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Abstract Conventional approaches perfogantralized job execu-

With growing data volumes generated and stored across geo-tion’ with each job running within a single datacenter. In

distributed datacenters, it is becoming increasinglyfinef ~SUch case, whenajob needs data frouitipledatacenters, a
cient to aggregate all data required for computation at-a sin YPical approach is to first collect all the required datarfro
gle datacenter. Instead, a more recent trend is to diséribut Multiple datacenters at a single location, and then run the
computation to meet data locality, thus reducing the regur  COMPutation at that datacenter [11, 13, 16, 20, 25]. However
(e.g., bandwidth) costs while improving performance. Con- as data volumes continue to growin an unprgcedented man-
sequently, new challenges are emerging in job scheduling,"€" such an approach r_esults in the substant@ ne_twdFk tra
where each job runs across multiple geo-distributed data- I [27. 35, 36] and the increased job completion time [14].
centers and, requiring coordination among datacenters. InMOr€oVver, it is becoming increasingly impractical to repli
this paper, we propose novel job scheduling algorithms that C2t€ @ large data set across multiple datacenters [24]lfina
coordinate job scheduling across datacenters with low-over some ‘?'ata are restr!cted to certain datacentej-rs'due t°t¥eC“f
head, while achieving near-optimal performance. Our exten &1d Privacy constraints (€.g., must be kept within a padicu
sive simulation study, using realistic job traces, shovet th "ation [35, 36]), and therefore cannot be moved.

the proposed scheduling algorithms result in up to 50% im-  Consequently, instead of data aggregation at a single data
provement in average job completion time over the Shortest C€Nter, @ recent trend is to conduatributed job executian

Remaining Processing Time (SRPT) based approaches. i.e., running a job’s tasks at the datacenters where theadeed
data are stored, and only aggregating the results at job com-

pletion time. Recent research efforts show that distridhute
1. Introducti job execution achieves 250bandwidth savings [35, 36]

- Introduction and reduces the 99— percentilejob completion time by
Data intensive jobs run by cluster computing systems (e.g.,a factor of 3 [14]; moreover, 3 19x query speed-up and
Hadoop[3], Spark[39], Dryad[17]) have recently generated 15— 64% reduction in bandwidth costs can be achieved [26].
significant workloads for datacenters, providing services  Although promising, distributed job execution poses new
such as web search, consumer advertisements and produgthallenges for job scheduling. Since a job’s completioretim
recommendations, user behavior analysis and business inte is determined by its last completed task across the datacen-
ligence. These jobs are composed of numerous tasks. Eaclers, finishing a portion of the job quickly at one datacenter
task reads a partition of input data and runs on available does not necessarily result in faster overall job comptetio
computing slots in parallel; the job is finished upon the com- time. In addition, potential skews in number of tasks per job
pletion of all of its tasks [5, 7, 8]. To serve the increasing processed at a particular datacenter (as determined by the
demands of various data analytics applications, majorctlou data stored there) further complicate matters. Hencet-prio
providers like Amazon[1], Microsoft[4] and Google[19] itizing a job’s tasks at one datacenter when its countespart
each deploy from tens to hundreds of geo-distributed dat- at other datacenters dominate the overall job completion is
acenters; AT&T has thousands of datacenters at their PoP‘wasteful” (in the sense that prioritizing a different jotagn
locations. have led to better overall average completion time).

Consequently, unlike in the single-server-single-queue
scenario, classical Shortest Remaining Processing Time
(SRPT) scheduling [9, 30, 31] fails to optimize the average
job completion time in the case of multiple datacenters with
parallel task execution. To provide insight into sub-ojatim
behavior of SRPT (and its natural extensions to the multi-
ple datacenter scenario), we present motivating examples i
Section 2, and then show in Section 5 that SRPT-type tech-

[Copyright notice will appear here once 'preprint’ option is removed.]
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niques’ scheduling of jobs based only on their sizes results
in even worse behavior under heterogeneous datacenters.
To address the challenges outlined above, in this pa-
per, we focus on job scheduling algorithms designed for
the multi-datacenter parallel task execution scenari@nEv
single-server-single-queue versions of this schedulimgp
lem have been shown to be strongly NP-hard [29] or APX-
hard [12]. Thus, our efforts are focused on principled treeuri
tic solutions that can be (experimentally) shown to provide

Central Controller
Global Scheduler

E’“”“‘ sk Assgmment] Job cheduing | ’
) I

AN
CON

Local Scheduler
((sub-job/Task Scheduling

= v

Local Scheduler
Sub-job/Task Scheduling

E ) )

Datacenter

Datacenter

near-optimal performance. Specifically, our contribusion
can be summarized as follows.

e We illustrate why natural SRPT-based extensions leave
significant room for performance improvements, which
provides insights for better approaches. (Section 2)

We propose a light-weight “add-on”, term&&ordering

that can be easily added to any scheduling algorithm to
improve its performance by delaying parts of certain jobs
without degrading their response times, while providing
opportunities for other jobs to finish faster. We prove
that executindreorderingafter any scheduling algorithm
would result in performance that is not worse than the
one withoutReordering (Section 3)

We construct three principles for designing a job schedul-
ing algorithm aimed at reducing the average job comple-
tion time in our setting. Armed with these design prin-
ciples, we developWorkload-Aware Greedy Scheduling
(SWAG) that greedily serves the job that finishes the
fastest by taking existing workload at the local queues
into consideration. (Section 4)

As a proof of concept, we implement a prototype using
our proposed algorithms under Spark [39] while address-
ing several system implementation issues (Section 5). We
also conduct extensive large-scale simulation-based ex-
periments using realistic job traces under a variety of set-
tings (Section 6). Our results show tHa¥WAGand Re-
orderingachieve as high as 50% and 27% improvements,
respectively, in average job completion time as compared

to the SRPT-based extensions. The results also show tha{

the proposed techniques achieve completion times within
2% of an optimal solution (as obtained through brute-
force for comparison purposes), while requiring reason-
able communication and computation overhead.

2. Background and Motivation

In this section, we first present an overview of the distellut
job execution framework in a geo-distributed datacentsr sy
tem. Next we provide a motivating example to illustrate the
needs for better scheduling approaches.

2.1 Job Scheduling across Geo-distributed Datacenters

Figure 1 depicts the general framework for distributed job
execution in geo-distributed datacenters. Our system con-
sists of a central controller and a set of dataceribespan-

Figure 1. System Architecture of Distributed Job Execution

ning geographical regions, while the system serves the jobs
running with input data stored across the geo-distribuggd d
acenters. Each job (arriving at the central controllerpisie
posed of small tasks that process independent input parti-
tions and run in parallel [5, 7, 8].

