
Improving BitTorrent: A Simple Approach

Alix L.H. Chow
Univ. of Southern California

Leana Golubchik
Univ. of Southern California

Vishal Misra
Columbia University

Abstract
Measurement studies have shown that real world BitTor-
rent (BT) systems exhibit high seed capacity. Thus, ap-
propriate use of seed capacity can have a significant ef-
fect on BT performance. Moreover, seed capacity is also
easily exploitable by free-riders, and such free-riding
clients exist out in the wild today. In this paper, we pro-
pose a simple and scalable approach that makes more in-
telligent use of seed capacity by hurting free-riders, with-
out their explicit identification, while improving the per-
formance of contributing nodes. The effectiveness of our
approach is studied via extensive simulations.

1 Introduction
An important thread in the design and evaluation of P2P
systems has been the provision of incentives for nodes to
contribute their resources to the P2P system. An inter-
esting aspect of BitTorrent (BT) [4], that makes it stand
out in that respect, is the “forcing” of peers to share their
resourcewhile attempting to complete their downloads,
i.e., through the tit-for-tat [4] mechanism – this is done
“locally” and without the need for centralized or dis-
tributed mechanisms for implementing an incentive sys-
tem. Although this works nicely, there are still oppor-
tunities forfree-riders(i.e., peers who do not contribute
resources) to download files (e.g., [8, 13, 16]). These op-
portunities exist in two forms: (1) capacity provided by
leechers(nodes who have not completed their download
yet) through the optimistic unchoking mechanism (used
by leechers to probe for new downloading opportunities),
and (2) capacity provided byseeds(nodes that have com-
pleted their download but continue to contribute their up-
loading capacity to the system).

We believe that sufficient evidence exists to indicate
that the following two statements are true: (1) opportu-
nities for free-riding hurt the system’s performance, and
(2) a non-negligible number of nodes in BT stay around
as seeds for some time after completing their downloads.
That is, many users would only contribute resources if
their performance was quite poor. And, the capacity pro-
vided by the seeds can significantly contribute to provid-
ing reasonable performance for the free-riders. There-
fore, we believe that the behavior of seeds is an important

factor in facilitating free-riding. And, to the best of our
knowledge, there is no other study that explores this.

Moreover, as illustrated later in the paper, a leecher’s
progress through the file downloading process is not uni-
form. The progress is slower at the beginning, when hav-
ing few chunks prevents a node from being selected for
uploads through tit-for-tat. It can also be slower at the
end, when it is more difficult to find peers with the few
remaining pieces of needed data (although provisions ex-
ist to aid with that). In both cases, seeds can contribute
significantly, as they are no longer playing the tit-for-tat
game, and they have all the data pieces. Thus, intuitively,
appropriate use of seeding capacity can lead to overall
system performance improvements.

Given this, our main idea in this work is to explore
alternative approaches for seeds to contribute their up-
load capacity to the system, with the goal of degrad-
ing free-rider performance while (if possible) improving
other leechers’ performance. The contributions of this
paper are as follows:

• We propose several simple approaches to modify-
ing the seeds’ uploading algorithms, where the goal
is to (a) discourage free-riding behavior and at the
same time (b) improve (or at least not degrade) the
performance of other leechers. The details of these
schemes are given in Section 3.

• We show that simple schemes can provide signif-
icantly poorer performance to free-riders while at
the same time improving (or not hurting) the other
leechers’ performance. We do this through a de-
tailed simulation study in Section 4. The poor free-
rider performance should serve as a deterrent, which
will encourage free-riders to contribute resources.

