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Abstract—Peer-to-peer (P2P) systems in general, and BitTorrent
(BT) specifically, have been of significant interest to researchers
and Internet users alike. Existing models of BT abstract away
certain characteristics of the protocol that are important, which
we address in this work. We present a simple yet accurate and
easily extensible model of BT. The model’s accuracy is validated
through a rigorous simulation-based study and its extensibility
is illustrated by incorporating recently proposed approaches to
protocol changes in BT.

I. I NTRODUCTION

BitTorrent (BT) [1] has been of significant interest to re-
searchers and Internet users alike. In this work, we focus on
a simple model of BT, as a tool for providing insight into its
behavior and possible future improvements in its architecture.

In BT, nodes join the system and begin exchanging data
chunks with their neighbors. Nodes that do not have a com-
plete copy of the file are termed “leechers” and those that
do are termed “seeds”. Nodes that do not contribute their
upload capacities are termed “free-riders”. Each leecheri picks
(“unchokes”) a number of nodes to whose requests it will
respond with an upload of an appropriate chunk. A subset of
these nodes is picked based on the tit-for-tat (TFT) mechanism,
i.e., those neighbors that have provided the best service (in
terms of download rate) to nodei recently. Another subset is
picked randomly, i.e., they are “optimistically unchoked”(to
explore better neighbors). Seeds also pick a subset of neighbors,
and upload data to them. In a more recent version of BT
([2]) the seeding capacity is distributed essentially uniformly
to the neighboring peers. All these choices are re-evaluated
periodically.

A number of works have focused on modeling BT or BT-like
systems (see Section V) - some model flash crowd behavior and
some steady state behavior. In this work, we focus on steady
state behavior. Within the class of efforts that model steady state
behavior,our model is distinct as it accounts for: (1) seeds and
(2) free-riders. Moreover, to improve the accuracy of our model,
we account for: (a) imperfect clustering behavior in regular
(TFT-based) unchokes and (b) bias in optimistic unchokes.

We also note that our model is of aheterogeneousBT system
(in terms of node bandwidths) and that the only other work that
considers a heterogeneous system in the context of steady state
behavior is [3], but without the distinctions stated above.We
first explain why it is important to include seeding and free-
riding behavior in a BT model; we then present our model in
Section II and illustrate its accuracy in Section III (wherewe
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also compare our model to the only other available model of a
heterogeneous BT system in steady state, given in [3]).

A number of research studies (e.g., [3], [4], [5], [6]), have
focused on the fairness, robustness, and performance charac-
teristics of BT, mainly resulting from the TFT mechanism.
However, very few studies (except [7]) have considered seeding
behavior effects. Given typical user behavior and the design of
most BT clients, seeding is a common phenomenon seen in the
BT ecosystem. Many users leave their BT clients unmonitored
while performing a large download, and the clients seamlessly
transition to being seeds once the download completes. Also,
some sharing communities enforce a download/upload ratio to
enable seeding and a better performing system. Real-world
measurements (e.g., [2], [8], [9], [10]) suggest that, in most
torrents, there exists a significant number of seeds, with a large
variety of seeding capacity. Some of the torrents measured have
twice the number of seeds than the number of leechers.

Seeding contributes capacity to the system, which can com-
pensate for the asymmetric bandwidth scenarios in the Internet.
However, it can degrade the fairness and incentive properties
of the system, as free-riders can finish their downloads with
reasonable performance by relying only on the seeds - not only
do they not contribute to the systems’ upload capacity, theyalso
effectively reduce the performance gains provided by seeds.

One important thread in the design and evaluation of P2P sys-
tems has been the provision of incentives for nodes to contribute
their resources. An interesting aspect of BT, which makes it
stand out in that respect, is the “forcing” of peers to share
their resourceswhile attempting to complete their downloads
(through the TFT mechanism) – this is done “locally” and
without a need for centralized or distributed mechanisms for
implementing an incentive system. Although this works nicely,
there are still opportunities for free-riders to download files
using: (1) capacity provided by leechers through the optimistic
unchoking mechanism (used by leechers to probe for new
downloading opportunities), and (2) capacity provided by seeds.

Since (a) there are significant seeding resources observed
in typical torrents, which have significant effects on BT per-
formance, and (b) there are significant opportunities for free-
riders to hurt BT performance, we believe that it is important
to include such behavior in an accurate BT model. Thus, in
our work, we provide a simple and extensible model that can
characterize the effect of seeding and free-riding in BT.

Another aspect that we include in our model is that of
imperfect clustering1. Previous approaches have assumed that

1Our notion of clustering is similar to that in [11].



operationally BT decomposes cleanly into clusters, where nodes
“find” like nodes that are similar in bandwidth capacity and
exchange chunks amongst each other. That however is not
the case in practice, and we model that, with details given in
Section II. Specifically, the contributions of our work are as
follows:

• We provide a simple and complete steady state model of a
heterogeneous BT system. To the best of our knowledge, it
is the first analytical performance model that includes the
behavior of seeds and free-riders. Our model predictions
confirm that BT is indeed quite exploitable.

• We extend it to include important BT characteristics,
namely (i) imperfect clustering in regular (TFT-based)
unchokes and (ii) bias in optimistic unchokes.

