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ABSTRACT
Stringent requirements on modern software systems dictate eval-
uation of dependability qualities, such as reliability, as early as
possible in a system’s life cycle. A primary shortcoming of the
existing design-time reliability prediction approaches is their lack
of support for modeling and analyzing concurrency in a scalable
way. To address the scalability challenge, we propose SHARP,
an architecture-level reliability prediction framework that analyzes
a hierarchical scenario-based specification of system behavior. It
achieves scalability by utilizing the scenario relations embodied in
this hierarchy. SHARP first constructs and solves models of basic
scenarios, and combines the obtained results based on the defined
scenario dependencies; the dependencies we handle are sequential
and parallel execution of multiple scenarios. This process itera-
tively continues through the scenario hierarchy until finally obtain-
ing the system reliability estimate. Our evaluations performed on
real-world specifications indicate that SHARP is (a) almost as accu-
rate as a traditional non-hierarchical method, and (b) more scalable
than other existing techniques.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Reliability

Keywords
Scalability, Concurrent Systems, Hierarchical Approach

1. INTRODUCTION
The success of most software systems is directly related to their

dependability. One of the challenges in developing dependable
software is that problems discovered during system implementation
or operation can be prohibitively costly to address [2]: the princi-
pal design decisions that critically affect system dependability are
made long before [26]. This suggests that analyzing a system’s de-
pendability at design time is of critical importance. In this paper,
we focus on estimating the reliability of a system under design,
and propose SHARP, a Scalable, Hierarchical, Architecture-level,
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Reliability Prediction framework, which improves upon the current
state-of-the-art. To motivate the need for SHARP, we first highlight
the shortcomings of the existing approaches.

A number of existing approaches quantify the reliability of a sys-
tem by analyzing its architectural models (recently surveyed in [8,
12, 13, 15]). These existing techniques generate a stochastic relia-
bility model from software architectural models, and most of them
assume a sequential system for which a reliability model only needs
to keep track of the currently running component. This is inade-
quate when modeling realistic systems in which many components
are running and communicating concurrently. A straightforward
approach to predicting the reliability of a concurrent system is to
build a model that keeps track of the internal states of all system
components. Such an approach is taken, e.g., in [7, 22, 28]; in this
paper we refer to a model produced using such approaches as a “flat
model”. Flat-model approaches suffer from scalability (i.e., “state
explosion”) problems: generating and solving the reliability mod-
els is prohibitively costly, and even infeasible, with growing system
sizes.

By contrast, the framework we propose in this paper, SHARP,
explicitly focuses on predicting reliability of concurrent software
systems in a scalable and accurate manner. At a high level, we
generate continuous-time Markov chain (CTMC)-based reliability
models from software architectural models — each describing a
different part of the system’s behavior. Reliability can then be com-
puted by appropriately combining the results of the models. The
improved scalability is achieved through an iterative hierarchical
approach that takes advantage of the popular scenario-based be-
havioral specifications. For example, SHARP can assess reliability
of a system whose behavior is described using high-level Message
Sequence Charts (hMSCs) [27], Interaction Overview Diagrams
(IODs) [29], or UML Sequence Diagrams with fragments [19].
Note that these specification languages allow an engineer to specify
how smaller behavioral sequences form more complex behaviors.
To ensure the accuracy of the reliability estimates, SHARP takes
into account the contention for system resources while combining
different parts of a system’s behavioral description.

To use SHARP, an engineer needs to provide a system’s behav-
ioral specification, help to define the failure states, and specify the
operational profile. Our previous work [3, 15] provides an in-depth
treatment of the information sources from which these inputs are
derivable; note that SHARP does not require more input informa-
tion than other existing techniques. Based on the inputs, SHARP
produces a system reliability estimate, as well as the reliability es-
timates for the smaller scenario sequences.

The input behavioral specification should consist of a system-
level scenario-based specification (e.g., hMSC or IOD) and compo-
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Figure 1: Components’ state diagrams

nent-level state machine behavior models.1 The scenario specifica-
tion has two parts: (a) the description of the desirable event se-
quences (basic scenarios) and (b) the characterization of how dif-
ferent scenarios relate to one another (complex scenarios). SHARP
accounts for different types of scenario dependencies: sequential
(scenario A is followed by scenario B), conditional (scenario A is
followed by scenario B or scenario C), and concurrent (scenario A
and scenario B run concurrently). The expected operational profile
should define the frequencies of event occurrence, the probabili-
ties of the conditional scenario continuations, and the number of
scenario instances that can be running concurrently. In our work,
we identify failure states by analyzing architectural defects using
our previously published technique [3, 24]; note that SHARP is
not dependent on these specific techniques and any other existing
technique can be used to obtain the failure information.

The main idea behind SHARP is that rather than considering a
concurrent system as having simultaneously running components
(e.g., [22]), we view it as having different scenarios executing con-
currently. To generate a system model, SHARP first generates
and solves reliability models of the basic scenarios, and then in-
corporates these results into higher-level models according to the
defined inter-scenario relationships. We have developed efficient
algorithms for (a) estimating the reliability of a complex scenario
comprising a sequence of dependent lower-level scenarios and (b)
estimating the reliability of a complex scenario comprising multi-
ple concurrently running lower-level scenarios. SHARP iteratively
goes through the behavioral specification until finally calculating
the reliability of the highest-level scenario. Intuitively, a model of
a basic scenario is expected to be relatively small, and solving a
number of smaller submodels (rather than one very large, possi-
bly intractable model) while intelligently combining them results
in both space and computational savings.

