Improving BitTorrent: A Simple Approach

Alix L.H. Chow Leana Golubchik Vishal Misra
Univ. of Southern California Univ. of Southern California ~ Columbia University

Abstract factor in facilitating free-riding. And, to the best of our

Measurement studies have shown that real world BitT§Rowledge, there is no other study that explores this.
rent (BT) systems exhibit high seed capacity. Thus, apMoreover, as illustrated later in the paper, a leecher’s
propriate use of seed capacity can have a significantfgress through the file downloading process is not uni-
fect on BT performance. Moreover, seed capacity is al§m. The progress is slower at the beginning, when hav-
easily exploitable by free-riders, and such free-ridif@d few chunks prevents a node from being selected for
clients exist out in the wild today_ In this paper, we prdlploads through tit-for-tat. It can also be slower at the
pose a simple and scalable approach that makes mor@ffl, when it is more difficult to find peers with the few
telligent use of seed capacity by hurting free-riders, witfemaining pieces of needed data (although provisions ex-
out their explicit identification, while improving the perist to aid with that). In both cases, seeds can contribute
formance of contributing nodes. The effectiveness of ciignificantly, as they are no longer playing the tit-for-tat
approach is studied via extensive simulations. game, and they hafve a”dt'he data pieces. TTUSé intuitivelyl,l
. appropriate use of seeding capacity can lead to overa
1 Introduction system performance improvements.
An important thread in the design and evaluation of P2PGiven this, our main idea in this work is to exp|0|'e
systems has been the provision of incentives for nodegf@rnative approaches for seeds to contribute their up-
contribute their resources to the P2P SyStem. An intﬂj’ad Capacity to the system, with the goa| of degrad-
esting aspect of BitTorrent (BT) [4], that makes it stangg free-rider performance while (if possible) improving

outin that respect, is the “forcing” of peers to share thejther leechers’ performance. The contributions of this
resourcewhile attempting to complete their downloadssaper are as follows:

i.e., through the tit-for-tat [4] mechanism — this is done
“locally” and without the need for centralized or dis-
tributed mechanisms for implementing an incentive sys-
tem. Although this works nicely, there are still oppor-
tunities forfree-riders(i.e., peers who do not contribute
resources) to download files (e.g., [8, 13, 16]). These op-
portunities exist in two forms: (1) capacity provided by
leechergnodes who have not completed their downlo&d \We show that simple schemes can provide signif-
yet) through the optimistic unchoking mechanism (used icantly poorer performance to free-riders while at
by leechers to probe for new downloading opportunities), the same time improving (or not hurting) the other

We propose several simple approaches to modify-
ing the seeds’ uploading algorithms, where the goal
is to (a) discourage free-riding behavior and at the
same time (b) improve (or at least not degrade) the
performance of other leechers. The details of these
schemes are given in Section 3.

and (2) capacity provided tseedgnodes that have com- léechers’ performance. We do this through a de-
pleted their download but continue to contribute their up- tailed simulation study in Section 4. The poor free-
loading capacity to the system). rider performance should serve as a deterrent, which

We believe that sufficient evidence exists to indicate Will éncourage free-riders to contribute resources.

that the following two statements are true: (1) opport@ M otivation
nities for free-riding hurt the system’s performance, an
(2)a non-negllglble_number of node; n BT_stay arouRiBy information from the tracker) and begin requesting
as seeds for some time after completing their downloalé unks of data from their neighbors. Nodes that do not
That is, many users would only contribute resources if o 4 complete copy of the file are termed “leechers”
their performance was quite poor. And, the capacity pr§