• We validate our model using simulation results and
demonstrate the importance of including imperfect clus-
tering and biased optimistic unchoking in having accurate
prediction of nodes’ download time in BT.

• Our model’s extensibility is demonstrated by explicitly
modeling two variations of BT, (a) the well known large
view exploit [12], [13], and (b) a recently proposed fix for
the large view exploit [7].

II. BT M ODEL

We use a simple rate balance model, similar to [3], but we
account for a number of BT characteristics (which are not
included in [3]). Leth be the number of node classes, where
each class is defined by its upload and download capacities,
U i andDi, respectively. New nodes arrive to the system at an
average rate ofλ, and there is a probability ofpi that a newly
arrived node belongs to classi - thus, classi nodes arrive at a
rate of λi = piλ. A classi node downloads at the rate ofdi

chunks per time unit (di ≤ Di), and it uploads at the rate ofui

chunks per time unit. Since (a) Internet upload and download
capacities are often asymmetric and (b) some users tend to
limit their upload capacities in BT, we assume that the upload
links are the bottlenecks, i.e.,ui = U i. This is a fairly typical
assumption in the literature, e.g., it is also made in [3].

In steady state, there areN i
l classi leechers in the system

and N i
s class i seeds, whereN i = N i

l + N i
s represents the

total number of classi nodes. LetT i
l be the average amount

of time a classi leecher takes to download a file. Letm be the
number of data chunks in the file; then,di = m

T i
l

. Let T i
s be the

average amount of time a classi node stays in the system after
becoming a seed. Thus,T i = T i

l + T i
s is the average amount

of time a classi node stays in the system. Then, we can state
that at any time, the total download rate of all leechers is equal
to the total upload rate from all leechers and all seeds, i.e.:

h
∑

i=1

uiN i =

h
∑

i=1

diN i
l .

Next, we build on this fairly coarse model while making
some standard assumptions, including that the system is in
steady state and that it has a sufficiently large number of nodes

where each peer has a sufficiently large number of neighbors2.
Since in BT a node receives its downloads from other leechers
(via regular and optimistic unchokes) and from seeds, what is
needed is a model of how much download capacity a node
will receive due to each. That is what we proceed to derive
next. We do this first by assuming that there is (a)perfect
clustering among nodes of the same class and (b) that the
optimistic unchokes are unbiased. (This also corresponds to
the assumptions made in [3].) We then show how to relax these
assumptions in order to obtain a more accurate model.
Regular Unchokes:We first assume perfect clustering, i.e., that
exchange of chunks due to TFT only occurs between nodes of
the same class. Letx be the number of simultaneous unchokes
performed by a node, wherexr of these correspond to regular
unchokes (due to TFT) and the remainingxo correspond to
optimistic unchokes. Since (given perfect clustering) theupload
capacity due to regular unchokes of a classi node is distributed
to nodes of classi only, we describe the download rate of a
classi node due to regular unchokes (from leechers of the same
class),di

reg, as:

di
reg =

N i
l u

i xr

x

N i
l

= ui xr

x
.

Optimistic Unchokes: Here, we assume optimistic unchokes
are unbiased, i.e., that they are uniformly distributed among all
leechers in the system. Thus, we describe the download rate
that a classi node due to optimistic unchokes (from all other
leechers),di

opt, as:

di
opt =

∑h

j=1
N

j
l uj xo

x

Nl

.

Seed Unchokes:We assume seeds upload uniformly to all
leechers (approximating the newer BT protocol) and describe
the download rate of a classi node from all seeds,di

seed, as:

di
seed =

∑h

j=1
N j

s uj

Nl

.

Given above, we can state the following for the classi node’s
download rate,di = di

reg + di
opt + di

seed:

di = ui xr

x
+

∑h

j=1
N

j
l uj xo

x

Nl

+

∑h

j=1
N j

s uj

Nl

. (1)

Next, we apply Little’s Result to obtain:

N i = λiT i, N i
l = λiT i

l ,

N i
s = N i − N i

l = λi(T i − T i
l ) = λiT i

s .

Since,T i
l = m

di , we can plug this, along withλi = piλ, into
Equation (1), to obtain:

di = ui xr

x
+

∑h

j=1
pjλ m

dj uj xo

x
∑h

j=1
pjλ m

dj

+

∑h

j=1
pjλT j

s uj

∑h

j=1
pjλ m

dj

= ui xr

x
+

∑h

j=1

pjujxo

djx
∑h

j=1

pj

dj

+

∑h

j=1
pjT j

s uj

∑h

j=1

pjm
dj

. (2)

2We also do not model the initial slow startup of newly arrived nodes, and
assume that leechers do not abort in the middle of a download.



Thus, we have a set ofh equations with h unknowns,
d1, d2, ..., dh, which can be solved to obtain the average down-
load rate of each class. Note that the above model degenerates
to the one presented in [3], if we ignore the seeds. However,
as noted in Section I, seeds have a significant effect on BT
systems and thus need to be modeled. As also noted in Section
I, free-riders have a significant effect as well; thus, we address
inclusion of free-riders in the model next.