2 Motivation
In BT, nodes join the system (after receiving “start-
up” information from the tracker) and begin requesting
chunks of data from their neighbors. Nodes that do not
have a complete copy of the file are termed “leechers”
and those that do are termed “seeds”. Nodes that do
not contribute their upload capacities are termed “free-
riders”. Each leecheri picks a number (typically 5) of
nodes to whose requests it will respond with an upload of

an appropriate chunk, i.e., these nodes are “unchoked”.
A subset of these nodes (typically 4) are picked based
on the tit-for-tat mechanism, i.e., those neighbors that
have provided the best service (in terms of download
rate) to nodei recently. And a subset (typically 1) is
picked randomly, i.e., they are “optimistically unchoked”
(to explore better neighbors). Seeds also pick a subset of
neighbors (typically 5), and upload data to them. In past
versions of BT, seeds chose neighbors that could down-
load data from them the fastest. In a more recent protocol
(as described in [10]) the seeding capacity is distributed
more uniformly to the neighboring peers. These choices
are re-evaluated periodically.

A number of research studies (e.g., [8, 14, 11, 12, 16]),
have focused on the fairness, robustness, and perfor-
mance characteristics of BT, mainly resulting from the
tit-for-tat mechanism. However, very few studies have
considered the effects of seeding behavior. Given typical
user behavior and the design of most BT clients, seeding
is a typical behavior in the BT system. Many users may
leave their clients running after completing downloads,
possibly due to users not monitoring their clients during
the download. Also, some sharing communities enforce
a download/upload ratio to enable seeding. Real-world
measurements such as (e.g. [1, 3, 6, 7, 10, 15]) also sug-
gest that there exist a significant number of seeds in most
torrents; they suggest that there is a large variety of seed-
ing capacity in real-world torrents – some of the torrents
measured have twice as many seeds as they do leechers.

Availability of seeding capacity can have a significant
effect on BT, e.g., it can compensate for the asymmetric
bandwidth scenarios in the Internet. At the same time,
it can degrade the fairness and incentive properties of the
system, as free-riders can finish their downloads with rea-
sonable performance by relying on the seeds. (Not only
do they not contribute to the systems’ upload capacity,
they also effectively reduce the performance gains that
seeds provide.) Thus, intuitively, appropriate use of seed-
ing capacity can have a significant effect on performance
of both, contributing leechers as well as free-riders.

Existing studies on seeding behavior (e.g., [2, 9])
mainly concentrate on the initial seeding behavior, such
as reducing sending of duplicate data. To the best of our
knowledge, no studies focus on how to better utilize the
service capacity provided by the seeds. In this paper, we
focus on precisely that. Specifically, we ask a simple
question –how can the seeding capacity be better uti-
lized to discourage free-riding behavior and at the same
time improve performance of contributing leechers.We
now give a motivating example to illustrate opportunities
for “closing a loop-hole” in BT which might encourage
free-riding behavior.

Motivating Example
Consider the following example, where we have two
classes of nodes and each class is defined by its upload
capacity and download capacity. Class1 nodes are con-
tributing nodes, and Class2 nodes are free-riders (with
bandwidth settings given in Table 1). Figure 1 depicts
the download times of each class as a function of av-
erage seeding time with20% of users being free-riders
and with no free-riders. These results are obtained by
simulation (refer to Section 4) with settings given in Ta-
ble 2. The20% free-riders case illustrates that the av-
erage download time of free-riders is more sensitive to
the seeding time than that of the contributing leechers.
For example, with no seeding time, the average down-
load time is162.33 mins and632.07 mins for contribut-
ing leechers and free-riders, respectively. When the av-
erage seeding time is increased to60 mins, the average
download time is reduced to101.89 mins (≈ 37% speed
up) for contributing leechers and172.63 mins (≈ 73%
speed up) for free-riders. This suggests that alternative
approaches to distributing seeds’ upload capacity might
lead to significant effects on free-riders’ performance
while possibly improving (or at least not hurting) the per-
formance of contributing leechers. Moreover, if we de-
grade free-riders’ performance sufficiently, many of them
might choose to become contributing leechers, i.e., in or-
der to obtain reasonable performance. This would result
in an improved overall system performance – e.g., with
an average seeding time of60 mins (in our example), the
average download time can decrease from101.89 mins
to 69.84 mins (≈ 31% speed up), if free-riders contribute
resources similarly to other users.