BT, nodes join the system (after receiving “start-

ided bv th d ianificant] tribute t nd those that do are termed “seeds”. Nodes that do
vided by the seeds can signiticantly Contribute to provige, ¢ ntripyte their upload capacities are termed “free-

ing reasonqble performance for the free-.ridersf. TheF%’ers”. Each leeche picks a number (typically 5) of
fore, we believe that the behavior of seeds is an |mport%tdes to whose requests it will respond with an upload of

an appropriate chunk, i.e., these nodes are “unchoked’ttivating Example
A subset of these nodes (typically 4) are picked basgdnsider the following example, where we have two
on the tit-for-tat mechanism, i.e., those neighbors tl@dasses of nodes and each class is defined by its upload
have provided the best service (in terms of downloadpacity and download capacity. Clasaodes are con-
rate) to nodei recently. And a subset (typically 1) idributing nodes, and Classnodes are free-riders (with
picked randomly, i.e., they are “optimistically unchoked3andwidth settings given in Table 1). Figure 1 depicts
(to explore better neighbors). Seeds also pick a subsethef download times of each class as a function of av-
neighbors (typically 5), and upload data to them. In pastage seeding time with0% of users being free-riders
versions of BT, seeds chose neighbors that could downd with no free-riders. These results are obtained by
load data from them the fastest. In a more recent protoswhulation (refer to Section 4) with settings given in Ta-
(as described in [10]) the seeding capacity is distributelé 2. The20% free-riders case illustrates that the av-
more uniformly to the neighboring peers. These choiceige download time of free-riders is more sensitive to
are re-evaluated periodically. the seeding time than that of the contributing leechers.
A number of research studies (e.g., [8, 14, 11, 12, 16fpr example, with no seeding time, the average down-
have focused on the fairness, robustness, and perl’@&d time is162.33 mins and632.07 mins for contribut-
mance characteristics of BT, mainly resulting from tHg leechers and free-riders, respectively. When the av-
tit-for-tat mechanism. However, very few studies ha®sage seeding time is increasedstomins, the average
considered the effects of seeding behavior. Given typiégwnload time is reduced 1.89 mins & 37% speed
user behavior and the design of most BT clients, seedi#g) for contributing leechers ani2.63 mins & 73%
is a typical behavior in the BT system. Many users mapeed up) for free-riders. This suggests that alternative
leave their clients running after completing download@pproaches to distributing seeds’ upload capacity might
possibly due to users not monitoring their clients duringad to significant effects on free-riders’ performance
the download. Also, some sharing communities enfore®ile possibly improving (or at least not hurting) the per-
a download/upload ratio to enable seeding. Real-woffdmance of contributing leechers. Moreover, if we de-
measurements such as (e.g. [1, 3, 6, 7, 10, 15]) also figde free-riders’ performance sufficiently, many of them
gest that there exist a significant number of seeds in magght choose to become contributing leechers, i.e., in or-
torrents; they suggest that there is a large variety of seg@r to obtain reasonable performance. This would result
ing capacity in real-world torrents — some of the torreris an improved overall system performance - e.g., with
measured have twice as many seeds as they do leech@fisaverage seeding time @f mins (in our example), the
Availability of seeding capacity can have a significad/erage download time can decrease frin.89 mins
effect on BT, e.g., it can compensate for the asymmet@69-84 mins (= 31% speed up), if free-riders contribute
bandwidth scenarios in the Internet. At the same tinfésources similarly to other users.
it can degrade th_e fairness _ar_1d ince_ntive propertie_s of the Table 1: Class Description (example)
system, as free-riders can finish their downloads with rga=Class [Fraction | Download Capacity] Upload Capacity]
sonable performance by relying on the seeds. (Not ohly(Contributing) H 80% | 5000kbps [512kbps

) [2 (Free-Rid 20% 5000kb OKb
do they not contribute to the systems’ upload capaCilt", (Free-Riders) © 1 ps | B l

they also effectively reduce the performance gains that 700

seeds provide.) Thus, intuitively, appropriate use of seed- ’g 6001.‘

ing capacity can have a significant effect on performance g sl 5000kbps/512kbps (No Free-Riders) —-

of both, contributing leechers as well as free-riders. E s, P000Kbps/512kbps (20% Free-Riders) -+
Existing studies on seeding behavior (e.g., [2, 9]) £ **° Free-Riders (20% Free-Riders) - %-

mainly concentrate on the initial seeding behavior, such § 3% ...