A. Free-Riders

A simple approach to including free-riders in this model is
to view them as another user class (or multiple classes, if they
have different download capacities), all with upload capacity of
0. Then, the download rate of a free-riding class is described
as that of a contributing leecher class, but with the first term
(corresponding to TFT) in Equation (2) dropped; e.g., if we
had one free-riding class, say classh, then

dh =

∑h

j=1

pjujxo

djx
∑h

j=1

pj

dj

+

∑h

j=1
pjT j

s uj

∑h

j=1

pjm
dj

,

would be its download rate, where classes1 throughh−1 cor-
respond to contributing leechers - their download rate equations
remain as in Equation (2), withuh = 0. This, of course, can
be done for multiple free-riding classes.

We believe that the basic model presented above is quite
adaptable; thus future architectural and protocol changescan
be incorporated and studied through it (refer to Section IV).
However, we first refine our model to make it more accurate.

B. More Realistic Model

The above model assumes that regular unchokes are perfectly
clustered and that optimistic unchokes are unbiased (i.e.,as
in [3]). However, evidence based on measurements of real
BT systems in [11] and our simulations in Section III clearly
indicates that significant imperfect clustering (in regular un-
chokes) exists. Thus, here we remove these assumptions to
more accurately account for how the real BT protocol works.
Specifically, we first modify the model in a more abstract
manner, and then further develop it based on potential causes
of imperfect clustering and biased optimistic unchokes.

Firstly, we take into account the fact that a fraction of regular
unchokes will go to nodes in other classes. Specifically, we
define qi,j to be the fraction of regular unchokes from class
i that will go to classj, with

∑h

j=1
qi,j = 1. Given qi,j ,

the download rate that a classi node receives from regular
unchokes from all nodes,di′

reg, can be described as:

di′

reg =

∑h

j=1
qj,iN

j
l uj xr

x

N i
l

.

Secondly, we consider the fact that optimistic unchokes of a
node are not distributed evenly to all leechers. Specifically, we
defineoi,j to be the fraction of optimistic unchokes from class
i that will go to classj, where

∑h

j=1
oi,j = 1. Given oi,j , the

Fast Node Unchokes Slow Nodes Slow Node Unchokes Fast Node

Case (i) Case (ii)
T T+treg

topt-treg+twin 

topt
time
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time

Fig. 1. Slow Node Imperfect Clustering

download rate a classi node receives from optimistic unchokes
from all nodes,di′

opt, can be described as:

di′

opt =

∑h

j=1
oj,iN

j
l uj xo

x

N i
l

.

Given these adjustments to regular and optimistic unchokes,
we can express our new model for the download rate of a class
i node,di′ = di′

reg + di′

opt + di
seed, as:

di′ =

∑h

j=1
qj,iN

j
l uj xr

x

N i
l

+

∑h

j=1
oj,iN

j
l uj xo

x

N i
l

+

∑h

j=1
N j

s uj

Nl

=
di′

pi

h
∑

j=1

(qj,ixr + oj,ixo)p
juj

dj′

x
+

∑h

j=1
pjT j

s uj

∑h

j=1

pjm

dj′

,(3)

where the main challenge is in determiningqi,j andoi,j . To do
this, we examine possible causes for imperfect clustering and
biased optimistic unchokes.
Imperfect Clustering: Although there are a number of po-
tential causes, we conjecture that the main cause of imperfect
clustering is that optimistic unchokes from faster classesof
nodes destroy clustering of slower classes of nodes. Specifi-
cally, when a fast node optimistically unchokes a slow node,
the slow node reciprocates with a regular unchoke (as it is
getting a high download rate from that fast node).

For ease of exposition, we first focus on a two class (slow

andfast) scenario. We assume that the fast nodes are perfectly
clustered (qfast,fast = 1 and qfast,slow = 0). We then derive
the effects of imperfect clustering on slow nodes by considering
the timing of regular and optimistic unchokes between slow
and fast nodes3. Specifically, the reciprocation of slow nodes
with regular unchokes to optimistic unchokes of fast nodes is
temporary. As a fast node realizes that it unchoked a slow
node (due to a relatively slow download rate from that node),it
discards the slow node. Since the TFT mechanism re-evaluates
choices of best download rates using a sliding window, the
effect of the fast node’s optimistic unchoke eventually wears
off, at which point the slow node stops the regular unchoke of
the fast node. The extreme cases of how this can happen are
illustrated in Figure 14. Here we definetopt as the optimistic
unchoking re-evaluation interval,treg as the regular unchoking
re-evaluation interval, andtwin as the history window size for

3This is similar to the derivation in [4], which was done in the context of a
flash crowd, rather than a steady state, model.

4A similar method can be used to model the effect of fast nodes doing regular
unchokes to slow nodes. However, since measurement and simulation evidence
indicates that this is a less frequent case, we omit it here as it would further
complicate the model.



re-evaluation of both unchoking mechanisms. We now examine
the two cases in Figure 1. If the optimistic unchoke arrives right
after the regular unchoke re-evaluation period of a slow node,
say T (as depicted by the shaded box in Case (i)), then the
slow node reciprocates with a regular unchoke to the fast node,
starting in the next re-evaluation interval,T + treg, for a time
interval of topt−treg +twin, as depicted by the clear box in the
figure. At the other extreme, if the unchoke arrives right before
the next re-evaluation interval, i.e., Case (ii), the slow node
reciprocates with a regular unchoke to the fast node, for a time
interval oftopt+twin. Here, we assume that the unchokes arrive
uniformly during the regular unchoking re-evaluation interval.
As the slow node doesxr regular unchokes at the same time,
on average, the fraction of the regular unchoking capacity of
a slow node that is spent on a fast node due to a fast node’s
optimistic unchoke,fopt, can be described as:

fopt =
1

2

(

(topt − treg + twin)) + (topt + twin)
)

xrtopt

.

