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Abstract

Under the current Internet infrastructure, quality of service (QoS) in the delivery
of continuous media (CM) is still relatively poor and inconsistent. In this paper
we consider providing QoS through the exploitation of multiple paths existing in
the network. Previous work has illustrated the advantages of this approach. Here
we extend this work by considering a more expressive model for characterizing the
network path losses. In particular, we propose a variation on the Gilbert model
wherein the loss characteristics of a path depend on an application’s transmission
bandwidth. Using this model, we show the benefits of multi-path streaming over
best single-path streaming, under optimal load distribution among the multiple
paths. We use extensive simulation and measurements from a system prototype to
quantify the performance benefits of our techniques.
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1 Introduction

Under the current Internet infrastructure, quality of service (QoS) in delivery
of continuous media (CM) is still relatively poor and inconsistent. Degradation
in quality of CM applications, involving delivery of video and audio, is partly
due to variations in delays and losses experienced by packets sent through
wide-area networks. Although many such applications can tolerate some de-
gree of missing information, significant losses degrade an application’s QoS.
One approach to providing QoS for CM applications over the Internet is to
use the IntServ model for signaling (e.g., RSVP) and resource reservation in
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all routers along the streaming path. However, this approach suffers from scal-
ability and deployment problems. In contrast, in this work we consider a more
deployable approach to providing QoS guarantees through the exploitation of
multiple paths existing in the network between a set of senders and a receiver,
i.e., the CM data is fragmented into packets and the different packets take
alternate routes to the receiver 1 . Previous work (discussed below) illustrated
advantages of this approach in pushing the complexity of QoS provision to the
network edge and hence improving the scalability and deployment character-
istics while at the same time providing a certain QoS level.

As stated in [9] a number of issues need to be considered in designing a multi-
path streaming system, but we limit the scope of this paper by focusing on
(a) delivery of pre-stored video, e.g., as in video-on-demand applications (in
contrast to delivery of “live” data 2 as in video-conferencing applications), (b)
application-level schemes (which are deployable today over the current Inter-
net), (c) accomplishment of multiple paths to the same receiver by distributing
servers across wide-area networks and streaming data from multiple senders
simultaneously, and (d) network related streaming issues only (rather than,
e.g., considering server-related problems such as server load balancing), i.e.,
for the purposes of this paper we assume that the data is fully replicated at
all servers and hence any server can deliver any fraction of the CM data.

In this paper, we consider a system where server i sends fraction αi of the
data expected by the receiver, where 0 ≤ αi ≤ 1 and

∑

i αi = 1. The receiver
assembles the data from multiple senders and plays it in the appropriate order.
Note that the multi-path approach we consider here injects the same total
amount of data as the single path approach, when no error erasure codes are
used. For example, if an application’s bandwidth requirement is 1.5 Mbps,
then either approach will inject traffic into the network at the total rate of 1.5
Mbps — the difference is that a single path approach injects traffic at that
rate from a single server over a single path and a multi-path approach does it
from multiple servers over multiple paths, where each path carries a fraction
of that traffic. When error erasure codes are used, the total amount of data
that the multi-path approach will inject into the network may be less than or
equal to that of the single path approach and yet achieve the same or higher
viewing quality, as illustrated in the remainder of the paper.

Multi-path streaming and exploitation of path diversity has attracted much
attention recently, and [3] provides a broad overview of the general area. Due
to lack of space, here we give only a brief survey of existing work on this topic

1 Such paths do not have to be completely disjoint; it is sufficient for them to have
disjoint points of congestion, which can be detected, e.g., as in [17].
2 For “live” data, it may be necessary to use a collection of relay hosts or proxies
to “force” paths different from those provided by the network.
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focusing on those works which consider loss characteristics, or can be deployed
over best-effort networks, or do not rely on specific coding techniques, as these
are considerations in our work as well. The work in [15] proposes the use of
multi-servers for streaming on the Internet; this is later extended to include
the use of erasure codes (EC) [14]. The focus is on designing a receiver-driven
transport protocol which includes a rate allocation algorithm and a packet par-
titioning algorithm. The case of a last mile bottleneck is examined in [13]. In
these proposals, a (what we call below) conventional Gilbert model is adopted
(refer to Section 2) while a more expressive model is used in our work. In ad-
dition to focusing on the loss rate, we also propose an optimization approach
using other loss characteristics, e.g., lag-1 autocorrelation. The use path di-
versity (as well erasure codes) on an overlay network as a way of emulating
multiple sources is examined in [16]. Our approach can also be implemented
on an overlay structure as well as with the aid of relay nodes, e.g., a P2P
prototype implementation of our approach is described in [2].

Other works try to achieve multi-path streaming with the assistance from the
lower layers, e.g., [8] utilizes bandwidth on multiple paths and re-distributes
workload according to congestion detected by a receiver. But, it requires net-
work layer knowledge and a centralized routing server. Given information
about the underlying network graph, [6] proposes multi-path routing heuris-
tics for unicast and multicast scenarios and a data scheduling algorithm at the
server. Similarly, given network link information, [4] discusses a heuristic for
finding a set of paths that minimizes the streaming distortion for a Multiple
Description coded stream. These works assume significant knowledge (i.e., link
bandwidth and delay) and support (i.e., ability to control routing paths) from
the underlying network. In contrast, our approach only deals with end-hosts
and hence allows easy deployment on the Internet. Our only requirement is
that chosen paths do not share points of congestion, which can be detected
at the end-hosts using schemes such as [17]. Also, we focus on packet loss
characteristics rather than bandwidth and delay.