The main focus of this paper is the development of an
effective job scheduling mechanism for geo-distributetd da
acenters. In our system, job scheduling decisions are made
(and potentially re-evaluated) at job arrival and deparinf
stants!, and involve two levels of schedulers: (1) The global
scheduler residing in the central controller, makes jofelle
scheduling decisions for all jobs in the systerand assigns
a job’s tasks to the datacenters that host the input data.
(2) The local scheduler at each datacenter has a qggue
that stores the tasks assigned by the global scheduler, and
launches the tasks at the next available computing slotbase
on the job order determined by the global scheduler (or the
local scheduler itself). In addition, all datacenters regeir
progress to the central controller, in support of global job
scheduling decisions. The job-level scheduling decisaras
therefore made by the coordination of the global and local
schedulers (depending on the scheduling technique as de-
scribed later) and are a function of the set of current jobs
J, their tasks, and local queue information data reported by
the datacenters. A job is considered completed only after al
of its tasks are finished; therefore the job completion tisne i
determined by its last completed task. Our goal is to reduce
he average job completion time.

Fully replicating data across all datacenters in today’s
systems is quite costly, in terms of storage space and in
overhead for maintaining consistency among the copies [24]
Instead, recent systems [24] opt for a single primary copy
plus multiple partial copies based on coding techniques and
replication policies. In our system, each task is assigoned t
the datacenter that holds its primary copy of the input data.
We refer to the subset of the job’s tasks assigned to the
same datacenter as the jolsisb-jobat that datacenter. Let

1We illustrate later in Section 5 that this is sufficient.

2In some cases the global scheduler delegates the job-levetisiing to
the local schedulers as discussed later.

3Some local jobs may go directly to the datacenter where all eir th
required data is located. We assume that each datacentesrigformation
about local jobs to the central controller as the jobs arrive
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vj.d denote the sub-job composed of jpis tasks that are  (remaining number of tasks) of sub-jefy. The sub-job’s
assigned to datacentdr The order in which these sub-jobs finish instant is a relative measure and a monotonic indicato
are served at each data center is determined by the job-levebf its finish time;® specifically, given thai, g < ipgva,b e
scheduling decisions, where the local scheduler continuesJ, sub-jobv, g finishes no later than sub-joly 4 does. In
launching the task of the first sub-job in the queue whenever addition, a job’s finish instant is the maximum finish instant
a computing slot becomes available unless the order of sub-of all its sub-jobs, i.e., max; 4,vd € D. In this example, if
jobs is updated. When such modifications occur, we assumewe were to use a First Come First Serve (FCFS) scheduling
no preemption for a task execution when it's runningout approach, the finish instants of Jobs A, B, and C would be
a job (or sub-job) execution can be preempted, i.e., thestask 10, 18 and 11, respectively, which results in an average job
of other jobs (or sub-jobs) can be scheduled to run before thefinish instant of 13.

non-running tasks of the currently running job (or sub-job) .

To facilitate global scheduling decisions, each datacente 2.3 SRPT-based Extensions
reports its current snapshot (including the progress of theIn the single-datacenter scenario - or more specifically
sub-jobs in service and those in the queue) to the centralsingle-server-single-queue with job preemption scenaitio
controller. For simplicity of presentation and evaluatiom has been shown that Shortest-Remaining-Processing-Time
assume that this information is guaranteed to be delivered i (SRPT) minimizes the average job completion time[9, 30,
time and accurate. In addition, we assume that our system31] by selecting the job with smallest remaining size first.

primarily serves the jobs with single-stage tasks; we discu To the best of our knowledge, the problem of schedul-
how our system can be extended to serve the jobs with multi- ing jobs across multiple datacenters has not been solved nor
stage tasks in Section 8. extensively studied. It is natural to consider SRPT-based e

tensions to multi-datacenter environment, as we will prese
next. However, we illustrate in Section 2.3.3 their shameo
We now present a simple example to illustrate how the vari- ings as the motivation for better approaches.
ous scheduling techniques work and the differences of their
scheduling results. Table 1 describes the example settingsz's'1 Global-SRPT
(job arrival order, number of tasks per job and their distrib ~ The first heuristic is to run the SRPT in a coordinated man-
tion among the data centers); Figure 2 provides the schedul-ner, which performs SRPT and computes the jobs priority
ing results obtained by the various scheduling techniqaes d based on the jobs’ total remaining size across all the datace
scribed in this paper. In this example, there are three jobsters. We call this heuristic aSlobal-SRPT Glogbal-SRPT
arriving to the system at different times, with Job A fol- runs at the central controller, as it requires the globaesta
lowed by Job B, followed by Job C. At the time the sched- of the current jobs’ remaining tasks across all the datacen-
uler makes the scheduling decision, these three jobs al hav ters. Then central controller passes the job order computed
some tasks that are not yet launched. The jobs’ remainingby Global-SRPT to all the datacenters, where each datacen-
size$ in each datacenter are also given in Table 1. In this ter scheduler updates its sub-jobs order in the queue based
example each datacenter has a single compute slot, i.e., th@n the new job order.
datacenter serves one task at a time. In our motivating example, the total remaining tasks for
Let the completion time of job ber; = f; —a;, where ~ JobA,B,C are 1211 13, respectively, so the job order com-

fi and g are the time instants of finishing the job(or, puted by Global-SRPT iB — A — C, which is enforced by
finish time) and jobi’s arrival, respectively. Then, the av- each datacenter as shown in Figure 2(b). Since Global-SRPT
erage job completion time af jobs is% X Sqr = % X gives higher priority to the jobs with fewer tasks and finsshe
Sy (fi—a) = % x{SP,fi—3",a}. We can view reduc- them as quickly as possible, it avoids the cases that small
ing the average job completion time as reducing the sum Jjobs are blocked behind the large jobs and spend lots of time
of the finish timesy !, fi (or equivalently,% x SN f), as waiting. As a result, Global-SRPT achieves better average
51, & is constant. For simplicity of exposition, we discuss job finish instant & as in the example) compared to that of
the remainder of the example in terms of reducing averagethe default scheduling FCFS (13 as in the example).
finish time (rather_than the average cor_npletlor! time). 2.3.2 Independent-SRPT

We further define a sub-job’fnish instant j4 as the ) ) ) ) )

queue index at which sub-jo 4 ends, which is computed ~ Since SRPT is designed for single-scheduler scenario, our
asiz g+ [Vj.a|, wherev,q is the’sub-job that is right next to ~ Sécond heuristic is to enable each datacenter scheduler to
Vid whilejbeing earlier in the queue, and 4| is the size ~ Perform SRPT on its own, with the hope that each datacenter

. ' reduces average completion time for its sub-jobs. We call
4Non-preemptive task execution is common in conventional etusbm- this Independent-SRR&s the datacenter prioritizes its sub-
puting systems [3, 39] as the tasks are typically of shorttthmand hence

switching cost is (relatively) large. 6We will discuss the assumptions that make a job’s finish instanél to its
5Here, a job’s remaining size is its remaining number of taskisatenot finish time in Section 3, and how our system addresses thoseptiens
launched yet. in Section 5.