Table 1: Class Description (example)
Class Fraction Download Capacity Upload Capacity

1 (Contributing) 80% 5000kbps 512kbps
2 (Free-Riders) 20% 5000kbps 0kbps

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 D
ow

nl
oa

d
T

im
e

(m
in

)

Average Seed Time (min)

5000kbps/512kbps (No Free-Riders)

5000kbps/512kbps (20% Free-Riders)

Free-Riders (20% Free-Riders)

Figure 1: Download Time vs Seed Time (2 Classes)

3 Proposed Approach
We explore the following simple approach to modifying
how seeds distribute their upload capacity to leechers.

Currently, seeds unchoke leechers regardless of how far
along they are in their downloading process. Measure-
ments and simulations indicate that the downloading rate
of leechers is the slowest in two regimes: (i) right at the
beginning when they don’t have enough chunks to par-
ticipate effectively in tit-for-tat with other peers, and (ii)
right at the end when finding peers with the missing few
chunks becomes difficult. (Possible causes of this are ex-
plored in Section 5.) In both situations seeds can help
since they have no requirement for tit-for-tat and they
have all the chunks to supply the last few pieces.

Our simple insight is toprioritize the use of seeding
capacity to only certain portions of a file’s downloading
process. For example, we can unchoke only those leech-
ers who are at the beginning (i.e., have a few chunks)
and those at the end (i.e., have most of the chunks) of
their download process. (Below we describe several ap-
proaches based on this idea.)

We can motivate this as follows. Consider a plot of
the chunk rate (i.e., the rate at which a node acquires the
next chunk) as a function of the number of chunks that
node has – this is depicted in Figure 2 which is obtained
through simulation (refer to Section 4). Here we plot the
the chunk rate behavior of contributing leechers (class1
in Section 2) and free-riders (class2 in Section 2), using
the original BT seeding scheme as well as our modified
scheme in which we prioritize leechers that are towards
the two ends of the process. Both, contributing leechers
and free-riders experience an increase in seeding capacity
at the end points (where we shifted this capacity) and a
decrease in the middle portion. However, the free-riders
have a far greater dependence on seeds than contribut-
ing leechers. Thus, the free-riders get hurt more by be-
ing “banished” from using the seeds. The contributing
leechers on the other hand benefit by ramping up fast and
being able to participate in tit-for-tat earlier than in the
original BT scheme. In the example of Figure 2, the av-
erage download time of free-riders is degraded by≈ 66%
while contributing leechers experience a small improve-
ment. Armed with this intuition, we now give details of
the specific schemes explored in the remainder of this pa-
per. These are just samples of possible approaches. Our
goal in this paper is to evaluate the potential of this gen-
eral approach (refer to Section 4) rather than to exhaus-
tively consider all possible similar schemes. We note first
that our approachdoes notrequire identification of free-
riders. And, it is a simple approach to implement and
deploy in the current BT system.
Sort-based (N): In sort-based schemes, a seed sorts
the requesting neighbors based on the number of chunks
each has. It then unchokesN (we use the BT default of
N = 5) of them based on the sorting order. Motivated

by the need to help end points (as explained above), we
choose theN that are furthest from the middle (i.e., hav-
ing half of all the chunks).
Threshold-based (K, N): Threshold-based schemes are
similar, except that we choose to unchokeN request-
ing neighbors that only haveK% of the total number of
chunks. Specially, we unchoke nodes that have either
[0..K

2
]% or [(100 −

K

2
)..100%] of the chunks.