This paper extends the work presented in [9] where we illustrate the potential
benefits of using multi-path streaming to improve the quality of the deliv-
ered CM as compared to single path streaming. This is done by illustrating
lower loss burst lengths and lower correlations in consecutive packet losses. In
particular, the loss characteristics on a network path are characterized by the
Gilbert model (refer to Section 2) — here loss rates experienced at the receiver
are independent of the sending rate on a path. We later [1] study the load dis-
tribution problem in multi-path streaming and show that both the packet loss
rate and the loss correlations are important when choosing an optimization
objective. However, these works are performed under the assumption that the
application’s sending rate does not affect the loss rate on a path. In contrast,
in this work, we illustrate the utility of considering an application’s sending
rate and the resulting effects on the loss characteristics of the streaming ap-
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plication. Specifically, we consider a more general loss model than in [9] which
takes into consideration effects of the data streaming rate on the loss char-
acteristics of a path. We refer to this model as the functional Gilbert model
(FGM); we refer to the original Gilbert model used in [9] as a conventional
Gilbert model, which is a special case of the FGM. The motivation for con-
sidering the FGM is that it is potentially a more realistic representation of a
network path’s loss characteristics (as motivated further in Section 2).

In this paper, we use the FGM to address the following main questions: (a)
what is an optimal splitting of traffic among the multiple paths, and (b) what
resulting benefits can be expected. We also consider what gains can be ex-
pected when we employ erasure codes to further improve QoS. In considering
these questions, throughout the paper (as in [9]) we use the following per-
formance metrics: mean loss rate, lag-1 autocorrelation of consecutive losses,
and burst length distribution of lost packets. (The importance of the latter
two metrics in the resulting visual quality of CM is, e.g., described in [10].)
We show that the conventional Gilbert model may not be sufficient to repre-
sent the loss characteristics of long duration streaming applications. We also
present a methodology for optimizing load distribution (i.e., traffic splitting)
among paths in the context of multi-path streaming. Our results illustrate the
benefits of multi-path streaming over single-path streaming, under optimal
splitting of traffic among the multiple paths.

2 Background and Introduction of the Functional Gilbert Model

Previous works, e.g., [5], use a stationary continuous time Gilbert model (GM)
to characterize potential correlations between consecutive packet losses on a
network path. For a GM, the packet loss process along path k is described by
a two state continuous time Markov chain {Xk(t)} where Xk(t) ∈ {0, 1}. If a
packet is transmitted at time t when the state of path k is Xk(t) = 0, then the
transmitted packet is received correctly by the receiver; the transmitted packet
is considered lost if Xk(t) = 1. Let µ0(k) be the transition rate from state 0 to
state 1 and µ1(k) be the transition rate from state 1 to state 0. The stationary

distribution of this GM is π(k) = [π0(k), π1(k)] where π0(k) =
µ1(k)

µ0(k)+µ1(k)
and

π1(k) =
µ0(k)

µ0(k)+µ1(k)
. Let p

(k)
i,j (τ) be the probability that path k is in state j at

time t+ τ , given that it was in state i at time t, i.e., p
(k)
i,j (τ) = P (Xk(t+ τ) =

j|Xk(t) = i). Then, p
(k)
i,j (τ) can be computed for all τ > 0 from previous work

(refer, e.g., to [9]).

Using a GM to characterize the loss process of a path, [9] studies and compares
the performance of streaming pre-stored CM data under single path and multi-
path settings. In particular, the performance metrics considered are as follows.
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Firstly, loss rate, Pn, is the fraction of lost packets as seen by the receiver
when one uses n ≥ 1 paths for CM streaming. Secondly, lag-1 autocorrelation
function, R[XtXt+δ], measures the degree of dependency of consecutive packet
losses as seen by the receiver, where Xt is a random variable indicating whether
the packet sent at time t is lost or received properly (depending on the state of
the GM) and 1/δ is the bandwidth requirement (in units of packets/sec) of the
streaming application 3 . Thirdly, burst length of lost packets is the probability
mass function of consecutively lost packets as seen by the receiver. Note that
if the lost packets burst length is large, it can (a) significantly affect the
viewing quality of the CM object and (b) reduce the effectiveness of an error
correction scheme, if some form of an erasure code is deployed. Moreover, [9]
illustrates that improvements in these metrics can be obtained by employing a
multi-path streaming technique. However, these results were shown under the
Gilbert model defined above and referred to as a “conventional Gilbert model”
in the remainder of the paper. One major limitation of using a conventional
Gilbert model is that the loss process of a path is independent of the bandwidth
requirements of the streaming application.
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Fig. 2. Functional Gilbert model.

To illustrate the potential dependence of the loss rate on an application’s
bandwidth requirements, we carried out the following Internet experiment.
We transmitted 1400 byte UDP packets from Hong Kong to the west coast of
the USA, using a number of rates from 120 pkts/sec (around 1.34 Mbps) to
1200 pkts/sec (around 12.8 Mbps), with a step size of 120 pkts/sec interval. For
each sending rate, the streaming experiment is carried out for 6 minutes, while
measuring the corresponding achieved loss rate at the receiver. The experiment
is carried out during daytime in Hong Kong, which corresponds to nighttime
on the West Coast of the USA. Figure 1 illustrates the achieved loss rate for
each experimental setting, which is the fraction of lost packets as measured at
the receiver 4 . Figure 1 supports our hypothesis that the conventional Gilbert

3 A high positive value of R[XtXt+δ] implies that a lost packet is very likely to be
followed by another lost packet. A high negative value of R[XtXt+δ] implies that a
lost packet is likely to be followed by a successful packet arrival. If the statistics of
the consecutive packet losses are not correlated, then R[XtXt+δ] = 0.
4 Similar experiments using NS2 [11] gave qualitatively similar results.
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model may not be sufficient for characterizing the loss process of a path. Since
this evidence suggests that an application’s sending rate can significantly affect
the achieved loss rate, we propose to use a functional Gilbert model (FGM) as
a general approach to characterizing the bursty loss nature of a path as well
as its dependency on an application’s bandwidth requirements.