2.2 Motivating Example
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Job ID | Arrival Sequence] Remaining Tasks in DCT Remaining Tasks in DC2 Remaining Tasks in DC3 Total Remaining Tasks
A 1 1 10 1 12
B 2 3 8 0 11
C 3 7 0] 6 13

Table 1. Settings of The Example: Job Set, Arrival Sequence and TaslgAment
'a Finish Instance -"S:B Finish Instance -§n Finish Instance
H Job A: 10 H JobA: 18 H JobA: 18
° B-2:8tasks |  Job B: 18 ° JobB: 8 ° Job B: 8
2 Job C: 11 2 Job C: 11 2 Job C: 11
3 Average: 13 3 Average: 12.3 3 Average: 12.3
C-1: 7 tasks C-1: 7 tasks C-1: 7 tasks
B-1: 3 tasks _ B-2: 8 tasks M B-1: 3 tasks | | B-2: 8 tasks
B-1: 3 tasks
T pa DC2 DC3 DC1 DC2 DC3 T bpa DC2 DC3
(a) FCFS (b) Global-SRPT (c) Independent-SRPT
én Finish Instance -‘:u"a Finish Instance -‘:6'4: Finish Instance
< Job A: 18 S Job A: 18 < JobA: 18
° Job B: 10 ° JobB: 8 ° JobB: 8
2 JobC:7 2 Job C: 10 2 Job C: 10
5 _ Average: 11.7 51 _ Average: 12 g _ Average: 12
B-1: 3 tasks
C-1: 7 tasks C-1: 7 tasks
B-2: 8 tasks B-2: 8 tasks B-2: 8 tasks
C-1:7 tasks C-3: 6 tasks C-3: 6 tasks C-3: 6 tasks
B-1: 3 tasks B-1: 3 tasks
DC1 DC2 DC3 DC1 DC2 DC3 DC1 DC2 DC3

(d) SWAG

(e) Global-SRPT wReordering

(f) Independent-SRPT \Reordering

Figure 2. Results of The Example: Job Orders and Finish Instants Ctedpay Different Scheduling Algorithms

jobs based on the their sizes and updates the queue ordeto vg1 andvc 1 in datacenter 1, anda 3 can yield tovc 3

independently from the information of other datacenters.

In the example, according to the jobs’ remaining number depicted by Figure 2(f).

of tasks for each sub-job, their priorities at each datagent
may not be the same. In datacenter 1, the priorit is»

in datacenter 3, without delaying jois finish instant as

As illustrated in the above example, both Independent-
SRPT and Global-SRPT leave significant room for improve-

B — C, while the priority in datacenter 2 and datacenter 3 are ment as they waste resources in serving some sub-jobs while

B — AandA — C, respectively (as shown in Figure 2(c)). By

their counterparts at other datacenters are delayed doe to i

reducing the finish instant of the sub-jobs in each datacente balanced job execution. Next, we first propose a mechanism

Independent-SRPT achiev%zsfor average job finish instant
in the motivating example, which is better than FCFS (13).

2.3.3 Shortcomings of SRPT-based Extensions

Both Global-SRPT and Independent-SRPT improve the av-

in Section 3 to improve the result of scheduling by elimi-
nating the waste of resources in imbalanced job execution.

Then we develop a new scheduling solution in Section 4 that

erage job completion time by favoring small jobs. However,

since each job may have multiple sub-jobs across all the

leads to further improved scheduling results.

3. Reordering-based Approach

datacenters, the imbalance of the sizes among the sub-job&kecall that one insight into why the SRPT-based heuristics

causes the problems for SRPT-based scheduling.

its sub-job at datacenter 2 starts. Since the job’s congpieti

do not result in better performance is that they fail to con-
Take Global-SRPT for example, in Figure 2(b), we see sider the competition for resources faced by each of its com-
that jobA’s sub-jobs in datacenter 1 and 3 finish even before ponent sub-jobs, as only the “slowest” sub-job determines

the response time of the job. Consequently, there is no gain

time is determined by the last completed sub-job acrossfrom lowering the response time of a sub-job at datacehter

all datacenters, we can actually defe(; andvaz a bit
without hurting jobA’s finish instant, while it can yield the

if it has a counterpart at datacengewith a higher comple-
tion time. In that case, we might as well delay this sub-job, i

compute resources to the tasks of other sub-jobs, say jobfavor of other sub-jobs at datacentemwhich have “faster”
C in this example. The same observation is also valid for counterparts at other datacenters. This brings us to the no-

Independent-SRPT in the example, in whigty can yield

tion of reordering the sub-jobs for the jobs, in a coordidate
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manner, based on how the sub-jobs of a job are progressing.e., all datacenters have an equal numbers of computing

at various datacenters.

Specifically, we developReordering as an auxiliary
mechanism to reduce the “imbalance” (in terms of their po-
sition in the local queues) of a job’s sub-joli®eordering
can work as an “add-on” to any scheduling solution. The ba-
sic idea behindReorderingis to continue moving sub-jobs

later in a local queue, as long as delaying them does not in-

crease the overall completion time of the job to which they
belong; this, in turn, gives other jobs an opportunity for a
shorter completion time.

Algorithm 1 presents the pseudo codeReorderingand
its actual mechanism works as follows. Given the sub-jobs’

slots with the same configurations.

Under the above stated assumptioReprderingwould,
at the very least, not result in degradation in completioreti

Theorem 1: Reordering provides non-decreasing perfor-
mance improvement for any scheduling algorithm.

Let fx be jobx’s finish instant represented by the queue
position; that is fy = max,pixy. LetOto be any scheduling
algorithm applied to the datacenters drgbe the resulting
overall job finish instant; that id)o = \Tl\ X Yxey fx- LetR
denote theReorderingalgorithm andhg g to be the overall

job finish instant of executing algorith'm and algorithmR

sequentially. Theorem 1 states thatr < ho no matter what

queue order, as computed by any scheduling algorithm, in scheduling algorithn® is.

each iteratiofReorderingstarts by identifying the datacenter

Proof: We provide an intuitive proof based on Mathe-

targetDCwith the longest queue length (Step 5) and targets matical Induction on the number of jobs. When= 1, the

the last sub-jolbargetJobin its queue, which has the maxi-
mum value Ofitargetjontargetnc in the queue (Step 6). We add
targetJobto N (Step 7), which is a queue data structure that

theorem obviously holds. Assume the theorem holds when
n = k. We defineh(k) as the overall job finish instant when
the number of jobs ik. So,ho r(k) < ho(k). Whenn=k+1,

keeps the sequence of its elements based on their arridal, an suppose we first process japsince it is identified from the

extract all of the sub-jobs associated with fatyetJobfrom

data-center with the longest queue, after being processed,

the corresponding datacenter (Step 8). The same proceduréts finish time f; is the same ad,, which is joba’s fin-

continues until all current jobs in the system have beenddde
into N (Step 9). The final job order computed Bgordering
is the reverse order & (Step 10).