A number of variations on this schemes are possible;
for clarity of exposition we only focus on the above men-
tioned one.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
C

hu
nk

 R
at

e
(#

ch
un

k/
se

c)
Number of Chunks Downloaded

5000kbps/512kbps (Original)
Free-Riders (Original)

5000kbps/512kbps (Sort)
Free-Riders (Sort)

Figure 2: Example Chunk Rate (2 Classes)

4 Simulation-based Study
We use the BT simulator provided by [2], with modifi-
cations described below. This is an event-based simu-
lator which simulates the chunk exchanging mechanism
in the BT protocol. In [2], the authors use this simula-
tor to study the existing BT protocol behavior, including
initial seeding issues as well as download rate character-
istics under flash crowd conditions (i.e., when all nodes
arrive at the beginning of the simulation). They also as-
sume that nodes do not stay around as seeds, once the
download completes.

To explore the approach proposed in Section 3, we ex-
tended the simulator to support: (a) nodes staying around
as seed with different seeding approaches as proposed in
Section 3, (b) continuous node arrivals, and (c) nodes act-
ing as free-riders (i.e., nodes that do not unchoke neigh-
bors and leave the system immediately upon download
completion). The seeding times and node inter-arrival
times follow an exponential distribution. We also modi-
fied the original seeding scheme to be more uniform, in-
line with the current BT protocol (i.e., instead of upload-
ing to the fastest peers as was done in an older version of
BT).

We experimented with a number of seeding ap-
proaches. The results presented below use the follow-
ing ones. Original refers to the current BT uploading
scheme.Ideal refers to the scheme where the seeds can

identify which of their neighbors are contributing leech-
ers and which are free-riders, and they only upload to
contributing neighbors. We only implement this scheme
in the simulator as a baseline for evaluating other ap-
proaches (i.e., this gives us an idea of a possible bound
on the improvements we can offer).Sort refers to the
sort-based scheme (see Section 3) where the5 neighbors
furthest away (in either direction) from having half of the
chunks are unchoked.T 20%(10% to each end) refers to
the threshold-based scheme (see Section 3) where the5
neighbors are chosen for unchoking, using the same al-
gorithm as “original”, except that the set of neighbors
that quality for an unchoking is restricted to those that
have at most the10% of the chunks or at least90% of the
chunks.T 40%(20% to each end) is similar toT 20%but
with the threshold size being doubled.

Unless specified otherwise, the following results cor-
respond to the settings in Table 2. The system starts with
1 origin seed with 1000kbps upload capacity, which stays
in the system for the duration of the simulation. Nodes
arrive to the system from a Poisson process with a rate
λ, and are assigned to a particular class according to a
given distribution. The classes differ in their upload and
download capacities. To have a fair comparison between
approaches, we use the same node arrival sequence for
each simulation with a given arrival rate and class dis-
tribution. We look at the steady state behavior of the
system. Each simulation run corresponds to 30 hours,
and we only compute our results over the last 24 hours.
(We check the results to make sure the system passes the
“ramp up” stage during the first 6 hours.) We performed a
comprehensive study, exploring a variety of parameters.
Due to lack of space, we only give representative results;
other results are qualitatively similar.

Table 2: Simulation Settings
Filesize 500 MB (2000 Chunks, 256KB each)

Simulation Time 24 hours (+ 6 hours warmup time)
Avg node inter-arrival time (1

λ
) 1 min

Peer Set Size 80
Leecher Unchokings 4 Regular + 1 Optimistic

Seed Unchokings 5

Table 3: Class Description (simulation)
Class Fraction Download Capacity Upload Capacity
Slow 40% 1500kbps 128kbps
Fast 40% 5000kbps 512kbps

Free-Riders 20% 1500kbps 0kbps

4.1 Effect of seeding approaches
We consider the effects of different seeding approaches
(described above) with class settings given in Table 3.
These settings are chosen to be representative of the ser-
vices provided by commercial broadband ISPs, e.g., they
are similar to those provided by local ISPs in Southern
California. Figure 3 depicts the download times of dif-

ferent node classes, with several average seeding times,
under different seeding schemes. From these results, we
observe the following:

• Under “medium” seeding capacities, sort-based
scheme do a good job of slowing down free-riders
while having a relatively smaller effect on contribut-
ing leechers. For instance, when the average seed
time is120 mins, free-riders have an average down-
load time of263 mins under the original scheme and
it is increased to433 mins (≈ 65% slow down) by
using the Sort scheme. Under the same settings, the
download time for the slow class is reduced from
215 mins under the original scheme to209 mins
(≈ 3% speed up) in the Sort scheme (the fast class
is less sensitive to our choice of strategies since it
relies on tit-for-tat more than seeds).

• Threshold-based approaches can slow down the
free-riders more than sort-based schemes. However,
they also have more of a detrimental effect on the
contributing leechers – this becomes more critical
as the seeding capacity increases since the threshold
ends up wasting the seeds capacity. For instance,
when the average seed time is120 mins, the aver-
age download time for the free-riders is increased
to 683 mins (≈ 160% slow down) by using the
T 20%scheme. Under the same settings, the down-
load time for the slow class and the fast class are
slowed down by≈ 19% and≈ 43%, respectively.

 0

 200

 400

 600

 800

 1000

 1200

A
ve

ra
ge

 D
ow

nl
oa

d
T

im
e

(m
in

s)

60 mins average seed time 120 mins average seed time

1500kbps/128kbps
5000kbps/512kbps
Free-Riders

Original
Ideal

Sort
T 20%

T 40% Original
Ideal

Sort
T 20%

T 40%

Figure 3: Average Download Time (3 Classes)

4.2 Increasing peer set size (large view exploit)
Interesting studies of free-rider behavior, in the context
of the “large view exploit”, are given in [12, 16]. The ba-
sic idea is for free-riders to increase their peer set size, to
increase the probability of being optimistically unchoked
by a leecher or picked by a seed’s unchoking mechanism.
Theoretically, a free-rider can increase the download rate
linearly with the increase in the peer set size.

We experiment with adding the large view exploit to
our simulations in order to illustrate its effect on our

schemes. For ease of illustration, we present our results
using the settings in Table 1 with an average seeding time
of 60 mins. We increase the average arrival rate to 2 per
minute, thus sufficiently increasing the average number
of nodes in the system for the large view exploit to work.
Contributing leechers and seeds strive for a peer set of
size80 in all cases, and we vary the peer set size of free-
riders. Figure 4 depicts the download rates of contribut-
ing leechers and free-riders, as a function of the free-
riders “desired” peer set size, and illustrates that:

• The large view exploit does indeed have a signifi-
cant effect on the original scheme – free-riders can
increase their download rate linearly as a function
of increasing peer set size. Note that free-riders
can even achieve faster downloads than contribut-
ing leechers when the peer set size is high enough
(in this case 160, 200 or 240).

• Our schemes can still degrade the performance of
free-riders and essentially prevent free-riders from
increasing their download rates through the large
view exploit. We reiterate, the exploit is prevented
by our schemes in a completely scalable way since
no explicit identification or tracking of free-riders is
required.

 0

 200

 400

 600

 800

 1000

 1200

 40 80 120 160 200 240

A
ve

ra
ge

 D
ow

nl
oa

d
R

at
e

(k
bp

s)

Free-Riders Size of View

5000kbps/512kbps (Original)
5000kbps/512kbps (Sort)

5000kbps/512kbps (T 40%)

Free-Riders (Original)

Free-Riders (Sort)
Free-Riders (T 40%)

Figure 4: Large View Exploit: Download Rate

5 Discussion
The focus of our work is on better utilization of seed-
ing capacity. The significance of our approache’s ef-
fects depends on the amount of seeding capacity avail-
able. Specifically, with a “medium” amount of seeding
capacity (relative to the download capacity), our schemes
result in a significant difference, i.e., they degrade the
performance of free-riders significantly while either im-
proving or having little effect on the performance of con-
tributing leechers. When the system’s seeding capacity is
small relative to download capacity, our schemes do not
have a significant effect, which makes sense, as seeding
behavior is all that is being modified here. In this case,

the performance is mainly affected by the utilization of
leecher capacity, which is outside the scope of this paper.
At the other extreme, when the system’s seeding capacity
is very high relative to download capacity (either due to
long seeding times or to having a large fraction of seeds
with high upload capacities), our schemes do not have a
significant effect. This also makes sense, as in that case
resources are plentiful.