as reducing sending of duplicate data. To the best of our & 200} - oy

knowledge, no studies focus on how to better utilize the f%’ 10—k'77771 ____

service capacity provided by the seeds. In this paper, we N A e

focus on precisely that. Specifically, we ask a simple 0 20 40 Avgﬁ)ageSS?eedl'I?i?ne (1;?”) 140 160 180
guestion —how can the seeding capacity be better uti-

lized to discourage free-riding behavior and at the samerjgure 1: Download Time vs Seed Time (2 Classes)
time improve performance of contributing leechevde

now give a motivating example to illustrate opportunities Pr0posed Approach

for “closing a loop-hole” in BT which might encouragéVe explore the following simple approach to modifying
free-riding behavior. how seeds distribute their upload capacity to leechers.

Currently, seeds unchoke leechers regardless of howkiathe need to help end points (as explained above), we
along they are in their downloading process. Measupioose théV that are furthest from the middle (i.e., hav-
ments and simulations indicate that the downloading ratg half of all the chunks).

of leechers is the slowest in two regimes: (i) right at thehreshold-based (I, NV): Threshold-based schemes are
beginning when they don't have enough chunks to paimilar, except that we choose to unchakerequest-
ticipate effectively in tit-for-tat with other peers, and (ii)ng neighbors that only hav& % of the total number of

right at the end when finding peers with the missing fesunks. Specially, we unchoke nodes that have either
chunks becomes difficult. (Possible causes of this are #x-£1% or [(100 — £)..100%] of the chunks.

plored in Section 5.) In both situations seeds can helpa humber of variations on this schemes are possible;

since they have no requirement for tit-for-tat and theyy clarity of exposition we only focus on the above men-
have all the chunks to supply the last few pieces. tioned one.

Our simple insight is tgorioritize the use of seeding
capacity to only certain portions of a file's downloading
process For example, we can unchoke only those leech-
ers who are at the beginning (i.e., have a few chunks)
and those at the end (i.e., have most of the chunks) of
their download process. (Below we describe several ap-
proaches based on this idea.)

We can motivate this as follows. Consider a plot of
the chunk rate (i.e., the rate at which a node acquires the 02

16

5000kbps/512kbps (Original) -%-

Free-Riders (Original) =+
5000kbps/512kbps (Sort) s
Free-Riders (Sort)

Chunk Rate (#chunk/sec)
o
(o2

next chunk) as a function of the number of chunks that 555750 e50 395 1000 1200 1230 1050 To55 3000
node has — this is depicted in Figure 2 which is obtained Number of Chunks Downloaded

through simulation (refer to Section 4). Here we plot the _

the chunk rate behavior of contributing leechers (class Figure 2: Example Chunk Rate (2 Classes)

in Section 2) and free-riders (cla®sn Section 2), using . .
the original BT seeding scheme as well as our modifiéd Simulation-based StUdy

scheme in which we prioritize leechers that are towardé& use the BT simulator provided by [2], with modifi-
the two ends of the process. Both, contributing leecheagions described below. This is an event-based simu-
and free-riders experience an increase in seeding capdeiyr which simulates the chunk exchanging mechanism
at the end points (where we shifted this capacity) andnathe BT protocol. In [2], the authors use this simula-
decrease in the middle portion. However, the free-riddes to study the existing BT protocol behavior, including
have a far greater dependence on seeds than contrilmitial seeding issues as well as download rate character-
ing leechers. Thus, the free-riders get hurt more by hstics under flash crowd conditions (i.e., when all nodes
ing “banished” from using the seeds. The contributirgrive at the beginning of the simulation). They also as-
leechers on the other hand benefit by ramping up fast e that nodes do not stay around as seeds, once the
being able to participate in tit-for-tat earlier than in thdownload completes.