Let λ denote an application’s average sending rate, in units of packets per
second. For a stationary continuous time FGM, the packet loss process along
path k is described by a two state continuous time Markov chain {Xk(t)}
where Xk(t) ∈ {0, 1}. Figure 2 depicts the state transition diagram of this
model. Similarly to the conventional Gilbert model’s definition, if a packet is
transmitted at time t when the state of path k isXk(t) = 0, then no packet loss
occurs; the transmitted packet is considered lost if Xk(t) = 1. The transition
rate 5 from state 0 to state 1 takes a functional form of Fk(λ). The transition
rate from state 1 to state 0 also takes a functional form of Bk(λ). In this paper,
we assume that Fk(λ) and Bk(λ) are continuous and furthermore that Fk(λ)
is a non-decreasing function of λ and Bk(λ) is a non-increasing function of λ.
We note that intuitively these assumptions make sense, and hence, in practice,
they should not be restrictive. When multiple paths have the same functions
in the FGMs (i.e., Fi(λ) = Fj(λ) and Bi(λ) = Bj(λ), for all i, j ≤ M where
M is the number of paths in the system), we say that they are homogeneous
paths; otherwise they are heterogeneous paths. When one uses an FGM to
characterize the loss process of a path, we have the following result.

Theorem 1 Let there beM ≥ 1 homogeneous paths available for CM stream-
ing. Define α = [α1, α2, . . . , αM ] as the vector which determines how the traffic
is split among these M paths, where αi ≥ 0 and

∑M
i αi = 1. The achieved loss

rate via the multi-path streaming approach (PM) is less than or equal to the
achieved loss rate via the single path streaming approach (P1), for all possible
valid traffic splitting vectors α.

Proof: Let PM be the achieved loss rate for the multi-path streaming ap-
proach, with all paths being homogeneous, i.e., PM =

∑M
j=1 αj

F(αjλ)

F(αjλ)+B(αjλ)
.

Since paths are homogeneous, the achieved loss rate under single path stream-
ing is P1 = F(λ)

F(λ)+B(λ)
. Let path k∗ be the path that has the largest loss rate,

that is, F(αk∗λ)
F(αk∗λ)+B(αk∗λ)

≥ F(αjλ)

F(αjλ)+B(αjλ)
for all j ∈ {1, . . . ,M}. Then we have

PM ≤
∑M

j=1 αj
F(αk∗λ)

F(αk∗λ)+B(αk∗λ)
= F(αk∗λ)

F(αk∗λ)+B(αk∗λ)
= P ∗

M . Note that P ∗
M − P1 ≤ 0

implies that PM − P1 ≤ 0. Since P ∗
M − P1 = F(αk∗λ)

F(αk∗λ)+B(αk∗λ)
− F(λ)

F(λ)+B(λ)
, we

need to show that F(αk∗λ) (F(λ) + B(λ)) - F(λ) (F(αk∗λ) + B(αk∗λ)) ≤ 0,
to prove that P ∗

M−P1 ≤ 0 and hence PM−P1 ≤ 0. Expanding the terms gives

5 In what follows, we drop the path designation from the notation whenever it is
clear from context, e.g., when paths are homogeneous.
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F(αk∗λ)F(λ) + F(αk∗λ)B(λ)−F(λ)F(αk∗λ)−F(λ)B(αk∗λ)

= F(αk∗λ)B(λ)−F(λ)B(αk∗λ) ≤ F(αk∗λ)B(αk∗λ)−F(λ)B(αk∗λ)

= B(αk∗λ) [F(αk∗λ)−F(λ)] ≤ 0.

Remark: This theorem implies that under the homogeneous path assump-
tion, any valid traffic splitting in a multi-path streaming approach will do no
worse than single path streaming in terms of the packet loss rate metric. An
interesting question to ask is what is the right metric to optimize in determin-
ing the traffic split among the M paths. We consider this and the resulting
performance effects below.

3 Optimal Traffic Splitting

In this section, we present a framework for determining appropriate traffic
splitting between the multiple paths used for CM streaming. We use the
achieved loss rate and lag-1 autocorrelation (as described in Section 2) as
our objective functions. Although, we consider a single performance metric at
a time in this optimization process 6 , in Section 4 we illustrate the effects of
this optimization process on the other performance metrics.

3.1 Optimization Based on Achieved Loss Rate

We first consider the minimization of the loss rate, PM , achieved at the receiver
as our objective. For path j, let Fj(b) denote the functional transition rate
from state 0 to state 1 when the streaming traffic on path j is b pkts/sec.
Similarly, Bj(b) denotes the functional transition rate from state 1 to state
0 when the streaming traffic on path j is b pkts/sec. Let us first consider a
simple case wherein there are two paths available for CM streaming. We define
Fj(αjλ) = Fj(αjλ)

Fj(αjλ)+Bj(αjλ)
, for j = 1, 2 and express the achieved loss rate as

P2 = α1F1(α1λ) + (1 − α1)F2((1 − α1)λ). We can then state the following
theorem for a 2-paths homogeneous system.