As mentioned above, an important consideration distinguishing
SHARP from related approaches is that software components in
a concurrent system share and compete for resources such as ser-
vices provided by other components. To ensure that the reliability
estimates are accurate although submodels are analyzed separately,
SHARP analyzes the contention between software components and
incorporates the results into the reliability models.

We evaluate SHARP’s scalability and accuracy on a set of real-
world system specifications. Since SHARP is an approximation of
the “flat model” used in other techniques, we examine the extent
to which SHARP’s scalability benefits are achieved at the cost of
prediction accuracy. Our results demonstrate that SHARP provides
accurate estimates when compared to the “flat model”, while sig-
nificantly reducing computational cost in practice.

In Section 2, we describe a running example used in this pa-

1These can be automatically obtained from a scenario specification
using existing techniques (e.g., [14, 29]).

per, and discuss additional background of the presented work. We
overview the different parts of the SHARP framework in Section 3
and describe the specifics of the reliability computation algorithms
in Section 4. We follow with our evaluations in Section 5, and
describe other architecture-based reliability estimation techniques
related to SHARP in Section 6. Finally, we conclude in Section 7.

2. BACKGROUND
In this section we introduce the running example (Section 2.1),

summarize our prior work used to populate the initial software
models with reliability related information (Section 2.2).

2.1 Running Example
The running example we use in this paper is a version of MIDAS,

a sensor network application [17]. The application monitors the
room temperature and controls the air conditioner (AC). MIDAS
consists of five different types of components: a Sensor measures
temperature and sends the measured data to a Gateway. The Gate-
way aggregates and translates the data and sends it to a Hub, which
determines whether it should turn the AC unit on or off. Users
can view the current temperature and change the thresholds using a
GUI component, which then sends an update to the Hub.

The state diagrams depicted in Figure 1 capture the behavior of
the MIDAS components. In a component state diagram, an event E
is either a sending event or a receiving event. Sending and receiving
events is represented by “–” and “+”, respectively. In SHARP, an
event needs to have a specification of its arrival rate in states in
which that event is enabled. Some of the state machines in Figure 1
include failure states (labeled with −1) that represent erroneous
behavior triggered by a failure event F . Below, we outline how
we derive a system’s operational profile and the component failure
states in our evaluations.

The system-level behavior of MIDAS is captured using five basic
scenarios shown in Figure 2:

• the SensorGW scenario processes measurements from a Sen-
sor by a Gateway (Figure 2(a));

• the GWHub scenario processes aggregated measurements from
a Gateway to the Hub (Figure 2(b));

• the GWAck scenario acknowledges the Sensor’s measurement
(Figure 2(c));

• the GUIRequest scenario updates the temperature readings
and changes thresholds (Figure 2(d)); and

• the ChangeACTemp scenario turns AC on or off according to
the temperature readings (Figure 2(e)).

The five basic scenarios are in turn combined to describe the
overall system behavior as shown in Figure 3. This higher-level
behavioral description consists of relations between basic and com-
plex scenarios that together form a scenario hierarchy. The scenar-
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ios can run concurrently or sequentially one after the other. In MI-
DAS, complex scenario Sensors_PAR represents the parallel execu-
tion of multiple Sensors running the SensorGW scenario (Figure 3
describes a system variant with two gateways, each connects to two
sensors). Furthermore, the complex scenario SensorMeasurement
specifies a longer sequence that summarizes how a sensor mea-
surement is propagated from Sensors to Gateway to Hub and back.
In SHARP, an application engineer also needs to annotate the sce-
nario hierarchy with (1) branching probabilities when one scenario
can be sequentially followed by multiple other scenarios, and (2)
the number of scenario instances that run in parallel.

2.2 Prior Work
The focus of our previous research has been on (1) classifying

and discovering architectural defects [24] and (2) analyzing and
extracting operational profile information from various information
sources [3, 15]. In SHARP, we analyze the impact of the discov-
ered architectural defects (e.g., mismatches between components’
operation protocols) on the system’s reliability and enrich the ini-
tial component and scenario models with the extracted operational
profile information. While we utilize our prior techniques to ob-
tain the SHARP inputs, SHARP is in no way dependent on those
techniques. In principle, any other existing technique can be used
to extract the failure and operational profile operation. Note that
defects that are introduced beyond the design stage, such as coding
errors, are not considered in architecture-level reliability analysis,
as our goal here is to evaluate the impact of different design de-
cisions, rather than ensuring that system reliability meets certain
requirements (e.g., five 9’s rule). In the remainder of this section,
we discuss how the failure and operational profile information is
incorporated into the initial software models.

2.2.1 Failure information
To determine the possible system failure states, we first analyze

the system components’ architectural models by applying a defect
classification technique [24]. The example defects detected using
the technique in [24] include interface mismatches, specification
incompleteness, and behavioral inconsistencies. Once defects are
identified, we add a failure transition from each state in which a
defect may be triggered. For example, applying the defect classifi-

cation technique on MIDAS, we determine that a Sensor is unable
to notify the Gateway when it is running out of battery. This defect
was discovered as a mismatch between the two components’ inter-
action protocols.2 Failures caused by this defect are represented as
the failure state −1 in Figure 1(a). As in most existing approaches
[8, 12, 13, 15], we assume that time between failures is exponen-
tially distributed.