original BT scheme. In the example of Figure 2, the av-To explore the approach proposed in Section 3, we ex-
erage download time of free-riders is degraded§6% tended the simulator to support: (a) nodes staying around
while contributing leechers experience a small improvas seed with different seeding approaches as proposed in
ment. Armed with this intuition, we now give details oEection 3, (b) continuous node arrivals, and (c) nodes act-
the specific schemes explored in the remainder of this jr&y as free-riders (i.e., nodes that do not unchoke neigh-
per. These are just samples of possible approaches. Eirs and leave the system immediately upon download
goal in this paper is to evaluate the potential of this getempletion). The seeding times and node inter-arrival
eral approach (refer to Section 4) rather than to exhatisres follow an exponential distribution. We also modi-
tively consider all possible similar schemes. We note fifgd the original seeding scheme to be more uniform, in-
that our approackoes notequire identification of free- line with the current BT protocol (i.e., instead of upload-
riders. And, it is a simple approach to implement aridg to the fastest peers as was done in an older version of
deploy in the current BT system. BT).

Sort-based (V): In sort-based schemes, a seed sortswe experimented with a number of seeding ap-
the requesting neighbors based on the number of chupksaches. The results presented below use the follow-
each has. It then unchokes (we use the BT default ofing ones. Original refers to the current BT uploading

N = 5) of them based on the sorting order. Motivatestheme.ldeal refers to the scheme where the seeds can

identify which of their neighbors are contributing leecHerent node classes, with several average seeding times,
ers and which are free-riders, and they only upload uader different seeding schemes. From these results, we
contributing neighbors. We only implement this schenabserve the following:

in the simulator as a baseline for evaluating other ap-
proaches (i.e., this gives us an idea of a possible bolind
on the improvements we can offersort refers to the
sort-based scheme (see Section 3) wheré tiighbors
furthest away (in either direction) from having half of the
chunks are unchoked. 20%(10% to each end) refers to
the threshold-based scheme (see Section 3) where the
neighbors are chosen for unchoking, using the same al-
gorithm as “original”, except that the set of neighbors
that quality for an unchoking is restricted to those that
have at most th€0% of the chunks or at leas0% of the
chunks.T 40%(20% to each end) is similar Ib20%but

with the threshold size being doubled.

Unless specified otherwise, the following results cor-
respond to the settings in Table 2. The system starts with
1 origin seed with 1000kbps upload capacity, which stays
in the system for the duration of the simulation. Nodes
arrive to the system from a Poisson process with a rate
A, and are assigned to a particular class according to a
given distribution. The classes differ in their upload and
download capacities. To have a fair comparison between

Under “medium” seeding capacities, sort-based
scheme do a good job of slowing down free-riders
while having a relatively smaller effect on contribut-
ing leechers. For instance, when the average seed
time is120 mins, free-riders have an average down-
load time of263 mins under the original scheme and

it is increased tal33 mins (~ 65% slow down) by
using the Sort scheme. Under the same settings, the
download time for the slow class is reduced from
215 mins under the original scheme 899 mins

(=~ 3% speed up) in the Sort scheme (the fast class
is less sensitive to our choice of strategies since it
relies on tit-for-tat more than seeds).

Threshold-based approaches can slow down the
free-riders more than sort-based schemes. However,
they also have more of a detrimental effect on the
contributing leechers — this becomes more critical
as the seeding capacity increases since the threshold
ends up wasting the seeds capacity. For instance,
when the average seed timel®) mins, the aver-

approaches, we use the same node arrival sequence forage download time for the free-riders is increased
each simulation with a given arrival rate and class dis- to 683 mins (= 160% slow down) by using the
tribution. We look at the steady state behavior of the T 20%scheme. Under the same settings, the down-
system. Each simulation run corresponds to 30 hours, load time for the slow class and the fast class are
and we only compute our results over the last 24 hours. slowed down by~ 19% and~ 43%, respectively.