Additionally, our scheme can easily work with other
schemes that have been proposed to handle free-riders
(e.g., [13, 16]). As these schemes do not focus on ap-
proaches to distributing seeding capacity, our schemes
can serve as a good complement.
Overall Performance Improvement
Our simulations indicate (refer to Figure 3) that re-
directing seeding capacity to end points improves the
performance of contributing nodes, especially the slower
ones. This confirms our intuition that appropriate priori-
tization of seeding capacity is useful. We speculate that
in a real system our approaches will result in an even
greater performance improvement. Consider Figure 2,
where nodes using the original protocol have a slower
downloading rate at the end points of the downloading
process. In a real system, the slow start of newly joined
nodes is even worse because it takes awhile to gather the
peer list and successfully connect to enough peers, which
leads to wasted upload resources of new nodes. Using
our schemes the seeds can “kick start” a new node faster
(as it rises to the top of their list for unchoking) so that it
can start contributing its upload capacity quickly. Since
simulation abstractions hide many of the delays, the per-
formance gains of our technique are not visible to the
fullest extent; we are exploring such effects through ex-
periments on PlanetLab.
Possible Consequence
Even if our schemes do not improve the performance
of the contributing leechers much in some scenarios,
they can slow down free-riders significantly in many
cases. Consequently, in order to have reasonable per-
formance, free-riders may choose to contribute their re-
sources, thereby increasing the system capacity and im-
proving overall system performance (refer to Section 2).
Malicious Behavior
One way to circumvent our scheme by free riders is for
them to lie about the chunks they have so that they would
fall in the “right” region from a seeds’ perspective. Using
current BT clients can act as free-riders easily by limit-
ing their upload rate – most available BT clients allow
this. On the other hand, cheating in our scheme requires
source code modification, which is harder. Also, modify-
ing source code can result in exploits in the original BT

protocol as well, e.g., as in [11, 14]. Of course, contribut-
ing leechers can cheat in a similar manner.

Specifically, one malicious exploit would be for a free-
rider to lie about the chunks it has by using a modified
client. We believe that it would be tough to get a huge
performance gain that way. That is, to prevent a node
from always claiming to be within the “right” region, a
seed can keep a counter of how many chunks it uploaded
to each peer such that they are eventually forced to exit
the right region. In this simple scheme, the amount of
data a liar can download from a particular seed is no more
than the size of the right region.

Of course, a node can lie differently to each seed in or-
der to collect more chunks. However, this requires more
sophisticated client modifications. Moreover, a seed can
estimate the seeding capacity of a peer by looking at its
own peer distribution. A seed could take the view that
(roughly and conservatively) it needs to upload at most

own upload capacity
total seed peers capacityof the “right region” to a peer;

this can be used as a reference for the limit on the amount
of data it uploads to a peer. Then, ideally, a liar (on aver-
age) would download the amount of data corresponding
to the “right region” from all its neighboring seeds, which
is essentially equivalent to the non-lying case.

We could also consider a simple system that globally
keeps track of the total number of chunks uploaded to a
peer. Light weight reporting and checking mechanisms
can be used, as only loosely synchronized information is
enough to serve our purpose.

Lastly, a free-rider can lie by assuming multiple identi-
ties in the system, which is known as Sybil attack [5]. In
a BT system, a node’s IP address can be used as its iden-
tity. Thus, a node requires access to multiple IP addresses
in order to achieve this exploit. This is fairly difficult to
achieve for common users.