We can then approximateqslow,fast, as

qslow,fast = min(goptfopt, 1), (4)

where gopt is the average number of optimistic unchokes
that a slow node is receiving from fast nodes5. Note that,
qslow,slow = 1−qslow,fast. We can approximategopt by looking
at the average number of fast and slow peers of a node. We
defines as the peer set size of a node (i.e., the number of peers
to which that node connects and exchanges data with), and we
approximategopt by:

gopt = s
N

fast
l

Nl

xoofast,slow

1

s
Nslow

l

Nl

=
N

fast
l

Nslow
l

xoofast,slow,

where ofast,slow is the fraction of optimistic unchokes from
the fast class that goes to the slow class (as discussed in more

detail below). Here,s
N

fast

l

Nl
ands

Nslow
l

Nl
is the average number

of fast peers and slow peers of a node, respectively.
We now show how to extend this to more than two classes.

Without loss of generality, we assume that the class indicesare
in descending orderof their uploading capacities. As before, we
assume that faster nodes do not experience imperfect clustering
with slower nodes, i.e.,qi,j = 0,∀j > i. Thus, there are no
regular unchokes from a faster node to a slower node. For the
regular unchokes of faster nodes by slower nodes, we can use
the following approximation:

qi,j = min
(

min(gi,jfopt, 1), 1 −

j−1
∑

k=1

qi,k

)

, (5)

whereqi,i = 1−
∑i−1

j=1
qi,j , qi,1 = min(gi,1fopt, 1), andgi,j is

the average number of optimistic unchokes that a classi node

5In cases wheregoptfopt > 1, all the regular unchoking capacity of a slow
node is spent ongopt fast nodes. Although effectively this means that the
fraction of regular unchoking capacity spent on each fast node would be less
thanfopt, this will not affect our results as in our model we are only interested
in qslow,fast.

is receiving from classj nodes, which can be described as:

gi,j = s
N

j
l

Nl

xooj,i

1

s
Ni

l

Nl

=
N

j
l

N i
l

xooj,i.

The idea is that when we consider the regular unchoking
capacity due to imperfect clustering of classi, we assume that
as much as possible of it first goes to the fastest class in the
system, i.e.,min(gi,1fopt, 1). Then, as much as possible of the
remainder goes to the second fastest class, and so on.
Biased Optimistic Unchoking: Although usually modeled
as being uniform among all leechers (as in [3]), optimistic
unchokes are in fact biased in the real world6, with the reason
being that optimistic unchokes are only performed on peers that
are not (currently) unchoked through regular unchokes. Thus,
given qi,j , we can approximateoi,j as:

oi,j =
s

N
j

l

Nl
− xrqi,j

∑h

k=1
(s

Nk
l

Nl
− xrqi,k)

. (6)

Note that, the more perfect is the clustering (due to regular
unchokes), the more biased are the optimistic unchokes. How-
ever, the biasing effect becomes less significant when the peer
set size,s, becomes larger. Here we assume thats is large

enough such thats
N

j

l

Nl
> xrqi,j for all i, j.

The model can now be solved numerically, e.g., using fixed
point iteration.

III. M ODEL VALIDATION AND INSIGHT

In this section, we validate the model proposed in Section
II using simulation. (Validation of the model using real-world
experiments is an ongoing effort.) We also illustrate how our
model can be used to obtain insight into the BT system. We
use the BT simulator provided by [14] (also used by other
researchers in the community), with modifications described
below. The simulator is event-based and simulates the chunk
exchanging mechanism of the BT protocol.

We extended the simulator to support: (a) nodes staying
around as seeds, (b) node arrivals, and (c) nodes acting as free-
riders (i.e., nodes that do not unchoke and leave the system
upon download completion). The seeding times and node
inter-arrival times follow an exponential distribution. We also
modified the original seeding scheme to be more uniform, in-
line with the current BT protocol. Moreover, we also fixed a bug
in the original simulator that affected the selection of peers for
unchoking - the original simulator incorrectly implemented that
part of the BT protocol, which resulted in a higher probability
of unchoking previously unchoked peers.

Unless specified otherwise, the following results correspond
to the simulation settings in Table I. The system starts with
1 origin seed with a1000 kbps upload capacity, that stays in
the system for12 hours. Nodes arrive to the system from a
Poisson process with a rateλ and are assigned to a particular
class according to a given distribution. The classes differin
their upload and download capacities. We consider the steady

6We also observe this in our simulations.



TABLE I
SETTINGS

Filesize (m) 500 MB (2000 Chunks, 256 KB each)
Avg node inter-arrival (1

λ
) 1 min

Peer Set Size (s) 80
# Leecher Unchokes 4 Reg. (xt) + 2 Opt. (xo)

# Seed Unchokes 6
Unchoke Re-eval. Interval Reg. (treg): 5 sec; Opt. (topt): 30 sec
Re-eval. History (twin) 20 sec

TABLE II
CLASS DESCRIPTION(TWO CONTRIBUTING CLASSES)

Class Download Capacity Upload Capacity

Fast 5000kbps 512kbps
Slow 5000kbps 128kbps

state behavior of the system. Each simulation run corresponds
to 63 hours, where we only compute our results over the last
48 hours. (We check our results to make sure the system passes
the ramp up stage during the first15 hours.)