(We check the results to make sure the system passes the
“ramp up” stage during the first 6 hours.) We performed a
comprehensive study, exploring a variety of parameters.
Due to lack of space, we only give representative results;
other results are qualitatively similar.

1200

[1500kbps/128kbps
[l 5000kbps/512kbps|
Free-Riders

1000

800

600

Table 2: Simulation Settings
Filesize 500 MB (2000 Chunks, 256KB each
Simulation Time 24 hours (+ 6 hours warmup time)

400

Average Download Time (mins)

T Y
A RN

SIS
I TS
AMEIEIEIERRERER RN
AR ..
T
L TS

o
3 ARAIIITTTTTY

200} L . i et
Avg node inter-arrival timef) 1 min E 2 E E E
Peer Set Size 80 ot—= .
Leecher Unchokings 4 Regular + 1 Optimistic Orlglnalldeal SortT 20%T 40% ong|na|ldeal S T 20%T 40%
Seed Unchokings 5 60 mins average seed time 120 mins average seed time

Table 3: Class Description (simulation) Figure 3: Average Download Time (3 Classes)

[Class][Fraction [Download Capacity] Upload Capacity|
Slow 40% 1500kbps 128kbps 4.2 Increasing peer set size (large view exploit)
Fast 40% 5000kbps 512kbps .) . . .
Free-Riders|| 20% T500Kbps OKbps Interesting studies of free-rider behavior, in the context

of the “large view exploit”, are given in [12, 16]. The ba-

4.1 Effect of seeding approaches sic idea is for free-riders to increase their peer set size, to
We consider the effects of different seeding approactiegrease the probability of being optimistically unchoked
(described above) with class settings given in Table 8/ aleecher or picked by a seed’s unchoking mechanism.
These settings are chosen to be representative of the Eeeoretically, a free-rider can increase the download rate
vices provided by commercial broadband ISPs, e.g., thggarly with the increase in the peer set size.

are similar to those provided by local ISPs in SouthernWe experiment with adding the large view exploit to
California. Figure 3 depicts the download times of dibur simulations in order to illustrate its effect on our

schemes. For ease of illustration, we present our resthis performance is mainly affected by the utilization of
using the settings in Table 1 with an average seeding tileecher capacity, which is outside the scope of this paper.
of 60 mins. We increase the average arrival rate to 2 pdrthe other extreme, when the system’s seeding capacity
minute, thus sufficiently increasing the average numbewery high relative to download capacity (either due to
of nodes in the system for the large view exploit to worlong seeding times or to having a large fraction of seeds
Contributing leechers and seeds strive for a peer setnth high upload capacities), our schemes do not have a
size80 in all cases, and we vary the peer set size of fresgnificant effect. This also makes sense, as in that case
riders. Figure 4 depicts the download rates of contribuésources are plentiful.

ing leechers and free-riders, as a function of the free-Additionally, our scheme can easily work with other
riders “desired” peer set size, and illustrates that: schemes that have been proposed to handle free-riders

e The large view exploit does indeed have a signh‘ﬁ'g" [13, 16])_' A_S these schgmes do pot focus on ap-
cant effect on the original scheme — free-riders Cgﬁoaches to distributing seeding capacity, our schemes

increase their download rate linearly as a functidit Serveasa good complement.
of increasing peer set size. Note that free-ridgdverall Performance Improvement
can even achieve faster downloads than contrib@ur Simulations indicate (refer to Figure 3) that re-

(in this case 160, 200 or 240). performance of contributing nodes, especially the slower