In addition to modeling failures, SHARP supports modeling the
recovery from a failure. For example, Sensor returns to State 2 as
the Sensor recovers from the interaction protocol mismatch via a
reset. In general, a component can return to any state designated by
the system designer during defect analysis. In this paper, the run-
ning example and the evaluation systems have recoverable failures,
and hence we apply steady state analysis (see Section 2.2.3 for de-
tails). However, SHARP can be adapted to apply transient analysis
to handle irrecoverable failures with minimal modifications.

2.2.2 Operational profile
To parametrize the initial software models with operational pro-

file information, we build on our previous work [3, 15] that es-
timates the parameters in component-level reliability models from
the available information sources: domain knowledge, requirements
documentation, system simulation, and execution logs of function-
ally similar systems. The specific value of the technique we intro-
duced in [3] is that it allows an engineer to assess the quality of the
different available information sources. For example, we can rely
on domain knowledge to estimate the transition rates, but we have
shown in [3] that such an estimate may be subjective and inaccu-
rate for complex systems. Utilizing execution logs of an existing
system is useful in predicting the operational profiles while design-
ing a new version, but such information would be unavailable for
estimating operational profiles regarding any new feature that is not
present in the existing version.

The operational profile information is mapped into the model
as transition rates for the desired behaviors as well as failure and
recovery transition rates. For example, the event GetSensorData
(E1) from Figure 1 is determined to occur every 5 seconds (rate
of 0.2 events per second). At the system level, SHARP requires

2Note that the component models resulting in this interaction pro-
tocol mismatch [3] are elided for brevity.
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transition rates for the events in a scenario sequence, which are
directly extrapolated from the component models. Furthermore, the
initial scenario-level model is enriched in SHARP with information
about the possible concurrently running scenario instances.

2.2.3 Generating Reliability Models of Basic Sce-
narios

We described how we generate a CTMC-based reliability model
that we refer to as a scenario-based reliability model (SBM for
short) in [4], and provide this information here for completeness.

To generate the SBM for a scenario, we first generate a com-
ponent submodel for each component in each scenario, and then
apply parallel composition, as in [22]. A component submodel of
Component Compc in Scenario Sceni, Compc_Sceni, is a state
machine model describing the behavior of Compc in Sceni, in
which a state transition represents the occurrence of an event in
the corresponding sequence diagram. In our MIDAS example, the
component submodels for the SensorGW scenario (recall Figure 2)
are depicted in Figure 4.

The next step is to add failure states to each component sub-
model. by leveraging the component model as described in Sec-
tion 2.2.1. For example, to model the defect in the Sensor, repre-
sented by the failure state −1 in Figure 1(a), we add a failure state,
State −1, in Figure 4, a failure transition from State 2 to State −1,
and a recovery transition from State −1 to State 2.

We then generate an SBM for each basic scenario Sceni by
applying parallel composition [16] to the component submodels
Compc_Sceni for all Compc. Examples SBMs for the basic MI-
DAS scenarios as depicted in Figure 5. In our example, apply-
ing parallel composition to the component submodels in Figure 4
would result in the SBM for the SensorGW scenario depicted in
Figure 5(a). (Note that State 3 in the SensorGW scenario (Fig-
ure 5(a)) corresponds to contention modeling, which we describe
in Section 4.1).

Finally, we determine the transition rate between the states based
on the operational profile estimated using the techniques described
in Section 2.2.2. Formally, let Qi be the transition rate matrix for
Sceni’s SBM. If the transition from State j to State k corresponds
to the event E, the transition rate Qi(j, k) = q(E), where q(E) is
the rate that event E occurs. To complete the SBM, according to
[25], we set the diagonal entries Q(j, j) such that each row in Q
sums to zeros.3

To solve for scenario reliability ri, we redistribute the rate go-
ing to the SBM’s End state to the Start state to analyze the sys-
tem’s long-term execution; the assumption here is that the partic-
ular scenario will eventually execute again. Once we have com-
pleted this step, we compute ri by computing the probability of
not being in the failure state when the system is in steady state.
i.e., ri = 1 − P

f∈Fi
πi(f), where Fi is a set of failure states in

3Note that self-loops in a component model (i.e., an event that
causes a transition from a state to itself) have been implicitly ac-
counted for here. Since self-loops do not cause any state transi-
tions, they do not affect the probability distribution of being in a
state in a CTMC, and are therefore dropped in an SBM.
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Sceni, and �πi is the steady state probability vector, which can be
computed using standard methods [25].

3. AN OVERVIEW OF SHARP
In this section, we outline the envisioned benefits that motivated

us to develop SHARP and provide a high-level description of the
technical steps that comprise SHARP.

SHARP estimates reliability of a system based on (a) a non-
probabilistic behavioral specification consisting of component-level
state-based models and system-level scenario-based models, (b) the
operational profile, and (c) the definition of failure states. At a
high level, SHARP partitions the system behavior into smaller an-
alyzable parts according to the scenario specification, generates a
CTMC-based reliability model for each part, and computes system
reliability by combining the results of the reliability models using
a hierarchical approach we develop. With SHARP, we address two
crucial obstacles that prevent the application of architecture-based
reliability estimation techniques to complex, concurrent systems:

1. Efficiently solving a reliability model that captures complex
system behaviors consisting of elaborate multi-scenario se-
quences.

2. Efficiently estimating system reliability when a system con-
sists of a large number of concurrently running components
and scenarios.