The model-based results are obtained numerically, using a
fixed point iteration method. These solutions converge quickly,
even for multiple class cases.

We note that a single simulation run (i.e., one point in a
figure) takes more than 10 hours on a reasonable Core 2 Duo
machine while our model can compute the entire figure in less
than1 sec. Thus, our model provides a much faster way (than
simulation) of exploring system parameters and design choices.

In what follows, “Model-PC” refers to the basic model,
i.e., described by Equation 2, and “Model-IC” refers to our
final model with imperfect clustering and biased optimistic
unchoking enhancements, i.e., described by Equation 3.
Experiment 1: Two Leecher Classes.We consider a system
with two classes and bandwidth settings given in Table II and
no seeding time. Figure 2 depicts the resulting download times
as a function of the percentage of node arrivals corresponding
to the fast class, where we observe the following. Model-IC
is much more accurate in predicting the download time of
the slow class. For example, when80% of the arriving nodes
are from the fast class, Model-PC’s prediction for the slow
class download time differs from simulation by≈ 22% while
Model-IC’s prediction differs by less than1%. The error in
Model-PC is mainly due to neglecting imperfect clustering.
This can be observed from there being a larger error with
a higher percentage of fast nodes and from Figure 3 which
depicts the fraction of the regular unchoking capacity thatis
not distributed to nodes of the same class, obtained from the
simulation and from Model-IC. As can be seen, slow nodes
have a higher fraction of imperfect clustering when there isa
higher percentage of fast nodes among the arrivals.

Model-IC can predict thetrend in the imperfect clustering of
slow nodes; however, it under-estimates the number, which can
be explained as follows. While in the model we assumed that
fast nodes have perfect clustering, simulation results indicate
that some degree of imperfect clustering exists among fast
nodes as well. Thus, the under-estimation of imperfect cluster-
ing of slow nodes is due to the imperfect clustering of fast nodes
- the regular unchokes from fast nodes to slow nodes further
degrade clustering of slow nodes, similarly to the degradation

TABLE III
CLASS DESCRIPTION(WITH FREE-RIDERS)

Class Fraction Download Capacity Upload Capacity

Contributing 80% 5000kbps 512kbps
Free-Riders 20% 5000kbps 0

due to fast nodes’ optimistic unchokes of slow nodes. To correct
for the phenomenon, we can use a similar derivation to the one
given in Section II7.
Experiment 2: Three Leecher Classes.Next, we look at a
system with three classes, where we add a “Super-Fast” class,
with upload (download) capacity of1000kbps (5000kbps), to
the classes given in Table II (again, with no seeding time
at first). Figure 4 depicts the average download times of the
three classes as a function of the percentage of super-fast node
arrivals (with the remainder of arrivals split evenly between
the fast and slow classes). Observe that Model-IC predicts the
download times quite accurately, while Model-PC results ina
larger error - e.g., when70% of the arrivals are from the super-
fast class, Model-PC has an error of≈ 20% and≈ 16% for the
slow and the fast class, respectively, while the corresponding
errors in Model-IC are only≈ 2% and≈ 5%. This is mainly
due to neglecting of imperfect clustering in Model-PC.

To further illustrate the difference between Model-IC and
Model-PC, in Figure 5 we depict the average download times
of the three classes as a function of the average seeding time,
with 70%, 15%, and15% of the arrivals corresponding to super-
fast, fast, and slow classes, respectively. From the results, we
observe that Model-IC can predict the download times of all
classes quite well. Again, we note that in this figure, Model-PC
would degenerate to the model in [3], at0 seeding time, but
since the model in [3] does not include seeding behavior, its
prediction would not change as the seeding time is increased.
Experiment 3: Free-Riders. We now focus on free-riders.
For clarity of presentation, we look at the case with one
contributing leecher class (CL) and one free-riders class (FR),
with bandwidth setting given in Table III. Figure 6 depicts
the average download times of the contributing leechers and
free-riders as a function of the fraction of percentage of free-
riders in the arriving nodes, where contributing nodes havean
average seeding time of120 min. We observe the following.
Both models can predict the download times of contributing
leechers and free-riders quite accurately. The existence of free-
riders slows down contributing leechers. Thus, it is important
to include free-riders in the model. Moreover, improvements
in contributing leechers’ download times can be achieved by
discouraging free-riders, e.g., if we can reduce the percentage
of free-riders from20% to 5%, we can speed up the downloads
of contributing leechers by more than50%. Thus, it is worth
considering and modeling schemes which discourage free-
riding, as discussed in Section IV.