_ ones. This confirms our intuition that appropriate priori-
» Our schemes can still degrade the performance9Lion of seeding capacity is useful. We speculate that

free-riders and essentially prevent free-riders from 5 req) system our approaches will result in an even
increasing their download rates through the larggeater performance improvement. Consider Figure 2,
view exploit. We reiterate, the exploit is preventejpere nodes using the original protocol have a slower
by our schemes in a completely scalable way singgynioading rate at the end points of the downloading
no e>_<p|icit identification or tracking of free-riders iﬁ)rocess. In a real system, the slow start of newly joined
required. nodes is even worse because it takes awhile to gather the
1200 peer list and successfully connect to enough peers, which
5000kbps/512kbps (Original) -~ leads to wasted upload resources of new nodes. Using
1000 Soggﬁg'ggfssgiﬁgg”gﬁg - our schemes the seeds can “kick start” a new node faster
(as it rises to the top of their list for unchoking) so that it
- can start contributing its upload capacity quickly. Since
simulation abstractions hide many of the delays, the per-
formance gains of our technique are not visible to the
fullest extent; we are exploring such effects through ex-
) periments on PlanetLab.
Free-Riders (T 40%) -0~
O40 80 120 160 200 240 Possible COHSG]UGHCG
Free-Riders Size of View Even if our schemes do not improve the performance
of the contributing leechers much in some scenarios,
they can slow down free-riders significantly in many
i i cases. Consequently, in order to have reasonable per-
> Discussion formance, free-riders may choose to contribute their re-
The focus of our work is on better utilization of seedsources, thereby increasing the system capacity and im-
ing capacity. The significance of our approache’s gffoving overall system performance (refer to Section 2).
fects depends on the amount of seeding capacity avillalicious Behavior
able. Specifically, with a “medium” amount of seedin@ne way to circumvent our scheme by free riders is for
capacity (relative to the download capacity), our schentaem to lie about the chunks they have so that they would
result in a significant difference, i.e., they degrade tFedl in the “right” region from a seeds’ perspective. Using
performance of free-riders significantly while either imeurrent BT clients can act as free-riders easily by limit-
proving or having little effect on the performance of coring their upload rate — most available BT clients allow
tributing leechers. When the system’s seeding capacitytiss. On the other hand, cheating in our scheme requires
small relative to download capacity, our schemes do miurce code modification, which is harder. Also, modify-
have a significant effect, which makes sense, as seediggsource code can result in exploits in the original BT
behavior is all that is being modified here. In this case,

800

600

400 Free-Riders (Original) ——

200

Average Download Rate (kbps)

Free-Riders (Sort) -

Figure 4: Large View Exploit: Download Rate

protocol as well, e.g., asin [11, 14]. Of course, contribudre able to: (1) significantly degrade free-riders’ perfor-

ing leechers can cheat in a similar manner.

mance while (2) improving (or not affecting) the perfor-

Specifically, one malicious exploit would be for a fregnance of contributing leechers. Thus, we believe that
rider to lie about the chunks it has by using a modifiglis is a promising direction for improving the overall
client. We believe that it would be tough to get a hugeerformance of BT while discouraging free-riding be-
performance gain that way. That is, to prevent a noblavior. Our ongoing efforts include (a) further improve-
from always claiming to be within the “right” region, anents to our schemes (as the ideal scheme we used as
seed can keep a counter of how many chunks it uploadeaseline indicates that there is still room for improve-
to each peer such that they are eventually forced to @rgnt under some scenarios), (b) PlanetLab experiments,
the right region. In this simple scheme, the amount () development of analytical models for studying the ef-
data a liar can download from a particular seed is no mdests of free-riding and seeding in BT, and (d) exploration

than the size of the right region.

Of course, a node can lie differently to each seed in ércknowledgements:

of malicious behavior prevention schemes.

This research was funded in

der to collect more chunks. However, this requires mapart by the USC Annenberg Graduate Fellowship, the
sophisticated client modifications. Moreover, a seed ddfsF 0627590, 0238299, 0615126, 0091474, 0417274,
estimate the seeding capacity of a peer by looking at®s40420 grants and by IMSC, an NSF ERC, Coopera-
own peer distribution. A seed could take the view thtive Agreement No. EEC-9529152.