Theorem 2 Under a 2-paths system, if the two paths are homogeneous, and
Fj(αjλ) is a convex non-decreasing function (j = 1, 2), then the traffic splitting
vector αeven = [1

2
, 1

2
] is optimal, i.e., it achieves the lowest loss rate.

6 If multiple (equivalent) optimum solutions exist, secondary performance metrics
can be used to “break the tie”, e.g., as described in Section 3.2.
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Proof: Assume there exists an α
′ = [α1, α2], which results in the lowest

loss rate and α1 6= α2. Let α1 < 1
2
and α2 > 1

2
. As paths are homoge-

neous, the achieved loss rate is P2(α
′) = α1F (α1λ) + α2F (α2λ). Given that

F (αjλ) is a non-decreasing function, as well as α1 <
1
2
and α2 >

1
2
, we have

P2(α
′) ≥ 1/2F (α1λ) + 1/2F (α2λ). Due to the property of convex functions

and α1 + α2 = 1, P2(α
′) ≥ F (1

2
(α1λ+ α2λ)) = F (1

2
λ). It is easy to show that

F (1
2
λ) = P2(αeven), which is the achieved loss rate corresponding to αeven.

Thus, we have P2(α
′) ≥ P2(αeven). This implies that in a 2-paths homogeneous

streaming system where F (αjλ) is a convex non-decreasing function, the traf-
fic splitting vector α = [ 1

2
, 1

2
] is optimal, i.e., it achieves the lowest loss rate.

To illustrate the performance gains due to multi-path streaming, we consider
a family of functional transition rates. In particular, we consider the FGM for
path j, for j = 1, . . . ,M , to have the form of

Fj(b) = βjb
θj + Sj, Bj(b) = κj/b

χj + ϕj (1)

where βj, κj, χj ≥ 0, and θj, Sj, ϕj > 0 7 . In other words, Fj is a non-
decreasing function while Bj is an non-increasing function of the traffic band-
width b. These forms can represent a large family of Gilbert models. For ex-
ample, for a conventional Gilbert model, a constant transition rate from state
0 to state 1 can be represented by setting Sj > 0, βj = 0, and θj = 0, and a
constant transition rate from state 1 to state 0 can be represented by setting
κj = 0 and ϕj > 0. A linearly increasing function of Fj(b) can be represented
by setting βj > 0 and θj = 1. A function Bj(b) which decreases as an inverse
of the packet rate can be represented by setting κj > 0 and χj = 1.

Consider now an application with an average bandwidth requirement of 120
pkts/sec (e.g., a representative 1.28Mbps MPEG 1 video stream with 1400
byte packets). We first consider a system with homogeneous paths having the
following simple functions for the FGM: F(b) = 0.2333×b and B(b) = 24750/b,
as an illustration. One motivation for choosing simple forms for illustration
is that they will be easier to extract from measurements in a real system.
Figure 3 depicts the loss rates for a system under two homogeneous paths as a
function of α1 (the corresponding α2 is 1−α1). Figure 4 illustrates the contour
map of loss rates for three homogeneous paths (with the same parameters as
the 2-paths system) at various values of α. Under this homogeneous paths
example, the loss rate using single path streaming is 11.953%. Under the 2-
paths streaming approach, the achieved loss rate is reduced to 3.283%, with

7 We also tried other forms, e.g., Fj(b) = βj (b/σj)
θj + Sj , Bj(b) = κje

−χjb + ϕj .
The results are similar to those presented in this paper.
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with 3 homogeneous paths.

α
∗ = [0.5, 0.5], and the corresponding lag-1 autocorrelation is 0. The 3-paths

system reduces the loss rate further to 1.486%, with α∗ = [1/3, 1/3, 1/3].

Now let us consider an example with the same bandwidth requirement of 120
pkts/sec but under a heterogeneous paths setting. We first consider a system
with two heterogeneous paths wherein F1(b) = 0.4 × b, B1(b) = 21000/b,
F2(b) = 0.0667 × b, and B2(b) = 28500/b, as an illustration. Note that given
the same packet rate on a path, path 2 has better loss characteristics than
path 1. Figure 5 depicts the loss rate as a function of α1 (with α2 = 1− α1).
Figure 6 depicts the contour map of loss rates at various values of α when
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path 3 is added with F3(b) = 0.2333 × b and B3(b) = 24750/b (i.e., path 3
has loss characteristics in between path 1 and path 2). Under the best single
path streaming approach (i.e., path 2 in this case), one can achieve a loss
rate of 3.259%. Using 2-paths streaming, we reduce the loss rate to 1.814%,
with α∗ = [0.260, 0.740], and the corresponding lag-1 autocorrelation is 0.012.
We reduce the loss rate further via 3-paths streaming to 0.976%, with α∗ =
[0.190, 0.541, 0.269]. This example illustrates that the traffic splitting flexibility
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of the multi-path approach provides us an opportunity to reduce the mean loss
rate of a streaming application to a point which would not be possible with a
single best-path type approach. Note that the additional path which was not
present in the 2-paths example is not the best of the three, yet it allows us to
reduce the loss rate further. The above given examples illustrate the benefits
of multi-path streaming when optimizing the achieved loss rate. We explore
this in more detail in Section 4.