Figure 7 depicts the average download times of contributing
leechers and free-riders as a function of the contributing nodes’

7Although the degree of imperfect clustering is under-estimated, the down-
load time prediction is accurate, e.g., because the loss of regular unchoking
capacity within the slow class is compensated by the fast nodes’ regular
unchoking capacity given to the slow class.
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average seeding time, with bandwidth settings given in Table
III. Observe that both models can predict download times quite
well when the seeding time is relatively high. Since the seed
unchokes are modeled fairly accurately in both models and
since the effect of seeding capacities dominates as that capacity
grows, Model-PC exhibits similar accuracy to Model-IC at
higher seeding capacity. Model-IC is more accurate when the
seeding time is shorter, e.g., with no seeding time, Model-PC’s
prediction of free-riders’ download time differs from thatof
simulation by≈ 16%, whereas as that of Model-IC’s only
differs by ≈ 2%. As there is only one contributing class, the
regular unchokes are close to perfect (as also observed in the
simulations); thus, the improvements in Model-IC are due tous
modeling the bias in optimistic unchokes. Moreover, the free-
riders’ download time is quite sensitive to the seeding time,
e.g., the download times of free-riders is reduced by≈ 54%
when the average seeding time of contributing nodes increases
from 0 to 30 min, while the download time of contributing
nodes is only reduced by≈ 18%. This suggests the need
for re-considering appropriate use of seeding capacity, e.g., as
modeled in Section IV.

In Figures 6 and 7, the model in [3] would give the same
results as Model-PC, at the points where the fraction of free-
riders and the seeding time are both0. However, it would not
be difficult include free riders in the model in [3], similar to
the approach we have taken in Section II.
Experiment 4: Peer Set Size.Figure 8 depicts the download
times of free-riders and contributing leechers as a function
of a node’s peer set size8. We consider the case with no
seeding and bandwidth settings given in Table III. Observe
that the peer set size has a significant effect on free-riders’
download time (especially when it is small), while having little
or no effect on contributing leechers. The free-riders download
faster when the peer set size is smaller, e.g., the free-riders’
download time is reduced by≈ 40% when the peer set size is
reduced from80 to 20. This occurs because under smaller peer
set sizes, biased optimistic unchoking favors free-ridersmore.
Model-IC captures this behavior well through biased optimistic
unchoking. Model-PC does not consider peer set sizes, and thus

8Here we vary the peer set size of all nodes while only the free-riders’ peer
set size is varied in the large view exploit experiment below.



in Figure 8 it results in an upper bound for Model-IC as the
peer set size approaches infinity.

IV. A PPLICATIONS

In this section we demonstrate the extensibility of our model
by explicitly modeling a well known exploit of BT and a
recently proposed fix for it9.
Modeling an Exploit: We first show how to incorporate the
so-calledlarge view exploit[12], [13] into our model. The basic
idea behind the large view exploit is for free-riders to increase
their peer set size in order to increase the probability of being
optimistically unchoked by a leecher or picked by a seed’s
unchoking mechanism. Theoretically, a free-rider can increase
the download rate linearly with the increase in the peer set
size. We can adapt both models to include large view exploit
behavior of free-riders; due to lack of space, we illustratethe
adaptation of Model-PC only. We do this by adjusting Equation
(1) as follows. Again, let classh be the free-riding class with
download ratedh. And, let NLV

l be the number of leechers in
steady state under the large view exploit scheme. Specifically,
we setNLV

l =
∑h−1

j=1
N i

l +αNh
l , whereα is a function of the

free-riders’ desired peer set size. In the remainder of thispaper,
we setα to be the ratio of free-riders’ desired peer set size to
the peer set size of contributing leechers. Then, for contributing
leecher classes,1 ≤ i ≤ h − 1, we have:

di = ui xr

x
+

∑h

j=1
N

j
l uj xo

x

NLV
l

+

∑h

j=1
N j

s uj

NLV
l

,

while dh = α

∑h

j=1
N

j
l uj xo

x

NLV
l

+ α

∑h

j=1
N j

s uj

NLV
l

.

We validate the resulting model in Figure 9 where we depict the
average download rate of contributing leechers and free-riders,
as a function of increasing free-riders’ peer set size (due to the
large view exploit). We consider the bandwidth setting in Table
III, with contributing nodes having an average seeding timeof
60 min, and where contributing leechers and seeds strive for
a peer set of size80 in all cases. We increase the average
arrival rate to2/min, thus sufficiently increasing the average
number of nodes in the system for the large view exploit to
work. Observe that free-riders can improve their performance
(essentially linearly) through a larger peer set size, i.e., the
large view exploit works. When the free-riders’ peer set sizeis
sufficiently large (e.g., larger than≈ 170 in this case), they can
do better than contributing leechers. Overall, our model make
accurate predictions in the case of large view exploits.
Modeling an Exploit Fix: Real-world measurements, such as
[2], [8], [9], [10], suggest that there exists a significant number
of seeds in most torrents. And, as shown in Section III: (a)
performance of free-riders is quite sensitive to seeding capacity,
and (b) encouraging free-riders to contribute their capacity can
improve overall system performance. Thus, it is important to
consider alternative approaches to distributing seeding capacity.

9The protocol change is used as an example; and other protocol variations
can be easily incorporated.

An approach which mitigates the large view exploit through
alternative schemes for distribution of seeding capacity is given
in [7]. We, again, illustrate extensibility and flexibilityof our
model by incorporating these schemes.