The first obstacle corresponds to the ability to deal with sequen-
tial scenario combinations without having to solve the correspond-
ing non-scalable “flat” model used by other approaches [22]. The
second obstacle relates to the need to handle multiple scenario in-
stances running concurrently. For example, we want to be able
to efficiently solve the Sensors_PAR scenario from Figure 3 even
in situations when we have many concurrently running Sensors.
SHARP resolves these obstacles by first generating and solving the
reliability models of smaller scenarios and then incorporating the
results into reliability models of the complex scenarios; this is done
in a bottom-up way throughout the specified scenario hierarchy.

SHARP consists of activities that determine (1) the reliability
and completion times for the basic scenarios, and (2) the reliability
and completion times for the complex, sequential (SEQ) and paral-
lel (PAR) scenarios based exclusively on the reliability and comple-
tion times of the scenarios they reference. As an example, Figure 6
illustrates the steps that SHARP performs to analyze the reliability
of the SensorMeasurement scenario from Figure 3. The process for
obtaining the reliability information for GWHub and GWAck_PAR
is identical to the process for SensorGW and SensorsPAR and is not
shown. Intuitively, SHARP first analyzes the low-level, basic sce-
narios and incrementally incorporates the lower-level analysis re-
sults in the higher-level SEQ and PAR scenario models. As shown
in Figure 6, analyzing a higher-level scenario model in SHARP in-
volves reusing the results from the lower level without the need to
recalculate or refine the calculations.

For a basic scenario, we generate a SBM as described in Sec-
tion 2.2.3. The unique aspect of our approach is that we slice the
component reliability models according to the basic scenario in or-
der to determine the possible failure states related to that scenario’s
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Figure 6: An illustration of SHARP applied on the complex SensorMeasurement scenario

execution. By doing so, we reuse information about architectural
defects, thus making the reliability analysis more meaningful as
opposed to having an engineer “guess” the failure states.

A software architect can choose to augment the SBM to model
resource contention with special “queueing” states. Intuitively, a
queueing state simulates a situation when an event may not be pro-
cessed immediately because of resource constraints. For example,
while a single-threaded Gateway is processing data from one Sen-
sor, it may receive data from another; consequently, we augment
the SBM by adding a state to represent queueing of the Sensor’s
request (State 3 in the SensorGW SBM from Figure 5). In Sec-
tion 4.1, we describe how we obtain the contention-related parame-
ters using queueing networks (QNs) [25]. The basic scenario SBMs
are finally solved for scenario reliability and completion time using
standard methods. Note that completion times are necessary for
SHARP to handle PAR scenarios.

To solve for the reliability of a complex scenario with sequen-
tial dependencies (e.g., the SensorMeasurement from Figure 3) in
which a number of basic scenarios may be running one after an-
other, we propose a technique based on stochastic complementation
[18]. Stochastic complementation is a standard technique for solv-
ing large Markov chains that relies on partitioning a large model
into smaller analyzable parts. Our application of stochastic com-
plementation utilizes the partitioning that is intrinsically present in
a SEQ scenario where each sub-scenario has only one entry point.
For example, when analyzing the MIDAS scenario hierarchy (Fig-
ure 3) SHARP utilizes the SEQ relations in the SensorMeasurement
scenario to solve Sensors_PAR, GWHub, and GWAck_PAR first,
and then incorporate the obtained results into a small, high-level
SensorMeasurement model with only three states. Technically, this
corresponds to lumping the states of each sub-scenario into one
state, and then solving one “flat” CTMC that represents the three
sub-scenarios. Note that stochastic complementation does not re-
sult in a less accurate solution than a “flat” model — the computa-
tional savings come for free. SHARP attains additional computa-
tional savings by computing the reliability of lower-level scenarios
only once and then reusing the results in multiple SEQ scenarios
that reference them.

Using the existing state-of-the-art, computing the reliability of
a complex parallel (PAR) scenario would require keeping track of
the internal states of all components during system execution. As
discussed earlier, this approach is intractable for larger concurrent
systems. To this end, we propose symbolic representation of the
system execution state that utilizes a CTMC to keep track of the
number of the currently running scenario instances. To abstract a

Table 1: Definition of Variables used in SHARP
Q(i, j) Transition rate from State i to State j in

an SBM
q(E) Avg rate that event E occurs
Ci = (c1, c2, . . .) A combination with cj instances of

Scenj

Pj(cj) Probability of having cj instances of
Scenj

Ij Max number of instances of Scenj

I maxj(Ij)
dj Avg delay caused by Scenk , k �= j
P (Ci) Probability that Combination Ci occurs
R(Ci) Reliability of Combination Ci

ri Reliability of Sceni

tj Completion time of Scenj

S Total num of unique scenarios
Hj Num of child scenarios of Scenj

scenario’s execution state to either running or completed, SHARP
uses the completion times that are calculated for the child scenar-
ios. Each state of a PAR scenario SBM can be described as a com-
bination of child scenarios. For example, we aggregate the overall
behavior of Sensors_PAR from Figure 3 with an SBM depicted in
Figure 9 that tracks whether there are zero, one, or two concurrently
running instances of SensorGW. In Section 4.3, we detail the steps
involved in solving a PAR scenario’s reliability and we evaluate the
accuracy of the obtained results obtained in Section 5.

4. DETAILS OF SHARP
For space reasons, we cannot provide a detailed treatment of ev-

ery step in SHARP. Instead, we choose to “dive into” the parts of
SHARP that are novel; we omit details of the parts that are compu-
tationally straightforward and identical to other existing approaches
[3, 22, 30] (e.g., computation of reliability and completion times for
a CTMC). Namely, we present the details of contention modeling
and analysis at the level of basic scenarios (Section 4.1), combining
scenarios with sequential dependencies (Section 4.2), and scalable
concurrent behavior modeling and analysis (Section 4.3). A list
of variables that would be used in this section are summarized in
Table 1.