2 ReorderingAlgorithm

1: procedure REORDERINGij 4,V] € J,d € D)
U<«+J
N <+ 0 // an ordered list
while U # 0 do
targetDC+<+— maxy |qq|,vd € D
targetJob«— max;ij targetpc, Vj € J
N.pushback'targetJoh
Qd < Od — |VtargetJohdl, Vd € D
U «+ U — {targetJol}
return reverse(N)

LN R®N

[y

In our example in Figure 2Reorderingimproves both
Global-SRPT and Independent-SRPT by delayipg and
va 3 until the end of their associated queues after identifying
that DC2 has the longest queue length and subvjobis
the last one in its queue. The delaywaf; andvpa 3 does not
degrade Jol's finish instant as it is determined kby . This
procedure continues by selecting Jopand finally JobB,
which results ilN = A — C — B. Thus, Reordering returns
B — C — A, with a mean job finish instant of 12 for both
Global-SRPT withReorderingand Independent-SRPT with
Reordering as opposed to that (%@ without Reordering

Note that in theReorderingalgorithm, we use a job’s
finish instant to approximate its job finish time. Moreover,
the job finish instant is exactly the job finish time under the
following assumptions: (1lomogeneous task service times
i.e., all tasks of all jobs have the same durationn@noge-
neous service rates.e., all servers in all datacenters serve
tasks at the same rate; and {8)mogeneous data centers

ish instant before applyinReordering For the other jobs,
based on step 3 we know thiag r(k) < ho(k). Therefore,

hogr(k+1) = <MoRHa ool tia _ (1),

The above Theorem proves thReorderingimproves,
or does no harm at least, the average job finish instant for
any job scheduling algorithm. With the assumption that job
finish instant can estimate the job finish timiReordering
improves the average job finish time, and the average job
response time as the result. In Section 5 we discuss how
we address these assumptions for a system prototype, and
evaluate it in Section 6.

In summary, we emphasize thReorderingis an add-
on mechanism that can be easily used with any scheduling
approach to improve (or at the very least not harm) overall
average job completion time. We leave further discussions
aboutReorderings usages until Section 8.

4. Workload-aware Approach

Given the “do no harm” property dteorderingas described
above, it is naturally a conservative approach (to modgyin
the original scheduling decisions), with results depegdin
significantly on the original scheduling algorithm to which
the reordering process is applied. Howeweporderingstill
leaves rooms for improvement. In the motivating example in
Section 2, both Global-SRPT (Figure 2(e)) and Independent-
SRPT (Figure 2(f)) came up with the job order®# C —

A. We observe that the scheduling performance would be im-
proved if we switched the order of jd@band jobC, and result

in the new job orde€ — B — A. Doing so would bring per-
formance improvement for joB while hurting the comple-
tion time of jobB, which is against the principle of Reorder-
ing, yet the net effect results in overall performance impro
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Finish Instance
Job A: 4, Job B: 5, Average: 4.5

Finish Instance
Job A: 5, Job B: 3, Average: 4

ment as shown in Figure 2(d). This observation motivates us
to develop the more aggressive approach tRanrdering
termedWorkload-Aware Greedy Scheduling (SWA&Hich

=
r=)
|
<
]
=
o
3
]
3
g

Queue Length

schedules the jobs greedily based on their estimated finish queued

time. We first discuss the design principles 8WAG and — |
then present its algorithm details. (a) SRPT-based Approach (b) Better Approach
4.1 SWAG Design Principles Figure 3. Motivating Example for Third Principle

Recall that a job’s completion time is composed of the wait-

ing time as well as the service time, and the traditional SRPT prove their performances because the dominating jobs and
results in the shortest total waiting time for all jobs byejte sub-jobs are already put at the end of the queue.
ily scheduling the job with the shortest remaining process-  |n conclusion, all the 3 principles are essential for reduc-
ing time over the long ones. Therefore SRPT optimizes the ing the average job completion time. Next, we present how
average job completion time since the jobs’ service times we construc6WAGbased on these principles.
are fixed.” This insight is common for all job scheduling ,
in reducing the average job completion time, yet it sets the 42 SWAG Algorithm
ground of our first design principle f@WAG In our design, the central controller ruS8VAGwhenever

First Principle: In order to reduce the total waiting time  a new job arrives or departs. The new order of all jobs is
and further reduce the response time, jobs that can finish computed from scratch based on the estimated job finish
quickly should be scheduled before the other jobs. times. Letgy denote the current queue length at datacenter

However, as shown in Section 2.3.3, following the first d, and|v; 4| denote the size of jolp's sub-job at datacenter
principle by favoring the small jobs only is sub-optimal d.vjq =0 if none of jobj’s tasks is assigned to datacenter
in the multiple-scheduler-multiple-queue scenario, doe t d. In addition, we define thenakespan mfor job | as:
the imbalance between the sizes of the sub-jobs across them; = maxq(qq + |Vjq]),vd € D.
datacenters and the fact that the finish time of a job depends Then SWAG—as detailed in Algorithm 3—greedily pri-
only on its last completed sub-job. In fact, a small job with a oritizes jobs by computing their estimated finish times dase
large sub-job may not finish as quickly as a large job with on the current queue length (accumulated number of tasks to
many small sub-jobs. Therefore it leads us to the secondbe served) as well as the job’s remaining size (number of re-
design principle. maining tasks). InitiallySWAGcomputes the makespan for

Second Principle: Since the small jobs are not guaran- each job based on Equati@f (Step 5). TherBWAGselects
teed to finish quickly (as is the case in the single-scheduler the job with the minimal makespan (Step 6), appends it into
single-queue scenario), we should consider scheduling job the job order (Step 7) and updates the queue length based on
more as a function of sub-job sizes rather than the size of thethe selected job’s sub-job sizes (Step 8). If there are more
overall job. than one job with the minimal makespa®\WAGpicks the

The first two principles guide us to select the job finishing one with the smallest total remaining size as a tie-breaker.
the quickest under the condition that it occupies the entire SWAGcontinues to greedily add the next job with the small-
system. However each datacenter has different workloadest makespan, with respect to the current queue lengttils, unt
at the scheduling decision instant, which also impacts the all the current jobs in the system have been added.
waiting time that each sub-job suffers. This gives us thé fina
design principle foSWAG 4 Workload-Aware Greedy SchedulingWAG