3.2 Optimization Based on Lag-1 Autocorrelation

As explained in Section 2, metrics other than the loss rate can have a significant
effect on the viewing quality of CM, e.g., the lag-1 autocorrelation. Hence, we
now consider the problem of finding an appropriate traffic splitting when one
wants to optimize the achieved lag-1 autocorrelation function, RM , rather
than the loss rate, PM . As stated earlier, the lag-1 autocorrelation function,
R[XtXt+δ], measures the degree of dependency of consecutive packet losses as
seen by the receiver, where Xt is a random variable indicating whether the
packet sent at time t is lost or received properly (depending on the state of
the FGM). It can be derived as

R[XtXt+δ] =
E[(Xt − X̄ )(Xt+δ − X̄ )]

E[(Xt − X̄ )2]
=
E[XtXt+δ]− X̄

2

E[X 2
t ]− X̄ 2

=
E[XtXt+δ]− X̄

2

X̄ − X̄ 2
= 1−

X̄ − E[XtXt+δ]

X̄ − X̄ 2
≈ 1−

Pr[burst]

X̄ (1− X̄ )
(2)

where Pr[burst] is the probability of there being an error burst of any length 8 .
For instance, assuming equally spaced inter-arrival times on a path, we have
the following for M = 2:

Pr[burst]

=



























[α2 − α1]π0(2)p
(2)
0,1(δ2) + α1π0(1)π1(2) + α1π0(2)π1(1) α1 < α2

1
2
π0(1)π1(2) +

1
2
π0(2)π1(1) α1 = α2 = 1

2

[α1 − α2]π0(1)p
(1)
0,1(δ1) + α2π0(1)π1(2) + α2π0(2)π1(1) α1 > α2

and

8 Essentially, Pr[burst] is the probability of encountering the beginning of a burst
(i.e., a no loss followed by a loss) when inspecting a stream at a random point.
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R[XtXt+δ] =



























1−
[α2−α1]π0(2)p

(2)
0,1(δ2)+α1π0(1)π1(2)+α1π0(2)π1(1)

[α1π0(1)+α2π0(2)][α1π1(1)+α2π1(2)]
α1 < α2

1− π0(1)π1(2)+π0(2)π1(1)
1
2
[π1(1)+π1(2)][π0(1)+π0(2)]

α1 = α2 = 1
2

1−
[α1−α2]π0(1)p

(1)
0,1(δ1)+α2π0(1)π1(2)+α2π0(2)π1(1)

[α1π0(1)+α2π0(2)][α1π1(1)+α2π1(2)]
α1 > α2

(3)

where δk denotes the time interval between two consecutively transmitted
packets on path k (i.e., δk =

1
αkλ

). Note that π0(k), π1(k) and p
(k)
i,j are obtained

from the FGM. (A detailed derivation is given in [7]; we omit it here due to
lack of space.)

We now define an optimal traffic split as a split which minimizes the absolute
value of the lag-1 autocorrelation function. The intuition here is that we aim
to reduce correlations between packet losses, as explained in Section 2. There-
fore, to find an optimal traffic split, α∗ = [α∗

1, 1−α
∗
1], we equate the numerator

in Equation (3) to zero. This equation can be solved using standard numerical
methods for finding roots. If more than one solution for α1 satisfies this equa-
tion, then we can use a secondary objective. For instance, we can check the
corresponding loss rates and choose the one with the lowest loss rate. Note
that, when the two paths are homogeneous (i.e., F1() = F2() in this case),
then equal splitting of traffic along these two paths (i.e, α1 = α2 = 1/2) is a
critical point in this optimization problem. This claim can be easily verified
as follows:

1−
π0(1)π1(2) + π0(2)π1(1)

1
2
[π1(1) + π1(2)][π0(1) + π0(2)]

=
−[π1(1)− π1(2)]

2

[π0(1) + π0(2)][π1(1) + π1(2)]

which equals to zero when π1(1) = π1(2), i.e., when F1(α1λ) = F2(α2λ). As
paths are homogeneous, this equation is satisfied when α1 = α2 = 1/2.

To illustrate the optimization based on lag-1 autocorrelation, we again con-
sider paths characterized by the FGM with functional forms given in Equation
1 and an application with a bandwidth requirement of 120 pkts/sec. We first
consider a system with homogeneous paths having the following simple func-
tions for the FGM: F(b) = 0.2333× b and B(b) = 24750/b, as an illustration.
Figure 7 depicts the corresponding lag-1 autocorrelation as a function of α1

(the corresponding α2 is 1 − α1). In this example, the optimized lag-1 au-
tocorrelation is zero, with α

∗ = [0.5, 0.5] and a corresponding loss rate of
3.283%.

Now let us consider an example with the same bandwidth requirement of 120
pkts/sec but under a heterogeneous paths setting. Specifically, we consider
a system with two heterogeneous paths wherein F1(b) = 0.4 × b, B1(b) =
21000/b, F2(b) = 0.0667×b, and B2(b) = 28500/b. Figure 8 illustrates the lag-
1 autocorrelation as a function of α1 (with α2 = 1− α1). In this example, we
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Fig. 7. Lag-1 autocorrelation with
2 homogeneous paths.
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Fig. 8. Lag-1 autocorrelation with
2 heterogeneous paths.

can determine two α1’s (one being smaller than 0.5 and the other being larger
than 0.5) which both achieve lag-1 autocorrelation of zero. By comparing
the corresponding loss rates, we choose α∗ = [0.347, 0.653], corresponding
to the loss rate of 2.035%. (The second optimal lag-1 autocorrelation point
corresponds toα∗ = [0.690, 0.310] and a loss rate of 8.06%.) We further explore
the potential of optimizing traffic splitting based on lag-1 autocorrelation in
Section 4.