4.1 Contention Modeling
In Section 2.2.3, we discussed the comparatively straightforward

steps taken to devise a scenario’s corresponding CTMC. We solve
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Table 2: ri and ti of the MIDAS scenarios
Scenario ri ti Scenario ri ti

SensorMeasurement 0.9867 27.394 GUIRequest 0.9999 201.03
ChangeACTemp 1 0.5 GUI_LOOP 0.9999 205.13

ControlAC 0.9999 205.28 System 0.9940 287.46

these CTMCs for reliability and completion times using standard
techniques [25]. For completeness, we provide the computed re-
sults for the MIDAS scenarios in Table 2.

When several components (callers) request services from a ser-
vicing component (callee), the callee needs to allocate its resources
appropriately to serve a caller, while other callers would need to
wait to obtain service.4 Since the system behavior may be differ-
ent when a request is waiting for service than when it is being pro-
cessed, we add a queueing state to represent that a caller’s request is
queued. Formally, let E be an event with an arrival rate of q(E) that
triggers a transition from State j to State k in an SBM. If there is a
component that may be servicing other requests upon receiving E,
we add a queueing state q into the SBM, such that Q(j, q) = q(E),
and Q(q, k) = q(Ready). Ready is an event indicating that the
callee is ready to process the request of the caller of interest, and
hence q(Ready) corresponds to the time waiting for the callee’s
service. Note that q(Ready) excludes the callee’s service time,
as the service time has been accounted for in the caller’s SBM. 5

As an example, in the SensorMeasurement scenario, the Gateway
could be servicing a Sensor’s request when another Sensor sends a
request. Therefore, we insert State 3 between States 2 and 4 to rep-
resent queueing, as in Figure 5(a). Any other points of contention
would be modeled in a similar manner.

The next step is to determine q(Ready), the outgoing rate of
the queueing state. We define q(Ready) = 1

Twait
, where Twait

is the average time a caller waits to receive service. To compute
Twait, we solve a queueing network (QN) [25], which describes
the queueing behavior of the callers’ requests. Here, we model
the callee component as a single server in the QN. Since informa-
tion about how a component is implemented and deployed may be
unavailable during design, it is unclear how to incorporate other re-
sources (e.g., CPU and memory) into the QN. Therefore, we model
the callee component as a black box. This QN can be refined if
such information is available.

To build such a QN, we utilize the following information: (a)
the number of different types of callers (i.e., the different types of
components where each type can request different services with
different processing times), and the maximum number of each type
of caller that may request a service; (b) how often a caller requests
a service (arrival rate); (c) how long the callee takes to serve a re-
quest (service rate);6 and (d) the callee’s queueing discipline. Note
that (a) is derivable from the system’s requirements and architec-
tural models; (b) is available from the operational profile (i.e., the
rate of an event E); and (c) is the total rate leaving a state k also
derivable from the operational profile. The operational profile in-
formation and the other model parameters can be determined using

4As the flat model results in callees serving the callers on a FCFS
basis, we also use FCFS in our exposition. However, SHARP al-
lows other queueing disciplines.
5By plugging q(Ready) into a component’s SBM (a CTMC), we
are essentially assuming that the waiting time is exponentially dis-
tributed, which may not be the case in general. We make this ap-
proximation for modeling convenience.
6For ease of exposition, we assume both the inter-arrival time and
service time are exponentially distributed in this paper. In general,
these assumptions can be removed, but it may be computationally
costly to solve for q(Ready) if the resulting QN is not in product-
form [1].

Gateway
2 Sensors

rate: 1rate: 2

Figure 7: QN model of the SensorMeasurement scenario

our previous technique [3]. Lastly, (d) can be available from the
system’s requirements pertaining to architectural constraints (e.g.,
using a middleware that serves requests in a round-robin fashion).
The constructed QN is finally solved for the average waiting time
in the queue using standard methods [25]. Since (a)-(c) are readily
available, once the contention points have been identified and (d)
the queueing discipline has been specified, the process of generat-
ing and solving the QN for q(Ready) can be automated.

The QN for the SensorMeasurement scenario is depicted in Fig-
ure 7. As an example, we are modeling the case when a Sensor
sends measurements to the Gateway while the Gateway is process-
ing another Sensor request. Hence, we have one class of callers:
two Sensors may send measurements to the Gateway with the ar-
rival rate of 2× q(E2) = 2, processing rate of q(E3) = 1, and the
Gateway is a FCFS callee. After solving the QN for the average
waiting time at Gateway’s queue in Figure 7, the resulting rate of
leaving the queueing state (state 3) in Figure 5(a) is estimated to be
5. Other points of contention in the SBMs are treated analogously.

4.2 Combining Scenarios with Sequential De-
pendencies

To analyze a complex scenarios with sequential dependencies,
we apply stochastic complementation to generate a SEQ scenario’s
SBM by combining the SBMs of the child scenarios (Step 2.1).
This is a novel use of an advanced stochastic method for analyzing
a software system’s quality attribute, and comprises an important
contribution of this paper. Intuitively, stochastic complementation
breaks a large Markov model into a number of submodels, solves
the submodels separately, and reconstructs results of the original
model. The special structure required for an efficient solution us-
ing stochastic complementation is that each submodel has only one
start state. Notably, the generated basic scenario SBMs satisfy this
requirement as they have a single starting state. We solve the re-
sulting SEQ scenario SBM for scenario reliability (Step 2.2) in a
similar manner to existing approaches [6, 22, 30].