Third Principle: Since the sub-jobs of a job experience 1: procedure SWAG(J,v;4,V]j € J,d € D)
different delays at different datacenters, we shouldatsoc =~ 20 N <« 0 //an ordered list
sider the local queue sizes in assessing the finish times of \?\?h?l_e(\)N\T(iéﬁJ?do
Su?:'.]ObS' . . m; <— maxy (dq + |Vjd]),Vj € J,d € D

igure 3 presents a simple example to illustrate the targetJob«— min;m:,Vj € J
third principle, in which there are two jobs and B to be N.pushbacl«(targj;etil’ob
scheduled over 3 datacenters, and there are two tasks al-g. Y D
. 0d < Od + |VtargetJobd|, Vd €
ready at the first datacenter. Note that both Global-SRPT g: returnN
and Independent-SRPT would result in the scheduling re-
sult shown in Figure 3(a) as they both prioritize the jobs or  In our example presented in Figure2VAGfirst selects
sub-jobs based on their sizes only. Also note that executingJob C as it has the smallest makespan of 7, as compared to
Reorderingafter Global-/Independent-SRPT does not im- 10 for Job A and 8 for Job B. After that, the queue length for
. _ - , o , datacenter 1 and datacenter 3 would be updated to 7 and 6,
Note that in a traditional scheduling problems a job is an atgmbcess-

ing unit, as opposed to our problem where a job is composed df &sles respectlvely, accordlng to _‘JOb Cs SUb'JOb size. At thmpo' .
that can be executed in parallel. both Jobs A and B result in the same makespan of 10, with

NogaAr®
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respect to the new queue lengths. Since Job B has a smallea real system due to various reasons. We address this by
remaining size than Job A, it is added after Job C, followed having the local scheduler of each datacenter select tke tas
by Job A . The final job order as computed by SWAG is with the longest expected duration that is not yet launched
C — B — A and the resulting average job finish time%% for the sub-job with the highest priority determined by the

which is better than that the SRPT-based solutions. job scheduling. The rationale behind this method is to start
. the larger tasks earlier in order to reduce the makespan

5. Prototype and System Extensions across all tasks of a particular sub-job.

In this section we describe our prototype implementation ~ Inaccuracies in Task Duration Estimation.The way we

and how we address some system issues. address heterogeneous tasks duration (task-level sahgdul

Prototype: We implemented a system prototype with by local schedulers) relies on reasonably accurate estimat
Spark[39]. Two main components in our system prototype of task durations. Unfortunately, there is no guaranteé tha

are the global controller and the local controller. the estimations at the scheduler are accurate because tasks
The global controller is primarily in charge of comput- duration are subject to many dynamic factors[s, 7, 8], in-
ing the job orders, by runningeorderingor SWAGmodule cluding I/O congestion and performance interference among

based on the information (e.g., number of remaining tasks of concurrent tasks. The typical approach to this problem is to
each job at each datacenter) collected from each local con-US€ the finished tasks’ duration to estimate the duration of
troller. The global controller passes the results of jobeesd ~ the remaining tasks of the same job[5, 7, 8]; it is reported
to each local controller through socket communication. Be- that the estimation accuracy with such approaches reaches
sides, whenever a new job arrives, it divides the job into sub =~ 80%, as the jobs get closer to the completion[8]. Here, we
jobs and send the metadata (e.g., the application program ID do_not assume a §peC|f|g estimation mechanlsm for task du-
the number of tasks) to each local controller. ration, but rather (in Section 6) e\_/alugte the sensitivityur

The local controller is in charge of feeding the computed SyStem’s performance to the estimation accuracy.
job orders to the local cluster as well as reporting the jobs’  Scheduling Decision PointsThe heterogeneous nature
progress to the global controller. Based on the updated job©f tasks duration and the (potential) lack of accuracy inrthe
order, each cluster scheduler assigns the next availabie co €Stimation indicate that in a real system we should consider
puting slots to the tasks of the job with the highest priority (r€)evaluating scheduling decisions at task departunetpoi
until all of its tasks are launched. In addition to passing ne (i addition to job arrival and departure points). However,
job orders to the cluster, the local controller sends theajlo ~ OUr simulation study indicates that the heterogeneous na-
controller updates of jobs’ progress (e.g., number of fieish ture of tasks dura_tlon _and the inaccuracies in their esinma_t
tasks for each job), upon receiving requests from the global only have a marginal impact on the scheduling results. Since
controller by reading the logs produced by Spark cluster.  the frequency of task departures can be a few orders of mag-

Heterogeneous Datacenter Capacityin previous sec- nltgde larger than th.at of job arnvqls and departures,mgnn
tions we assume all datacenters to be homogeneous in thaPf job-level scheduling at such high frequency would incur
they have the same number of computing slots for serving substantial overhead, particularly as job-level scheduis
the tasks. In reality datacenters may have different capaci Performed by the central controller. Consequently, we con-
in the number of computing slots. Recall that bBorder- F:Iude tha.t inareal systemitis sufficient to consider schedu
ing and SWAGrely on queue length as the estimation for Ng decisions upon job arrivals and departures.
job finish time (e.g., Step 5 in Algorithm 1 and Step 5 in 6. Performance Evaluation
Algorithm 3), while the same queue length would result in
different job finish time if equipped with different numbero I this Section we conduct an extensive simulation study,
computing slotsReorderingand SWAGcan easily adapt to ~ With realistic job traces, for the proposed scheduling ap-
heterogeneous datacenter capacity by normalizing thesqueu Proaches $WAGand Reordering compared to the tradi-
length of each datacenter by their number of computing tional solutions (FCFS and SRPT extensions) with regard to
slots. For example, Step 5 in Algorithm 1 can be updated Performance improvement and fairness (Section 6.2), over-

astargetDC <+ maxg [M]Nd € D, and Step 5 in Algorithm head evaluation (Section 6.3) and sensitivity anqusis-(Se
“ tion 6.4). Our results show th&WAGand Reorderingim-

(Ga+1vidDy s
3 can be updated as; « maxy [~ cdjd LV_J €J,deD, prove SRPT-based approaches by 50% and 27%, respec-
wherecy represents the number of computing slots in data- tjyely, over a wide range of settings.

centerd. The intuition is that the datacenters with more com-
puting slots spend shorter time finishing serving the same
workload than the datacenters with less computing slots.  The main performance metric we focus on is average job
Heterogeneous Tasks Durationln above presentation  completion time, which is defined as the average elapsed
we assumed that all tasks across all jobs were of the sameduration from the job’s arrival time to the time instant at
duration. However, previous works [5, 7, 8] show that tasks which the job has all its tasks completed and can depart
duration could be heterogeneous within and across jobs infrom the system. Average job completion time is a common

6.1 Experiment Settings
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Trace Type Avg. Job Size (1qu%|(l)‘]tggﬁs) (1'?416351”5]6%‘122?3) (Is_gﬁetgglgg) Trace Characteristic
Facebook[5-8] 3646 tasks 89% 8% 3% high variance with a few extremely Targe jobs
Google[2, 28, 33]] 86.9 tasks 96% 2% 2% small variance with a few large jobs
Exponential 800 tasks 18% 29% 53% moderate variance in job sizes