We first give a brief description of the schemes proposed in
[7]. These schemes are motivated by observing that contributing
leechers download slower at the beginning (when they have too
few chunks to effectively participate in TFT) and at the end
(when they only need very few chunks). The approach then is
to prioritize the use of seeding capacity to those portions of the
download process where it is most needed. The goal there is to
(a) help contributing leechers while (b) hurting free-riders as
they depend heavily on seeding capacity (as shown in Section
III). The specifics of the schemes in [7] are as follows.
Sort-based (N ): where a seed sorts its requesting neighbors
based on the number of chunks they have and then unchokes
the N which are furthest from the middle (based on sorting
order). (Below we use the BT default ofN = 6).
Threshold-based (K,N ): Threshold-based schemes are sim-
ilar, except that theN chosen are from those which have a
certain percentage of the total number of chunks, e.g., in the
experiments below we unchoke those nodes which have either
[0..K∗100

2
]% or [(100 − K∗100

2
)..100]% of the chunks.

Threshold Optimization: One parameter which can have a
significant effect on performance is the thresholdK. Intuitively,
the smaller the value ofK, the more aggressive is the degrada-
tion of free-riders’ performance, but the greater is the danger
of degrading contributing leechers’ performance as well.

To model the effect ofK, we conceptually divide the file
with m chunks into two parts, ofma and mb chunks each,
wherema = mK andmb = m(1 − K). The download of the
part of sizema is assisted by seeds while the part of sizemb

is downloaded without assistance from seeding capacity. We
definedi

a as the download rate corresponding to the sub-file of
size ma and di

b as the download rate for the sub-file of size
mb. We also define the corresponding download times asT i

la

and T i
lb, whereT i

la = ma

di
a

and T i
lb = mb

di
b

. The total download

time, T i
l , for the entire file is thenT i

la + T i
lb and the average

download rate for a classi node is m
T i

l

. We then have:

di
a =

∑h

j=1
qj,iN

j
l uj xr

x

N i
l

+

∑h

j=1
oj,iN

j
l uj xo

x

N i
l

+

∑h

j=1
N j

s uj

Nla

anddi
b =

∑h

j=1
qj,iN

j
l uj xr

x

N i
l

+

∑h

j=1
oj,iN

j
l uj xo

x

N i
l

,

whereNla =
∑h

i=1
N i

la andN i
la = λiT i

la, i.e., heredi
a benefits

from the seeding capacity and that seeding capacity is shared
by all leechers within the threshold (Nla) while di

b only benefits
from capacity due to regular and optimistic unchokes.

Figures 10 and 11 depict the download times of free-riders
and contributing leechers, respectively, as a function ofK,
with the bandwidth settings given in Table III and the average
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seed time of60 min. Here, we observe that our models are
reasonably accurate in predicting the download time, with
Model-IC again being more accurate, particularly in predicting
the download time of free-riders.

A number of metrics can be used to determine an optimal10

value of K, e.g., one may want to slow down free-riders as
much as possible. However, doing so may slow down the
contributing leechers quite a bit, while at the same time wasting
seeding capacity. Another possibility would be to optimize
some notion of fairness, e.g., using fairness metrics in [3].
Another optimization objective might be to slow down free-
riders as much as possible while not hurting the contributing
leechers. We focus on refining this objective below.

When we examine Figures 10 and 11, we observe that there
exists a knee in the threshold curves, such that when the
threshold is larger than this value, reducing the thresholdhas
no effect on contributing leechers while free-riders continue to
be slowed down to some degree. Setting the threshold to this
knee would be one approach to slowing down the free-riders
as much as possible while not hurting contributing leechers.

This knee is actually the point whereT i
la ≈ 0,∀i in our

model. Specifically, it is the case whereK is small enough
for the seeding capacity to overwhelm the downloading of the
ma chunks. Reducing the threshold to a smaller value would
not result in additional improvements inT i

la (as well asT i
l ).

The downloading of the file will then be similar to not having
seeding capacity and with a file of sizemb. Thus, we observe
that with further decrease inK, (i.e., increase inmb), the
download time increases linearly.

We can determine the threshold value at this knee,K ′, from
our model as follows. WhenT i

la ≈ 0, di
a∀i is mainly dominated

by the seeding capacity, we then have:

di
a ≈

∑h

j=1
N j

s uj

Nla

=
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N j
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Since, at the knee, we have the samedi
a for all i:

K ′ ≈ min
(
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λjm

, 1
)

= min
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)

10Such an optimization is not considered in [7]. To illustrate the utility of
our model, here we explore an optimal threshold setting using the model.

= min
(

∑h

j=1
pjT j

s uj

m
, 1

)

.

Figure 12 depicts the optimal threshold found using this
method, on a system with bandwidth settings given in Table III.
We illustrate cases with10%, 20%, 30%, and40% of free-riding
nodes in the arrivals. We observe that the optimal threshold
(based on our model) increases linearly with the seeding time
and smaller free-rider populations (higher contributing leecher
populations) require a larger threshold. This occurs because
larger thresholds are required with larger seeding capacities
(i.e., longer seeding times or more contributing nodes) so that
the seeding capacity is not wasted - such waste results in
degraded contributing nodes’ performance.

