.

Data Locality Scheduling.Scheduling jobs and tasks to
meet data locality within clusters has been a recent trend
[18, 34, 38] as it significantly improves average job comple-
tion time. Our work focuses on job scheduling given the task
distribution among the datacenters, and therefore is orthog-
onal to the above-mentioned works as their approaches to
scheduling for data locality within a datacenter can be com-
bined with our solution.

Conventional Job Scheduling.Shortest Remaining Pro-
cessing Time (SRPT) is a well-known scheduling algorithm
that achieves optimal average job completion time for pre-
emptive job scheduling in a single-server-single-queue en-
vironment [9, 30, 31]; it has been extensively studied and
applied to many problem domains [15, 21, 22, 32, 37]. Our
problem setting, specifically job scheduling in distributed
job execution scenarios, differs in that: (a) jobs are com-
posed of tasks that can run in parallel, and (b) tasks of the
same job potentially span multiple datacenters, each with
a number of compute slots, controlled by a local sched-
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uler. As shown in Section 2.3, SRPT-based extensions do
not work well in this context, mainly due to skew in a sub-
job’s task distribution. Several efforts, in a more idealized
(theoretical) settings, includeconcurrent open shopprob-
lems [12, 23, 29], in which each job has certain operations
to be processed at each machine, and the goal is to minimize
the weighted average job completion time. Our work differs
from that of concurrent open shop[12, 23, 29] in several
ways: (a) we address a more general scheduling problem as
each datacenter (or, machine as termed inconcurrent open
shop) has multiple compute slots that can run the tasks of the
same job in parallel, (b) we develop online scheduling mech-
anisms rather than the offline deterministic scheduling anal-
ysis proposed by previous efforts onconcurrent open shop,
and (c) we conduct simulation-based experiments to evaluate
the performance of scheduling solutions under more realistic
settings and with realistic workloads.

Coflow SchedulingVarys [10] addresses a similar schedul-
ing problem; it schedules coflows, each composed of several
sub-flows. Despite sharing the goal of average completion
time reduction, there exist several major differences in our
problem settings. In addition to the coflows’ sizes and the
current workloads, the scheduling results of Varys depend
on sending and receiving rates at the two ends of a flow,
while there is no such constraint in our problem setting.
Another difference is that Varys schedules the coflows and
their sub-flows all at the central controller, while in our case,
scheduling of jobs and tasks is carried out through the col-
laboration of global and local schedulers.

8. Discussions
SWAG vs. Reordering The two approaches proposed in
this paper areReorderingandSWAG. Reorderingis a light-
weight add-on that can be easily combined with any schedul-
ing approach, potentially improving average job completion
time, while SWAG is a stand-alone scheduling approach.
Both incur the same communication overhead in collect-
ing information from local datacenter schedulers, to sup-
port global job scheduling decisions. AlthoughSWAGhas a
greater computational overhead thanReordering(as shown
in Section 6.3), our simulation results (in Sections 6.2 and
6.4) show thatSWAGoutperforms all other scheduling algo-
rithms in all settings, including those improved byReorder-
ing, largely due to the principles upon which it is designed.

We note, however, thatReorderingcan easily adapt to cer-
tain job scheduling constraints thatSWAGmay not be able
to address. For instance, if jobs have deadlines and deadline-
aware scheduling is used,Reorderingcan still improve, or at
least not harm, the average job completion time.

Finally, note thatSWAGcannot be further improved by
Reordering. Recall that in each iteration ofReorderingex-
ecution, it selects the last job in the most-loaded datacenter
and adds it into the final job order (in reverse). SinceSWAG
schedules jobs based on minimizing their makespan, all of

the sub-jobs of the job selected byReorderingare already at
the end of the queue of their associated datacenter. There-
fore, applyingReorderingafter SWAGreturns exactly the
same job order as that obtained by runningSWAGonly.

DAG of Tasks. Real workloads suggest that jobs can
typically be modeled as a DAG of tasks - the first-stage
tasks process their input data from physical storage, and
tasks in following stages aggregate the output from the first-
stage tasks. Note that those following stages initiate data
shuffling across the geo-distributed datacenters through wide
area networks, which can incur unpredictable latency and
potentially large cost at the backhaul.

Our presentation here essentially assumes jobs are com-
posed of single-stage tasks. To extend our approach to multi-
stage jobs, we can first assign the first-stage tasks to the dat-
acenters hosting the input data (using the algorithms pro-
posed here), then redirect the tasks of the following stages
and transfer all the intermediate results from the first-stage
tasks to the datacenter that has the largest sub-job of the orig-
inal job. The tasks of the following stages can then run within
this datacenter and the sizes for all the original sub-jobs can
be updated accordingly. As a result, there remains a single
sub-job (of the original job) for the remainder of its stages.

Data Transfer Schedule.In running jobs across geo-
distributed datacenters, a job’s completion time depends on
not only how the jobs are scheduled for service, but also how
the data transfer flows are scheduled. To reduce the over-
all job completion time, our work takes the initial step of
coordinated job scheduling across all datacenters. For finer
control and further improvements in overall job completion
time, our system can be extended to consider how data trans-
fer flows consume wide area network bandwidth, e.g., when
the flow should start sending data at what transmission rate.

Multiple Task Placement Choices.In this paper we as-
sume each task can only be placed at the datacenter that has
its required data. One future extension is to allow each task
multiple placement choices which would result in a joint op-
timization of job scheduling and task placement.

9. Conclusions
In the big data era, as data volumes keep increasing at dra-
matical rates, running jobs across geo-distributed datacen-
ters emerges as the promising trend. In this setting, we pro-
pose two solutions for job scheduling across datacenters:
Reordering, which improves scheduling algorithms by ef-
ficiently adjusting their job order with low computational
overhead; andSWAG, a workload-aware greedy scheduling
algorithm that further improves the average job completion
time and achieves near-optimal performance. Our simula-
tions with realistic job traces and extensive scenarios show
that the average job completion time improvements fromRe-
orderingandSWAGare up to 27% and 50%, respectively, as
compared to SRPT-based extensions, while achieved at rea-
sonable computational and communication overhead.
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