Table 2. Job Traces

metric for data analytics systems; this is a reasonabldanetr
when focusing on customer quality-of-service. In addition
we also evaluate the jobslowdownwhich is defined as the
job completion time divided by the job service time. We use assignment affects the performance in Section 6.4.
slowdown as a metric for evaluating fairness among jobs of ~ System Ultilization: We define the percentage of occu-
different sizes, as detailed in Section 6.2. All perfornenc pied computing slots as our system utilization. Multiple-fa
results are presented with confidence intervals of 35%%. tors contribute to the system’s utilization: job intereat
We compare the performance of: FCFS, Global-SRPT, time, job size, task duration, and task assignment.
Independent-SRPT, Global-SRPT followed Rgordering Other Default Settings: In our experiments the default
Independent-SRPT followed iyeordering andSWAG We number of datacenters is 30, with 300 computing slots per
also show the results generated by Optimal Scheduling, datacenter. Such default system settings resa#t78% sys-
which are obtained through an offline brute-force search, tem utilization, which allows us to explore how the system
i.e., with full knowledge of future job arrivals and actual performance behaves at reasonably high utilization.
tasks duration. We use the results from Optimal Scheduling6 5> Scheduling Perf Resul
as an upper-bound on the response time improvement that™ cheduling Performance Results
can be achieved through better scheduling, to investigateFigure 4(a), 4(c) and 4(e) depict the average job comple-
how much room for improvement is left. We run FCFS as tion time (normalized by that of FCFS), using the Facebook
our baseline scheduling approach, for comparison purposesrace, Google trace and Exponential trace respectively. We
only. For clarity of exposition, we present our results as th vary the average job inter-arrival times and observe how per
normalized average job completion time of each algorithm, formance characteristics react to different system atilen.
i.e., normalized by the average job completion time aclideve ~ Performance Improvements of ReorderingOur exper-
by the FCFS approach for the same setting. iment results first confirm th&eorderingdoes result in re-
Workload: We use synthetic workloads in our experi- duction of average completion time for SRPT-based heuris-
ments with job size distributions obtained from Facebook’s tics, as stated byheorem 1The performance improvements
production Hadoop cluster [5-8] and Google cluster work- for SRPT-based heuristics dueReorderingeaches as high
load trace[2, 28, 33], as well as the Exponential Distribu- as 27% under highly utilized settings, and is up to 17% under
tions, referred to as Facebook trace, Google trace and Expolower utilization. Finally, the results also show tifiReorder-
nential trace, respectively. Table 2 summarizes the jaiegra  ing is more beneficial to Independent-SRPT than to Global-
we use in our simulation experiments. We adjust the jobs’ SRPT. This is intuitive as Independent-SRPT does not co-
inter-arrival times for both workloads based on Poisson Pro ordinate between the sub-jobs of a job and thus results in
cess in order to make the two workloads consistent in termsa higher imbalance between the sub-jobs; this creates more
of system utilization. The default settings for the averjape ~ opportunities foiReorderingio improve performance.
size is 800 tasks, and we tune the inter-job-arrival timebto o Without Reordering Global-SRPT performs better than
tain the workload with certain system utilization. Independent-SRPT in the Facebook trace, while the Google
Tasks Duration: The tasks duration in our simulations trace and the Exponential trace display the opposite trend.
are modeled by Pareto distribution wifh= 1.259 accord- Under higher utilization, Global-SRPT outperforms Indegbent-
ing to the Facebook workload information described in [8], SRPT by 27% in the Facebook trace, while in Exponen-
and average task duration to be 2 seconds. In our simulationtial trace, Independent-SRPT outperforms Global-SRPT by
experiments, we investigate the impact of inaccurate estim 32%. This is the result of the fact that the variance of job
tion of task duration in Section 6.4. sizes in the Facebook trace is significantly higher than that
Task Assignment: To evaluate the impact of imbalance of the Google trace and the Exponential trace, so Global-
due to task assignment, we use Zipf Distribution to model SRPT benefits more from favoring small jobs by considering
the skewness of task assignment among the datacenters. Thie total job size across all datacenters, while Independen
higher the Zipf's skew parameter is, the more skewed that SRPT performs even poorly by considering only the indi-
tasks assignment is (i.e., constrained to fewer datacgnter vidual sub-job sizes. In the Google trace, however, the gap

We also consider two extreme cases where tasks of each jotbetween Global-SRPT and Independent-SRPT is not obvi-
ous. Most of the jobs in Google trace are small and so are

are: (i) distributed uniformly across all datacenters, ipr (
assigned to only one datacenter. The default setting for the
skew parameter is 2, while we investigate how skew of task
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Figure 4. Performance and Fairness Results with Different Workloatds

the variance in the job sizes. With such characteristic, the differences in performance improvements attribute to the
skews among the sub-job sizes tend to be smaller comparedact that job traces with higher variance in job sizes tend
to the other two job traces, and, therefore, Global-SRPT andto have more large jobs, which potentially results in more
Independent-SRPT perform similar job scheduling decision sever skews among the sub-jobs. Thus, high-variance job
With Reordering Independent-SRPT performs better trace like Facebook trace displays more opportunities that
than Global-SRPT in all traces, because Independent-SRPTallow SWAGto achieve higher improvement by selecting
benefits significantly fromReorderingthan Global-SRPT  jobs that can finish quickly according to its design princi-
does as mentioned above. The gap between them becomegles. In addition SWAGoutperforms, by up to 10%, SRPT-
significant (10% or more) starting at lower utilization (3% based heuristics witReordering under various utilization
in Exponential trace, and reaches 40% under higher uti- and in all job traces. Finally§WAGachieves near-optimal
lization. In the Facebook trace, however, the gap is only performance throughout our experiments: the performance
significant under higher utilization (68% and 78%). This gap betweelSWAGand Optimal is within only 2%.
is because Global-SRPT performs reasonably well, unlike  Fairness among Job TypesFigure 4(b), 4(d) and 4(f)
Independent-SRPT withouReordering in the Facebook  present the slowdown results for the Facebook, Google and
trace. Thus, Global-SRPT witReorderingalso performs Exponential trace respectively. We further present the-slo
well as compared to the performance in the Exponential down for different job types by classifying the jobs based
trace. These results also show that the performandeeef  on their sizes (number of tasks): small jobs (1-150 tasks),
orderingdepends on the original scheduling algorithm. medium jobs (151-500 tasks) and large jobs (501 or more
Performance Improvements of SWAG Compared to tasks). The slowdown for FCFS is omitted as it is signifi-
SRPT-based heuristicSWAGs performance improvements cantly larger than the rest and is more than 15 in all cases.
under higher utilization are up to 50%, 29% and 35% in Also, Global-SRPT and Independent-SRPT have similar re-
the Facebook, Google and Exponential trace respectively,sults; thus, we only include the results for one of them.
with at least 12% improvement under lower utilization. The