Remark: One can, of course, consider other performance metrics as opti-
mization objectives, e.g., the mean error burst length. One could also consider
combinations of metrics, e.g., mean loss rate × mean burst length which tries
to encompass the importance of loss rate and correlations. Due to space limi-
tations, further discussion of these objective functions and their derivation [7]
are omitted. These are also explored in [1] but in the context of the conven-
tional GM. We do note that, when erasure codes are added, one might want to
minimize the conditional mean information lost rate (MILR), which is the loss
rate of the media data after the lost packet reconstruction process. However,
an analytical derivation of this metric is complex. In Section 4, we obtain an
optimum MILR from simulations and compare it with results based on other
optimization objectives.

4 Simulation Experiments

In this section, we consider two types of experiments: type A, where servers
send only data packets to the receiver, and type B, where an erasure code is
used to reconstruct lost packets as much as possible. For all experiments, each
data packet has a size of 1400 bytes with a packet group size of k = 1000.
For each path, packet losses are emulated according to the FGM. The results
presented below are obtained through simulation using CSIM[12] with optimal
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load distributions (α∗) obtained using the analytical formulations presented
in Section 3 9 . Each simulation is analogous to a 24 hour CM stream.

Type A Experiments: Streaming Without an Erasure Code: We
consider a system with two heterogeneous paths wherein F1(b) = 0.4 × b,
B1(b) = 21000/b, F2(b) = 0.0667 × b, and B2(b) = 28500/b. Tables 1 and 2
illustrate various performance metrics, such as the optimal splitting vector α∗,
the achieved loss rate, the achieved lag-1 autocorrelation as well as the sys-
tem’s performance when we stream the data using the best single path and a
round-robin approach (i.e., evenly spreading the workload without performing
optimization).

Rate Loss rate Lag-1 Best SP RR

(pkts/sec) α∗1 α∗2 at α∗ at α∗ Loss Rate Loss Rate

60 0.260 0.740 0.462% 0.000017 0.831% 0.949%

120 0.260 0.740 1.808% 0.011906 3.258% 3.632%

360 0.260 0.740 14.261% 0.300698 23.273% 22.603%

Table 1
2-paths optimization based on loss rate.

Rate Loss Rate Lag-1 Best SP RR

(pkts/sec) α∗1 α∗2 at α∗ at α∗ Lag-1 Lag-1

60 0.093 0.907 0.627% 0.000128 0.000469 -0.006212

120 0.347 0.653 2.039% -0.000272 0.129062 -0.022340

360 0.550 0.415 26.094% -0.093527 0.750808 -0.137788

Table 2
2-paths optimization based on lag-1 autocorrelation.

We also consider improvements in the various performance measures when a
third path is added, wherein F3(b) = 0.2333 × b and B3(b) = 24750/b. Note
that this additional path does not posses the best packet loss characteristics;
therefore, it simply provides greater path diversity for the data transmission
process. Table 3 illustrates the corresponding performance metrics 10 and Fig-
ures 9 and 10 illustrate the corresponding conditional lost packet burst length
probability mass functions, conditioned on there being a loss 11 , for applica-
tion sending rates of 120 pkts/sec and 360 pkts/sec, respectively 12 . This is
illustrated for 2-paths and 3-paths streaming and under different traffic split-
ting methods, e.g., “Loss 2p” refers to using 2-paths with load distribution

9
α
∗ only gives the relative traffic loading ratios among the M paths; in a real

system, α∗ still needs to be mapped to a packet sending pattern. Due to lack of
space, we omit the specifics of this “quantization” process as described in [7].
10 Corresponding best path results are given in Tables 1 and 2.
11We present the probability mass function rather than the probability distribution
function, as we believe it depicts the results of the experiments better.
12When the sending rate is 60 pkts/sec, almost all lost packet bursts are of length
one under any of the mentioned traffic splitting methods; thus the corresponding
figure is omitted.
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computed using the loss rate based optimization method, “RR 3p” refers to
using 3-paths with the round-robin approach, “Best SP” refers to using the
best single path, etc.

Rate Loss Rate Lag-1 RR RR

(pkts/sec) α∗ at α∗ at α∗ Loss Rate Lag-1

60 [0.188,0.542,0.270] 0.247% 0.000104 0.416% -0.000350

120 [0.190,0.541,0.269] 0.975% 0.000172 1.604% -0.003258

360 [0.190,0.541,0.269] 8.156% 0.092063 12.237% -0.025815

Table 3
3-paths optimization based on loss rate.
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probability mass functions (360
pkts/sec).

In both experiments we observe that loss rate-based optimization can sig-
nificantly reduce the packet loss rate, but it has a higher lag-1 autocorrela-
tion than the lag-1 autocorrelation-based optimization method. Also, the lost
packet burst length probability mass function under the lag-1 autocorrelation-
based optimization method as well as under the round-robin approach is more
skewed toward single packet losses — this should improve the visual quality of
CM. When we move from a 2-paths system to a 3-paths system, in most cases,
we observe that there is an improvement in terms of loss rate, lag-1 autocorre-
lation, and lost packet burst length probability mass function, when one uses
the loss rate-based optimization method. Overall, we observe that both opti-
mization methods result in better system performance (under several metrics)
than best-path streaming or the round-robin approach.

Type B Experiments: Streaming with an Erasure Code: We consider
the effects of an erasure code on the various performance measures. Since
numerous erasure coding schemes exist we first give a brief explanation of the
erasure code used here. We divide a video file into groups of data packets such
that each group consists of k data packets. Given each group of k data packets,
we generate n > k packets. We refer to these n packets as an erasure code
(EC) group. The encoding scheme is such that, if the number of lost packets
within an EC group is less than or equal to (n− k), then we can reconstruct
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the original k data packets within that EC group. In the following experiment,
we consider an EC with parameters k = 64 and n = 72, i.e., the bandwidth
requirements of the streaming application are increased by 12.5%. Note that
this overhead is the same for single path and multi-path streaming. Optimal
load distributions are obtained using the analysis in Section 3 but with an
increased packet sending rate (due to the overhead).