4.2.1 Step 2.1: Generating SBM
We generate an SBM for a SEQ scenario as follows: we first

generate the states of the model, and then compute the transition
rates with respect to the applied stochastic complementation [18].
The states in a SEQ scenario’s SBM correspond to the child sce-
narios. We determine the transitions according to the dependencies
between the child scenarios. If a SEQ scenario Sceni has a child
scenario Scenk executing after another child scenario Scenj , we
add a transition from state j to state k in Sceni’s SBM. For ex-
ample, the SBMs of the SEQ scenarios in MIDAS are depicted in
Figure 8.7

The transition rates for each transition determined above are cal-
culated as follows [18]:

Qi(j, k) = (pi(j, k))outj (1)

where pi(j, k) is the probability that Scenk executes after the exe-
cution of Scenj , and outj is defined in a similar manner to [18]:

7Note that the self-loop in State 1 of the GUI_LOOP scenario (de-
picted as dotted arrow in Figure 8), representing that the user’s in-
put is invalid, has been dropped, because a CTMC implicitly ac-
counts for self-loops.
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Figure 8: SBMs of the SEQ scenarios

outj =
X
s∈Sj

(πj(s))Qj(s, End) (2)

where Sj is a set of states in Scenj , πj(s) is the steady state prob-
ability of being in State s in the Scenj’s model, and Qj(s, End)
is the transition rate going from State s to the End state in Scenj ’s
model. For example, in GUI_LOOP (Figure 8(b)), let Sceni =
GUI_LOOP and Scenj = GUIRequest, the transition rate
from State 1 to State 2 in Sceni is

Qi(1, 2) = pi(1, 2)(
X
s∈Sj

πj(s)Qj(s, End))

= (1 − pinvalid)(πj(2))(q(E7))

= (0.98)(0.005)(1) = 0.0049

Furthermore, when we move up a level in the hierarchy to Con-
trolAC (Figure 3) the transition rate going from State 1 to 2 in Con-
trolAC’s SBM in (Figure 8(c)) becomes

Qi(1, 2) = pi(1, 2)
X
s∈Sj

πj(s)Qj(s, End)

= (pControlAC)(1)Qj(s, End)

= (0.3)(1)(0.0049) = 0.0015

4.2.2 Step 2.2: Computing Scenario Reliability
To solve for a sequential scenario’s reliability, we redistribute the

rate going to the End state of a SEQ scenario SBM and solve the
model for its steady state probability vector �πi, as in Section 2.2.3.
Once we have computed �πi and rj for all child scenarios Scenj ,
we solve the scenario reliability using the equation

ri = 1 −
X

j

πi(j)rj (3)

Continuing with our example, to solve for �πi using the SBM of
the ControlAC scenario, after redistributing the rate going to the
End state, we have the following rate matrix:» −0.0015 0.0015

2 −2

–
(4)

Solving this model gives us �πi = [0.9993, 0.0007]. The relia-
bility of the ChangeACTemp is 1, as there is no defect identified in
that scenario. Hence, the reliability of the ControlAC scenario is
ri = (0.9993)(0.9999) + (0.0007)(1) = 0.9999. The reliabil-
ities of other scenarios, and are depicted in Table 2, are similarly
computed.

4.3 Scalable Concurrency Modeling
This section describes the SHARP steps that are performed when

calculating the reliability of a complex PAR scenario. Note that we
refer to the symbolic model discussed in Section 3 as the concurrency-
level model. SHARP first determines the feasible scenario com-
binations (Step 3.1), and constructs the concurrency-level model
(Step 3.2). Next, SHARP calculates the probabilities (Step 3.4)

Table 3: Values of P (Ck) and R(Ck) in the System scenario
Ci P (Ci) R(Ci) Ci P (Ci) R(Ci)

(0,0) 0.0420 0.9605 (1,0) 0.0630 0.9735
(2,0) 0.1260 0.9866 (3,0) 0.7266 0.9999
(0,1) 0.0077 0.9606 (1,1) 0.0116 0.9736
(2,1) 0.0231 0.9867

and the reliabilities (Step 3.5) of the different scenario combina-
tions. SHARP ultimately uses the obtained information to compute
the overall PAR scenario reliability (Step 3.6). Noting that the con-
currency model can get intractable when dealing with very large
systems for which concurrent scenario instances may number in
the thousands, SHARP employs model truncation [25] (Step 3.3).

4.3.1 Step 3.1: Determining Scenario Combinations
Determining the possible combinations is the first step in solving

for reliability and completion time of a PAR scenario. A combina-
tion, Ci, is defined as Ci = (c1, c2, . . . , cHj ), where cj is the
number of completed instances of Scenj , and Hj is the number of
child scenarios.8 We also define Ij to be the number of instances
of Scenj that needs to be completed, and I = max(Ij) to be the
largest number of possible instances among all Scenj . The execu-
tion of a PAR scenario is completed only when all child scenarios
have completed their execution.

In order to find scenario reliability, we need to compute the dis-
tribution of the possible combinations. Since, in general, not all
combinations of scenarios in a system may be possible, we allow
a system architect to specify the combinations that are not possi-
ble (or allowed). For instance, in MIDAS, such a restriction exists
to avoid exhausting the resources of the Hub by allowing no more
than three Hub requests. Hence, in the System scenario from Fig-
ure 3, if we set I1 = 3 and I2 = 1, and include the restriction
that I1 + I2 ≤ 3, then the possible scenario combinations are those
depicted in Table 3. Note that the I’s are small in our example as
we try to keep it simple.