Overall Small Medium Large
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SRPT and Independent-SRPT are omitted as they are neg-
ligible compared to the rest. These results suggest that eve
under higher utilization (78%), the scheduling runningeim
of SWAGE4.5mg is relatively small compared to the average
- task duration time (®. In addition to the scheduling run-
w ning time, our prototype confirms that the control message
(@) Scheduling Running Time __ (b) Communication Overhead passing between the global scheduler and the local sched-
Figure 5. Scheduling Overhead Results uler required byReorderingandSWAGtakes no more than a
We note that that all scheduling approaches have the samdew hundred milliseconds. As a result, the delay in schedul-
trends, i.e., that small jobs have the smallest slowdowihewhi ing running time and message passing does not significantly
large jobs have the largest slowdown. As expected, this is degrade the completion time of the jobs. Note that although
naturally due to the fact that all algorithms essentially fa SWAGhas a higher computational (worst-case) complexity
vor smaller jobs in order to reduce the average job comple- thanReorderingO(n? x m) for SWAGandO(n x m) for Re-
tion time. In addition, the major differences of slowdown ordering wheren is the number of current jobs and is
between the scheduling solutions exist in large jobs. the number of datacenters), the actual difference in compu-
In Facebook and Exponential trace, the slowdown of tational overhead betwe@&WAGand SRPT-based heuristics
large jobs for Independent-SRPT is 40% more than its with Reorderingis not significant, becauss&WAGis able to
overall slowdown, while the gap is no more than 30% for keep the number of current jobs (i.B),in the system small,
Independent-SRPT witReorderingand no more than 25% by scheduling jobs that can finish quickly.
for SWAG Google trace displays significant gap of slow- Figure 5(b) depicts the communication overhead in-
down between large jobs and overall jobs. This is becausecurred by each scheduling algorithm. Note that FCFS and
most of the jobs in Google trace are small jobs, therefore Independent-SRPT do not require any additional informa-
the few large jobs are often queued for a long time while tion from local schedulers, so their overhead is zero. The
the system is serving many small jobs as determined by thecommunication overhead essentially depends on the number
scheduling solutions. However, Independent-SRPT Rih of current jobs in the system. SinB%AGsucceeds in keep-
ordering and SWAGstill maintain relatively low slowdown  ing the number of current jobs small, it achieves the smialles
compared to Independent-SRPT. Hence, we conclude thatcommunication overhead.
ReorderingandSWAGmprove performance without signif- The overhead analysis confirm that the performance gains
icantly sacrificing performance of large jobs. from the proposedReorderingand SWAGtechniques come
We also observe thdeorderingimproves the original ~ with acceptable computation and communication overhead.
scheduling approach by mainly improving performance of
large jobs. This is because small jobs get to be served earlie
than the other even aftdReorderingis performed, while
Reorderingprovides the opportunity for some large jobs to Impact of Task Assignmentin this experiment we study
get served earlier by delaying some other sub-jobs. the sensitivity of scheduling algorithms to the skew in task
We use the Exponential trace for the following overhead assignments. In Figure 6(a), the X-axis represents the-skew

and sensitivity evaluation as it displays moderate charact Ness of task assignment, with Uniform Distribution being
istics compared to the other two. the least skewed and One-DC Assignment being the most

skewed. Between Uniform and One-DC are the results un-
der different Zipf's skew parameters.
We evaluate our system overhead on the following aspects.  The general trend in Figure 6(a) is that as the skewness

Global-SRPT wiRéordering
4|  Independent-SRPT w/Reordering mamm
'SWAG mmm

Giobal-SRPT —
%0 Global-SRPT w/Reordering mmm

Independent-SRPT wiReordering mmmm
80 S —]

Amount of Data (KBytes)
3

60% 71% 78%
ion (%)

System U

6.4 Performance Sensitivity Analysis

6.3 Overhead Evaluation

Computational Overhead. We obtain this by monitor-  increases, the performance of the scheduling algorithists fir
ing the execution time due to running of the scheduling al- increases and then decreases. There is not much room for
gorithms during each scheduling decision point. improvement when all tasks are uniformly distributed asros

Communication Overhead.This is defined as the addi- datacenters. The performance improvement becomes more
tional messages required by the global scheduler as neededignificant as the imbalance in task assignments requires
to be transferred from each local datacenter to the centralgreater coordination of jobs scheduling across the datacen
controller. Note that this does not include the fundamental ters to reduce the jobs’ completion time. Beyond a certain
and necessary information needed by the system, e.g., theskewness level, the imbalance of task assignment becomes
metadata of the jobs and the tasks, or the task program bi-so substantial that most of the tasks from the same job only
naries. Instead, It includes the information such as thefset span a few datacenters, in which case not much can be done.
current jobs IDs as well as their remaining number of tasks  As expected, when all the tasks of a job are assigned
associated at each datacenter. to a single datacenter, the execution of Global-SRPT and

Figure 5(a) depicts the scheduling running time under Independent-SRPT are essentially the same as they are both
various system utilization. The results for FCFS, Global- equivalent to performing SRPT on the local datacenters ex-
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Figure 6. Performance Sensitivity Results

clusively. In this case, there is no room fReorderingto distributed datacenters [14, 27, 35, 36]. Dealer [dyijam-
improve SRPT-based approach either. ically redistributes poorly performing tasks of a single job
Among the scheduling algorithmS\WAGand Independent- to other datacenters to reduce user-perceived latency- How
SRPT are more sensitive to the changes in skewness of taslever, it only uses one datacenter at a time per job phase. In
assignment than Gobal-SRPT. This is because their scheduleontrast, our work distributes tasks of a job (upon arrival)
ing decisions are subject to how the sub-jobs of the other among multiple datacenters, based on data locality, wéh th
jobs are ordered at each datacenter, which is directly im- advantage of reducing resource (network, storage) usage.
pacted by the extent of skews among the sub-jobs of the JetStream [27] focuses on the scenario in which ap-
same job. On the other hand, Global-SRPT considers onlyplications aggregate data across wide-area networks, and
the global view of the job sizes across all the datacenters,deals with insufficient backhaul bandwidth by applying pre-
and is therefore less sensitive to how the skewness varies. processing at each source site before transferring alltdata
Number of Datacentersin this experiment we investi-  the central location. In addition to having bandwidth over-
gate how the number of datacenters affects the performanceéhead reduction advantages, our work also dynamically ad-
by varying the number of datacenters while keeping the to- justs scheduling decisions across datacenters, to further
tal number of computing slots constant. In Figure 6(b), the duce average job completion time.
performance improvements ReorderingandSWAGgener- The closest works to ours are [35, 36], which propose to
ally increase as the number of datacenters increases,dgecau push the analytical queries to where the data are hosted and
more datacenters provide greater opportunities for caardi  optimize their execution plans accordingly. Another work
tion of sub-jobs across the datacenters. [26] similar to ours further improves bandwidth usage of
Accuracy of Task Duration Estimation In this experi- geo-distributed analytics by placing data and computation
ment we study how the error in task duration estimation af- across datacenters based on their bandwidth constraints.
fects the scheduling algorithms’ results. The estimatioore None of the above mentioned works address the challenges
happens as task execution is subject to unpredictableréacto of job scheduling in distributed job execution setting;he t
like 1/0 congestion and interference as discussed in Sectio best of our knowledge, our work is the first to address the
5, and it has impact on how local schedulers schedule thejob-level scheduling problem in multi-datacenters.
tasks because the scheduling decisions are based on esti- Data Locality Scheduling. Scheduling jobs and tasks to
mates of tasks duration. We introduce estimation error to ou meet data locality within clusters has been a recent trend
experiments based on a uniform distribution with the origi- [18, 34, 38] as it significantly improves average job comple-
nal task duration as the average. For example, if we wanttion time. Our work focuses on job scheduling given the task
to investigate 75% estimation accuracy, we set the estima-distribution among the datacenters, and therefore is gftho
tion value for task duration to be uniformly drawn from the onal to the above-mentioned works as their approaches to
range of[0.75,1.25] x actual taskdurationso that the esti-  scheduling for data locality within a datacenter can be com-
mation error is at most 25% of the actual task duration. bined with our solution.
Figure 6(c) shows that the performance improves marginally Conventional Job SchedulingShortest Remaining Pro-
as the estimation accuracy for task duration increases. Thi cessing Time (SRPT) is a well-known scheduling algorithm
is because there is often a high variance in task duration duethat achieves optimal average job completion time for pre-
to stragglers [5, 7, 8], and the estimation error is not sig- emptive job scheduling in a single-server-single-queue en
nificant enough to affect the order of task scheduling much. vironment [9, 30, 31]; it has been extensively studied and
Therefore, ouReorderingand SWAGalgorithms are robust  applied to many problem domains [15, 21, 22, 32, 37]. Our