(roughly and conservatively) it needs to upload at MRlefer ences

own upload capacity p ”
total seed peers capacﬁ; the “right region™ to a peer; [1]
this can be used as a reference for the limit on the amount

of data it uploads to a peer. Then, ideally, a liar (on aver-
age) would download the amount of data correspondi

to the “right region” from all its neighboring seeds, which

is essentially equivalent to the non-lying case. [3]

We could also consider a simple system that globally
keeps track of the total number of chunks uploaded torg
peer. Light weight reporting and checking mechanisms
can be used, as only loosely synchronized information [§]
enough to serve our purpose.

Lastly, a free-rider can lie by assuming multiple identi-
ties in the system, which is known as Sybil attack [5]. Il7]
a BT system, a node’s IP address can be used as its iden-
tity. Thus, a node requires access to multiple IP addressgs
in order to achieve this exploit. This is fairly difficult to
achieve for common users. 9]

Due to space limitations we do not fully explore mech-
anisms to prevent the exploit by free-riders; howevHoQ]
even without any prevention mechanism a cheating node
will not be able to prevent the performance improve-
ments to contributing leechers.

Practical Implementation [12]
Our proposed approach can be easily adopted in the %
rent BT system. No protocol changes (in terms of mes-
sages) are required as all the information is already avéil]
able in the current BT protocol, and it also allows for in-
cremental deployment. [15]

6 Conclusions

We considered an important problem of how to apprd6]
priately distribute seeding capacity in BT. Our study in-
dicates that, under a number of scenarios, our schemes

A. Bellissimo, B.N. Levine, and P. Shenoy. Exploring
the use of bittorrent as the basis for a large trace repos-
itory. Technical Report 04-41, CS, UMASS, 2004.
A.R. Bharambe, C. Herley, and V.N. Padmanabhan.
Analyzing and improving bittorrent performance. In
INFOCOM'06.

J. Bieber, M. Kenney, N. Torre, and L.P. Cox. An em-
pirical study of seeders in bittorrent. Technical Report
CS-2006-08, Duke University.

B. Cohen. Incentives build robustness in bittorrent. In
P2PEcon’03

J.R. Douceur. The sybil attack. IRTPS’02

L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and
X. Zhang. Measurements, analysis and modeling of
bittorrent-like systems. [IMC’05.

M. Izal, G. Urvoy-Keller, E.W. Biersack, P.A. Felber,
A. AlHamra, and L. Garc’es-Erice. Dissecting bittor-
rent: Five months in a torrent’s lifetime. PAM'04.

S. Jun and M. Ahamad. Incentives in bittorrent induce
free riding. InP2PEcon’05

A. Legout, N. Liogkas, E. Kohler, and L. Zhang.
Clustering and sharing incentives in bittorrent sys-
tems. INSIGMETRICS’'07

A. Legout, G. Urvoy-Keller, and P. Michiardi. Rarest
first and choke algorithms are enough.IMC’06.

N. Liogkas, R. Nelson, E. Kohler, and L. Zhang.
Exploiting bittorrent for fun (but not profit). In
IPTPS’06

T. Locher, P. Moor, S. Schmid, and R. Wattenhofer.
Free riding in bittorrent is cheap. HotNets'06

T. Locher, S. Schmid, and R. Wattenhofer. Rescuing
tit-for-tat with source coding. [?2P’07.

M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy,
and A. Venkataramani. Do incentives build robustness
in bittorrent? INNSDI'07.

J.A. Pouwelse, P. Garbacki, D.H.J. Epema, and H.J.
Sips. The bittorrent p2p file-sharing system: Mea-
surements and analysis. IRTPS’05

M. Sirivianos, J.H. Park, R. Chen, and X. Yang. Free-
riding in bittorrent networks with the large view ex-
ploit. In IPTPS’07