4.3.2 Step 3.2: Concurrency-Level Model Genera-
tion

To compute the probability Pj(cj) that cj instances of a child
scenario Scenj have completed, we generate a concurrency-level
model for each child scenario. A concurrency-level model is a
CTMC, whose states correspond to the number of completed in-
stances of Scenj . We use the concurrency-level model to compute
the probabilities Pj(cj), where cj denotes the number of com-
pleted Scenj instances. The determination of the final state in a
concurrency-level model depends on the number of concurrently
running child scenarios.

When there is one child scenario, completing Ij instances of
Scenj represents the completion of the whole PAR scenario. For
example, the concurrency-level models corresponding to Sensors_
PAR and GWAck_PAR in MIDAS are depicted in Figures 9(a) and
(b), respectively. The final state in these models is state 2 because
there can be two concurrently running instances of Sensors_PAR
and GWAck_PAR.

When there is more than one child scenario, completing Ij in-
stances of Scenj means that the execution of all instances has been
completed. Scenj can only execute again when all other scenarios
have been completed, and the parent scenario executes again. We
8We assume that the probability that more than one scenario com-
pletes in the exact same instant in time is negligible. This is a stan-
dard assumption in Markov chain models which makes them more
tractable without a significant loss in what is expressible with such
models.
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Figure 9: SBMs of the PAR scenarios

Table 4: Values of Pj(cj) in the System scenario
SensorMeasurement ControlAC

Parameter Value Parameter Value Parameter Value
P1(0) 0.0305 P1(2) 0.0916 P2(0) 0.8949
P1(1) 0.0458 P1(3) 0.8321 P2(1) 0.1051

add a state End to model this behavior, and define State End to be
the final state of each concurrency-level model. We also add a tran-
sition from state Ij , which corresponds to completing all instances
of Scenj , to State E. For example, the concurrency-level models
corresponding to the System scenario are depicted in Figure 9(c).

The transition rate from state cj (cj < Ij), representing cj com-
pleted instances of Scenj , to state cj +1 is (Ij − cj)(1/tj), where
tj is completion time of Scenj , which is assumed to be exponen-
tially distributed. The transition rate corresponds to the rate an in-
stance of Scenj completes, when there are cj completed instances.
tj can be computed using standard techniques, which involves solv-
ing for the average passage time from State 1 to any End state in the
SBM using Q′

j
�Tj = −e [25], where Q′

j is the matrix after elim-
inating the row and column corresponds to the End state in Qj ,
−e is a column vector of −1 with the appropriate dimension, and
Tj(k) is the average passage time from State k to the End state.
i.e., tj = Tj(1).

The transition from state Ij to state End has a rate of 1/dj ,
where dj is the average of the total delay caused by other scenarios
Scenk , k �= j. We set dj =

P
k �=j Iktk.9

4.3.3 Step 3.3: Performing Model Truncation
To further reduce the computational cost, we eliminate the com-

binations in a PAR scenario that are rarely visited according to a
model truncation technique from [25].

The steady probability distribution of cj , the number of com-
pleted instances of Scenj , depends on the values of tj (scenario
completion time), as well as the completion time of other scenar-
ios tk, Scenk �= Scenj . Pj(cj) can be obtained by solving a
concurrency-level model using standard techniques. As an illus-
tration, we depict the steady-state probability distribution of cj in
Figure 10. We assume the completion rate of other scenarios are
fixed, and dj = 1. Also, we set I = 50, and varied tj at different
values. For instance, when tj = 100, 29 (out of 51) possible values
of Pj(cj) become smaller than 1%.

In generating the scenario combinations, we can elide the values
of the completed scenario instances cj that occur rarely. Specif-
ically, we consider x as a relevant value of cj if Pj(cj = x) is
larger than a threshold ε (thus, the case without using truncation
has ε = 0). For example, if ε = 0.01 (depicted as a dotted line in
Figure 10), when t = 100, dj = 1, and I = 50, we only consider
22 out of the 51 state in the concurrency-level model.

Note that there is a tradeoff between the number of states we
elide and the loss in accuracy when applying model truncation. We
evaluate this tradeoff in Section 5.2.

9Note that dj is an approximation, which assumes that the average
time to complete an instance of Scenk, given that Scenj has com-
pleted, is still tk. An exact computation of dj involves transient
analysis, which is computationally more expensive [25].
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Figure 10: Probability distribution of the number of completed
instances

4.3.4 Step 3.4: Computing Combination Probability
SHARP solves the concurrency-level model for the probability

distribution of each combination. We define P (Ci) to be the proba-
bility that Ci occurs, i.e., P (Ci) = P (c1, c2, . . . , cHj ) is the prob-
ability that there are cj completed instances of Scenj for each j =
1 . . . Hj . Since we assume that all instances of all child scenarios
run independently, P (Ci) � (

Q
j Pj(cj))/W , where Pj(cj) is the

probability that cj instances of Scenj have completed, and W =P
j P (Cj) is a normalization factor10 that ensures that P (Cj) sum

to 1. In the System scenario from Figure 3, P (c1, c2) is the prob-
ability that there are c1 and c2 completed instances of SensorMea-
surement and ControlAC, respectively. Hence, P (c1, c2) � (P1(c1)
×P2(c2))/W .