Rate Info. Loss Lag-1 Best SP RR

(pkts/sec) α∗1 α∗2 Rate at α∗ at α∗ Info. Loss Rate Info. Loss Rate

60 0.260 0.740 0 N.A. 0 0

120 0.260 0.740 0.001% 0.146542 0.177% 0.057%

360 0.260 0.740 15.055% 0.378475 26.754% 26.128%

Table 4
2-paths optimization based on loss rate (with erasure code).

Rate Info. Loss Lag-1 Best SP RR

(pkts/sec) α∗1 α∗2 Rate at α∗ at α∗ Lag-1 Lag-1

60 0.158 0.842 0 N.A. N.A. N.A.

120 0.362 0.638 0.002% 0.144608 0.400462 0.074382

360 0.416 0.584 20.567% 0.051666 0.778310 -0.071064

Table 5
2-paths optimization based on lag-1 (with erasure code).

Similarly to type A experiments, we first consider two heterogeneous paths
wherein F1(b) = 0.4 × b, B1(b) = 21000/b, F2(b) = 0.0667 × b, and B2(b) =
28500/b. Tables 4 and 5 illustrate various performance metrics, such as the
optimal splitting vector α∗, the achieved information loss rate, the achieved
lag-1 autocorrelation, as well as the system’s performance when we stream the
data under the best single path or using the round-robin approach. Information
loss refers to packet loss after the reconstruction process.
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length probability mass func-
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Again, we consider the improvements in various performance measures when
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we employ an erasure code and an additional path wherein F3(b) = 0.2333× b
and B3(b) = 24750/b. Table 6 illustrates the relevant performance metrics 13 ,
and Figures 11 and 12 illustrate the corresponding conditional lost packet
burst length probability mass function, conditioned on there being a loss,
for application sending rates of 120 pkts/sec and 360 pkts/sec, respectively 14 .
This is illustrated for 2-paths and 3-paths streaming and under different traffic
splitting methods, e.g., “Loss 2p” refers to using 2-paths with load distribution
computed using the loss rate based optimization method, “RR 3p” refers to
using 3-paths with the round-robin approach, etc.

Rate Info. Loss Lag-1 RR Info. RR

(pkts/sec) α∗ Rate at α∗ at α∗ Loss Rate Lag-1

60 [0.191,0.540,0.269] 0 N.A. 0 N.A.

120 [0.190,0.541,0.269] 0 N.A. 0 N.A.

360 [0.190,0.541,0.269] 5.301% 0.217488 12.256% 0.012303

Table 6
3-paths optimization based on loss rate (with erasure code).

From above experiments, we observe that when one adopts an erasure code, in
most cases, it can reduce the information loss rate but not the lag-1 autocor-
relation. However, when the packet sending rate is high, employing an erasure
code may have an adverse effect of increasing the loss rate (i.e., degrading the
loss characteristics of paths, e.g., 2-paths streaming with 360 pkts/sec and
traffic splitting optimized based on loss rate). When an additional path is
available, the workload (including the overhead) can be spread among more
paths; this results in better information loss rate. We can also observe that our
optimization methods result in significantly better system performance (un-
der several metrics) than best path streaming or the round-robin approach.
Moreover, we observe that optimization based on the loss rate may produce a
lower information loss rate than the other optimization methods.

As mentioned in Section 3, one might want to minimize the mean information
lost rate (MILR), which is the loss rate of the media data after the lost packet
reconstruction process. Here we obtain an optimal load distribution based
on the MILR metric by an essentially brute force search on the simulation
results as an analytical derivation of this metric is quite complex. We do
this only to illustrate the utility of the loss rate based optimization; we, of
course, do not suggest the use of this brute force technique in real systems. For
simplicity of presentation, we consider a 2-paths system. Path 1 corresponds
to F1(b) = 0.2333 × b and B1(b) = 24750/b. We vary the quality of path
2 and search for the optimal load distribution in simulation by testing all
possible α1 and picking the one with minimum resulting information loss rate.

13 Corresponding best path results can be found in Tables 4 and 5.
14 The 60 pkts/sec case is omitted as all the missing data is reconstructed.
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mizing MILR (360 pkts/sec).

Let q denote the quality of path 2 ranging from 0 to 100 (0 meaning the
best quality). The functions for the path 2 FGM are defined as: F2(b) =
(0.0667 + q/300)× b, B2(b) = (28500− q ∗ 75)/b. When q = 0, these functions
become: F2(b) = 0.0667 × b, B2(b) = 28500/b and are equal to the best path
we used in the above experiments. When q = 100, these functions become:
F2(b) = 0.4×b, B2(b) = 21000/b and are equal to the worst path we used in the
above experiments. Note that path 1 here has the same FGM functions as the
third path we used in the above 3-paths system. It has loss characteristics in-
between the best path and the worst path. Figures 13 and 14 show an optimal
MILR-based load on path 1 when we vary the quality of path 2 for application
sending rates of 120 pkts/sec and 360 pkts/sec, respectively. The results of
optimal load on path 1 when one optimizes the loss rate are also shown; they
indicate that optimization based on loss rate produces a load distribution close
to an MILR-based optimum. This suggests that (under erasure code use),
packet loss rate based optimization (with an appropriately adjusted sending
rate) is a reasonable approximation to minimizing MILR.