TABLE IV
DOWNLOAD TIME (MIN ) USING THE OPT. THRESHOLD (CL)

Average Seed Time (min)
20 40 60 80 100 120

Opt (Model-IC) 147 127 107 87 67 47
Opt (Sim) 151 133 115 96 78 59

We now focus on the case of having20% of the arrivals
being free-riders. Figure 13 and Table IV give the download
times of free-riders and contributing nodes, respectively- these
are computed using our model as well as simulation (where
we use the optimal threshold computed from the model in the
simulation settings). Addition simulation results for theoriginal
BT protocol and the sort-based scheme (described above) are
also included for comparison11. In the simulation results, our
optimal threshold setting turns out to be a bit too aggressive,
as it slows down the contributing nodes as well. However, this
slow down of the contributing nodes is much less sensitive than
that of the free-riders when aggressive thresholds are used.

Moreover, in Figures 10 and 11, the optimal threshold value
there would be larger than the one obtained from the model.
Thus, we relax our threshold, i.e., we set the threshold to
K ′ + θ (instead ofK ′), where θ is the relaxation factor. In
Figure 13 we also show the simulation results obtained using
this relaxed value withθ = 0.15. Interestingly, the simulation
download time using the relaxed value is very close to the
download time of the sort-based approach. It can be explained
by the fact that the underlying idea of the sort approach is
quite similar. That is, this approach attempts to slow down
free-riders as much as possible while not wasting seeding

11We do not include these for contributing leechers as those results are nearly
identical to the Model-IC results.



capacity - i.e., sorting is similar to finding the smallest value
of the threshold which can still utilize the upload capacityof
the seeds. We note that the insights match the observations
made from simulation experiments given in [7], whereas the
computation time reduces to seconds from hours. Thus, our
model provides a fast, clean and flexible approach to explore
the design space of BT variations.

V. RELATED WORK

One of the earlier BT modeling efforts [8] considers BT
in two phases - initial transient phase and steady state - and
propose the use of a simple Markov model (to study steady
state performance) which describes the system’s state using the
number of leechers and seeds in the system. A number of works
followed that effort, including [15] (looking at stabilityof BT),
[9] (looking at BT’s lifetime), and [6] (looking at a somewhat
more detailed Markov model). A number of papers have also
modeled BT-like systems, e.g., [16] models coupon replication
systems and considers the make-span of a batch of nodes. A
nice model of upload capacity of BT-like systems (under the
assumption of it being the only constraint) is given [17]; this
work also focuses on optimal make-span. However, all these
works modelhomogeneousBT systems.

Since real-world torrents are typically heterogeneous, here
we focus on modelingheterogeneousBT systems. Other models
of heterogeneous systems are given in [4] and [3]. Liao et al.[4]
provide a detailed model of BT with2 heterogeneous classes of
nodes, but for aflash crowdscenario. They consider the nodes’
make-span (where all nodes join the system simultaneously)
and do not include seeds. In contrast, our work focuses on
steady state behavior (with a simpler model), allows for node
arrivals as well as seeding, and allows an arbitrary number
of node classes. Fan et al. [3] use a simple heterogeneous
model for evaluating the tradeoff between performance and
fairness and focus on illustrating that the number of optimistic
unchokes and regular unchokes correspond to important tuning
parameters, for trading off fairness and performance. We use
a similar model but include seeding and free-riding behavior,
which have a significant effect on BT’s performance. Also, our
validation results (in Section III) indicate that it is important to
account for BT’simperfect clusteringcharacteristics as well as
a bias in the optimistic unchokingmechanism, both of which
are also not considered in the model of [3].

We now describe several other efforts which do not focus
on analytical models of BT but rather provide evidence and
motivation for the modeling choices made in our work. Legout
et.al [2] provide measurement studies of real BT torrents and
suggest that the rarest first chunk strategy results in high
diversity of chunks in the system - this provides evidence for
use of simpler models, like ours, i.e., that it might be reasonable
not to model efficiency of chunk exchange between peers (e.g.,
as is done in [6], [8], [15]). In [11], Legout et al. suggest that
nodes with the same upload capacity tend to cluster with nodes
of the same class. However, their results indicate (based onflash
crowd arrivals), that clustering is still far from perfect (even in
their closed system). Existence of imperfect clustering (or as

they call it, imperfect tit-for-tat matching) is also argued in
[5]. Thus, these works ([5], [11]) support the need for explicit
modeling of imperfect clustering, which is done in our model.
Lastly, [14] studies BT through simulations under flash crowds.
We adapt their simulator for validation purposes (see Section
III). Their study indicates that BT can achieve high upload
bandwidth utilization, which supports our model’s assumption
of upload capacity being the bottleneck.

VI. CONCLUSIONS

We proposed a simple yet accurate and extensible model
for BitTorrent. Our model includes (measured) characteristics
of the protocol that have previously been left unmodeled, and
we demonstrate the importance of including the characteristics
both via our model as well as simulations. Our validation study
indicates that our model is quite accurate in predicting BT
performance. (We are also expanding our validation efforts
through PlanetLab experiments.) Our modeling approach can
aid in understanding of BT, which can in turn lead to im-
provements in parameter setting as well as protocol design.
Our model can easily be used to answer other “what if”
type questions, e.g., how the number of regular vs. optimistic
unchokes affects performance (as studied in [3]), as well as
effects due to different bandwidth settings, seeding times, re-
evaluation intervals, history window sizes, and so on (as these
are parameters in our model). Furthermore, our model can
easily be extended to study protocol changes. Thus, our model
can be used by the community to gain insights on the working
of BT and help design improvements.
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