Due to space limitations we do not fully explore mech-
anisms to prevent the exploit by free-riders; however
even without any prevention mechanism a cheating node
will not be able to prevent the performance improve-
ments to contributing leechers.
Practical Implementation
Our proposed approach can be easily adopted in the cur-
rent BT system. No protocol changes (in terms of mes-
sages) are required as all the information is already avail-
able in the current BT protocol, and it also allows for in-
cremental deployment.

6 Conclusions
We considered an important problem of how to appro-
priately distribute seeding capacity in BT. Our study in-
dicates that, under a number of scenarios, our schemes

are able to: (1) significantly degrade free-riders’ perfor-
mance while (2) improving (or not affecting) the perfor-
mance of contributing leechers. Thus, we believe that
this is a promising direction for improving the overall
performance of BT while discouraging free-riding be-
havior. Our ongoing efforts include (a) further improve-
ments to our schemes (as the ideal scheme we used as
a baseline indicates that there is still room for improve-
ment under some scenarios), (b) PlanetLab experiments,
(c) development of analytical models for studying the ef-
fects of free-riding and seeding in BT, and (d) exploration
of malicious behavior prevention schemes.
Acknowledgements: This research was funded in
part by the USC Annenberg Graduate Fellowship, the
NSF 0627590, 0238299, 0615126, 0091474, 0417274,
0540420 grants and by IMSC, an NSF ERC, Coopera-
tive Agreement No. EEC-9529152.

References
[1] A. Bellissimo, B.N. Levine, and P. Shenoy. Exploring

the use of bittorrent as the basis for a large trace repos-
itory. Technical Report 04-41, CS, UMASS, 2004.

[2] A.R. Bharambe, C. Herley, and V.N. Padmanabhan.
Analyzing and improving bittorrent performance. In
INFOCOM’06.

[3] J. Bieber, M. Kenney, N. Torre, and L.P. Cox. An em-
pirical study of seeders in bittorrent. Technical Report
CS-2006-08, Duke University.

[4] B. Cohen. Incentives build robustness in bittorrent. In
P2PEcon’03.

[5] J.R. Douceur. The sybil attack. InIPTPS’02.
[6] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and

X. Zhang. Measurements, analysis and modeling of
bittorrent-like systems. InIMC’05.

[7] M. Izal, G. Urvoy-Keller, E.W. Biersack, P.A. Felber,
A. Al Hamra, and L. Garc’es-Erice. Dissecting bittor-
rent: Five months in a torrent’s lifetime. InPAM’04.

[8] S. Jun and M. Ahamad. Incentives in bittorrent induce
free riding. InP2PEcon’05.

[9] A. Legout, N. Liogkas, E. Kohler, and L. Zhang.
Clustering and sharing incentives in bittorrent sys-
tems. InSIGMETRICS’07.

[10] A. Legout, G. Urvoy-Keller, and P. Michiardi. Rarest
first and choke algorithms are enough. InIMC’06.

[11] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang.
Exploiting bittorrent for fun (but not profit). In
IPTPS’06.

[12] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer.
Free riding in bittorrent is cheap. InHotNets’06.

[13] T. Locher, S. Schmid, and R. Wattenhofer. Rescuing
tit-for-tat with source coding. InP2P’07.

[14] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy,
and A. Venkataramani. Do incentives build robustness
in bittorrent? InNSDI’07.

[15] J.A. Pouwelse, P. Garbacki, D.H.J. Epema, and H.J.
Sips. The bittorrent p2p file-sharing system: Mea-
surements and analysis. InIPTPS’05.

[16] M. Sirivianos, J.H. Park, R. Chen, and X. Yang. Free-
riding in bittorrent networks with the large view ex-
ploit. In IPTPS’07.