5 Prototype Experiments

We implemented a multi-path streaming prototype [2], used here to study
the performance metrics given in Section 2 as well as the resulting visual
quality. Although the packet losses are still emulated using the FGM, the
MPEG streams and their processing are real; hence we are able to illustrate
the resulting visual quality in addition to the performance metrics. We stream
a 150 second MPEG1 file requiring a 174.5 Kbps playback rate (≈ 170 pkts/sec
with a packet size of 1024 bytes); with k = 64 and n = 72, the packet sending
rate is increased to ≈ 192 pkts/sec. Two heterogeneous paths are used, with
packet losses occurring according to their respective FGMs. FGM parameters
for path 1 (with better loss characteristics), are: F1(b) = 0.0667 × b, B1(b) =
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Test Loss Rate Lag-1 Avg. Burst Length Info.

Case before EC before EC before EC Loss Rate

1. 6.569% 0.393 1.762 1.688%

2. 35.630% 0.363 2.439 35.642%

3. 6.955% -0.040 1.034 1.000%

4. 3.403% 0.174 1.253 0.090%

Table 7
Prototype experiments: Average loss statistics.

28500/b, and FGM parameters for path 2 (with worse loss characteristics), are:
F2(b) = 0.4 × b, B2(b) = 21000/b, where b = 192 packets/sec. Using the loss
rate based optimization approach in Section 3 we obtain α∗ = [0.741, 0.259].
Four cases with different traffic splitting vectors are studied: (Case 1) single
path with better loss characteristics (using path 1), (Case 2) single path with
worse loss characteristics (using path 2), (Case 3) dual path using even traffic
splitting, and (Case 4) dual path using optimal traffic splitting vector α∗.
Packet loss statistics are measured at the receiver throughout the streaming
process. Video frames are transcoded to JPEG files to allow visual quality
inspection. Table 7 gives the corresponding average statistics measured. Each

Single best path Single worst path Dual path (even split) Dual path (opt loss)

Fig. 15. Prototype experiments: visual quality of video frames.

column in Figure 15 depicts a sequence of frames extracted from a particular
test case; frames in the same row originate from the same original video frame
prior to transmission. From these results, we make the following observations.
(1) Information loss rate significantly affects visual quality: When we relate the
information loss rate in Table 7 with the frame sequences’ quality indication
in Figure 15, we find that higher information loss rate corresponds to poorer
video quality. When the information loss rate is extremely high, for example
35.642% in Case 2, all the frames in the video sequence are damaged. When
the loss rate is improved to 1.688% as in Case 1, some damaged frames can
be found in some video segments. If some important data is lost (e.g., an I
frame in the MPEG1 standard), scene mixing may also occur, as shown in the
captured video output of Case 1. When the information loss rate is further
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improved to 1% in Case 3, video distortion happens less frequently and most
of the distortion is in the form of “blocking effects”. When the loss rate is very
low, e.g. 0.09% in Case 4, distortion is very rare and mostly unnoticeable to
the human eye.
(2) Introducing EC may cause adverse effects: Improper adding of EC may
not improve the resulting information loss rate, e.g., in Case 2, the loss rate
before the EC operation is less than the information loss rate. Adding an EC
increases the loading along a congested path which may degrade the resulting
loss characteristics.
(3) Use of EC is more effective under multi-path streaming: By reducing the
lag-1 auto-correlation and shortening the error burst length, the multi-path
technique enhances the error correction capability of an EC. For example, the
loss rate before an EC for Case 1 (single best path) is 6.569% and the loss
rate before an EC for for Case 3 (dual path with even split) is 6.955%. Using
the best single path in Case 1 can give a lower loss rate before the EC process.
However, after the error correction process, information loss rate is 1.688%
for Case 1 and 1% for Case 3, i.e., the reconstruction process recovers more
packet losses in the dual path case as compared to the single path case. The
visual quality, which is strongly related to the information loss rate, is also
better in Case 3 than in Case 1. It shows that simply using the best single
path for video streaming may not be a good approach.
(4) A path with worse loss characteristics can be used to improve the overall
performance: Although path 2 is a worse path than path 1, it can still be
used to share a fraction of the workload to improve the overall quality of the
received video, i.e., the two multi-path test cases give better performance than
the two single path test cases.
(5) Using an optimal traffic splitting vector can result in better performance:
The lowest loss rate achieved in Case 4 indicates that simply splitting the
traffic evenly between paths may not result in the best use of multiple paths.

6 Conclusions

We considered the problem of providing QoS in streaming pre-stored CM us-
ing an application-layer multi-path streaming approach. An advantage of this
approach, as compared to approaches that require support of lower layers and
resource reservation schemes, is that the complexity of QoS provision can be
pushed to the network edge. Hence, we can improve the scalability and deploy-
ability of a streaming application and at the same time provide a certain QoS
level. Our past work evaluated the potential benefits of multi-path streaming
using a conventional Gilbert model. Evidence presented here indicates that
this model may not be sufficient, and hence we proposed a functional Gilbert
model (FGM) which is more expressive in capturing the dependency between
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an application’s sending rate and the loss characteristics of a path. We showed
that under the FGM and with homogeneous paths, any valid traffic splitting
has a packet loss rate no worse than a single path streaming approach. We then
focused on optimal traffic splitting approaches. We presented results based on
two optimization objectives, with and without the use of erasure codes. More-
over, no matter whether an erasure code is added or not, we observed that both
optimization methods result in significantly better system performance (under
several metrics) than single best path streaming or the simple round-robin ap-
proach. Finally, we have also implemented a prototype multi-path streaming
system which we used to illustrate the significant merits of the the multi-path
streaming approach in improving the visual quality of CM delivery.
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