to estimation errors. problem setting, specifically job scheduling in distrilulite
job execution scenarios, differs in that: (a) jobs are com-
7. Related Works posed of tasks that can run in parallel, and (b) tasks of the

same job potentially span multiple datacenters, each with

Distributed Job Execution. Relatively little work exists a number of compute slots, controlled by a local sched-

in the research literature on running applications on geo-
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uler. As shown in Section 2.3, SRPT-based extensions dothe sub-jobs of the job selected Bgorderingare already at
not work well in this context, mainly due to skew in a sub- the end of the queue of their associated datacenter. There-
job’s task distribution. Several efforts, in a more ideatlz ~ fore, applyingReorderingafter SWAGreturns exactly the
(theoretical) settings, includeoncurrent open shoprob- same job order as that obtained by runn8\WAGonly.
lems [12, 23, 29], in which each job has certain operations DAG of Tasks. Real workloads suggest that jobs can
to be processed at each machine, and the goal is to minimizaypically be modeled as a DAG of tasks - the first-stage
the weighted average job completion time. Our work differs tasks process their input data from physical storage, and
from that of concurrent open shofll2, 23, 29] in several  tasks in following stages aggregate the output from the first
ways: (a) we address a more general scheduling problem astage tasks. Note that those following stages initiate data
each datacenter (or, machine as termedancurrent open  shuffling across the geo-distributed datacenters throudé w
shop has multiple compute slots that can run the tasks of the area networks, which can incur unpredictable latency and
same job in parallel, (b) we develop online scheduling mech- potentially large cost at the backhaul.
anisms rather than the offline deterministic schedulind-ana Our presentation here essentially assumes jobs are com-
ysis proposed by previous efforts eoncurrent open shgp posed of single-stage tasks. To extend our approach to-multi
and (c) we conduct simulation-based experiments to evaluat stage jobs, we can first assign the first-stage tasks to the dat
the performance of scheduling solutions under more r@alist acenters hosting the input data (using the algorithms pro-
settings and with realistic workloads. posed here), then redirect the tasks of the following stages
Coflow SchedulingVarys [10] addresses a similar schedul- and transfer all the intermediate results from the firsgesta
ing problem; it schedules coflows, each composed of severaltasks to the datacenter that has the largest sub-job ofite or
sub-flows. Despite sharing the goal of average completion inal job. The tasks of the following stages can then run withi
time reduction, there exist several major differences in ou this datacenter and the sizes for all the original sub-jaivs ¢
problem settings. In addition to the coflows’ sizes and the be updated accordingly. As a result, there remains a single
current workloads, the scheduling results of Varys depend sub-job (of the original job) for the remainder of its stages
on sending and receiving rates at the two ends of a flow, Data Transfer Schedule.In running jobs across geo-
while there is no such constraint in our problem setting. distributed datacenters, a job’s completion time depemds o
Another difference is that Varys schedules the coflows and not only how the jobs are scheduled for service, but also how
their sub-flows all at the central controller, while in ousea  the data transfer flows are scheduled. To reduce the over-
scheduling of jobs and tasks is carried out through the col- all job completion time, our work takes the initial step of
laboration of global and local schedulers. coordinated job scheduling across all datacenters. Far fine
control and further improvements in overall job completion
8. Discussions time, our system can be extended to consider how data trans-
fer flows consume wide area network bandwidth, e.g., when
SWAG vs. Reordering The two approaches proposed in  the flow should start sending data at what transmission rate.
this paper ar&keorderingand SWAG Reorderings a light- Multiple Task Placement Choices.In this paper we as-
weight add-on that can be easily combined with any schedul- sume each task can only be placed at the datacenter that has
ing approach, potentially improving average job completio jts required data. One future extension is to allow each task
time, while SWAGIs a stand-alone scheduling approach. muitiple placement choices which would result in a joint op-
Both incur the same communication overhead in collect- timization of job scheduling and task placement.
ing information from local datacenter schedulers, to sup-
port global job scheduling decisions. Althou§kVAGhas a .
greater computational overhead thRaeordering(as shown 9. Conclusions
in Section 6.3), our simulation results (in Sections 6.2 and In the big data era, as data volumes keep increasing at dra-
6.4) show thaBWAGoutperforms all other scheduling algo- matical rates, running jobs across geo-distributed datace
rithms in all settings, including those improved Bgorder- ters emerges as the promising trend. In this setting, we pro-
ing, largely due to the principles upon which it is designed. pose two solutions for job scheduling across datacenters:
We note, however, th&eorderingcan easily adaptto cer-  Reordering which improves scheduling algorithms by ef-
tain job scheduling constraints th&WWAGmay not be able  ficiently adjusting their job order with low computational
to address. For instance, if jobs have deadlines and deadlin overhead; andWAG a workload-aware greedy scheduling
aware scheduling is useldeorderingcan still improve, orat  algorithm that further improves the average job completion

least not harm, the average job completion time. time and achieves near-optimal performance. Our simula-
Finally, note thatSWAGcannot be further improved by tions with realistic job traces and extensive scenariosvsho
Reordering Recall that in each iteration &eorderingex- that the average job completion time improvements fRen

ecution, it selects the last job in the most-loaded datacent orderingandSWAGare up to 27% and 50%, respectively, as
and adds it into the final job order (in reverse). SISMWAG compared to SRPT-based extensions, while achieved at rea-
schedules jobs based on minimizing their makespan, all of sonable computational and communication overhead.
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