Assuming that once the whole PAR scenario has completed its
execution it will be executed again, we merge the final state F and
the initial state 0. We solve the resulting model for Pj(cj) using
standard techniques [25]. Table 4 gives the probability distribution
of Pj(cj) in the two PAR scenarios of our MIDAS example; these
are computed using the concurrency-level models from Figure 9.
Furthermore, Table 3 gives the System scenario combination prob-
abilities, computed using the data from Table 4. Since the compu-
tation of the distribution of different scenario combinations is done
in an approximate manner, in Section 5 we evaluate the accuracy of
this approximation, as well as the reduction in computational cost.

At the level of the entire system, the assumption that a PAR sce-
nario is completed only when all child scenarios have finished ex-
ecuting may be restrictive. In some systems that continuously run,
child scenarios start and complete independently. For example, af-
ter the Sensors finish taking measurements, they do not necessarily
have to wait for the GUI to update the data before taking additional
measurements. In [4], we handle these independent concurrent sce-
narios with a modified concurrency-level model. Specifically, this
model has additional transitions that represent the spawning of new
scenario instances and are directed opposite to those depicted in
Figure 9.

4.3.5 Step 3.5: Computing Combination Reliability
Here, we make a simplifying assumption that the system fails if

any scenario instance has failed. SHARP can accommodate more
complex failure conditions as discussed in [4]. Given this assump-

tion, the reliability of a combination Ci is R(Ci) =
QHj

j=1 r
(Ij−cj)

j .
We repeat this calculation for each combination. Table 3 gives re-
liabilities of all scenario combinations for MIDAS.

4.3.6 Step 3.6: Computing Scenario Reliability
We compute scenario reliability by combining the results of the

previous steps. Reliability of a PAR scenario is defined as the sum
of the scenario combinations’ reliabilities, weighted by the proba-
bility that the combination occurs, i.e., ri =

P
k P (Ck)R(Ck).

In our running example, the reliability of the System scenario,
and hence system reliability, is 0.9940, which, in this case, is within

10The normalization factor is needed because, in general, not all
combinations of scenarios may be allowed.
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Table 5: Definition of Variables used in Complexity Analysis

U Total num of unique components
C Total num of components
E Total num of events
S Total num of unique scenarios
SB Total num of basic scenarios
SI Total num of intermediary scenarios
Ij Max number of instances of Scenj

I maxj(Ij)
Mj Max number of states in Compj

M maxj(Mj)

0.05% of the ground truth of 0.9935, obtained by solving the “flat
model”, as detailed below.

5. EVALUATION
We evaluate SHARP along two dimensions: complexity of gen-

erating and solving concurrent systems’ reliability models as com-
pared to those derived from existing techniques (Section 5.1), and
accuracy (Section 5.2). We compare SHARP against a flat model,
which is used as the “ground-truth”. Flat model is essentially used
by Rodrigues et al. [22], where a system reliability model is gener-
ated by applying parallel composition to component models.11

We applied SHARP to a variety of systems, with different num-
bers of components, scenarios, and numbers of scenario instances.
Note that the system we used in evaluating SHARP is relatively
simple, because the flat models of larger systems quickly become
too large to solve, and we would lack an objective baseline for com-
parison. We show representative results obtained from the follow-
ing systems:

1. An instantiation of MIDAS with twelve Sensors, six Gate-
ways, one Hub, one GUI, and one AC.

2. A GPS system with route guidance, audio player, and blue-
tooth phone capabilities. This system has five major com-
ponents. The system’s behavior is captured with 21 basic
scenarios. The GPS system has limited concurrency due to
the system’s purpose. For example, it typically makes little
sense to have two instances of a route guidance scenario to
perform the same route guidance service.

To evaluate SHARP in a controlled manner, we injected the
following defects into this GPS system: (a) a defect in the
EnergyMonitor (EM) component which may lead to failure
to notify other system components when the battery is low,
and (b) a defect in the RouteGuidance (RG) component which
may lead to failure in updating a user’s location accurately.

3. A client-server system (CS) with possibly many clients and
a single server that provides remote file access. The system
behavior is described with one basic scenario. The server
processes the client requests in a FCFS fashion with an as-
sumption of infinite buffer space. We primarily leverage CS
to illustrate the effect of contention modeling when there are
many clients competing for the same resource. We consider
a defect in the server that may lead to failure to reply to the
client when a requested file cannot be retrieved.

11[22] assumes irrecoverable failures. As we discussed earlier,
SHARP can model irrecoverable failures with minor modifications.

Table 6: Worst-case complexity
Complexity SHARP Flat Model

Time O(SI max(S3, SI3 + (S + 2)IS)+ O(M3C)

SB(M3C + MCEIE))

Space O(S + max(M2C, S2, SI)) O(M2C)

5.1 Complexity Analysis
We now explore the complexity of SHARP as compared to the

flat model. We first describe the theoretical worst-case complexity
of each approach in Section 5.1.1, and then discuss the computa-
tional cost that is likely to arise in practice in Section 5.1.2.

5.1.1 Worst Case Complexity
Let U be the number of unique components, C be the total num-

ber of components, E be the number of events, S be the number
of scenarios (basic and intermediary), SB be the number of ba-
sic scenarios, SI be the number of intermediary scenarios (i.e.,
S = SB + SI), Ij be the number of instances of Scenj , I =
max(Ij) for all Scenj , Mj be the number of states of Compj ,
and M = max(Mj) for all Compj . These definitions are sum-
marized in Table 5, and the resulting complexities are summarized
in Table 6. Let us first analyze the complexity of SHARP:
Basic scenarios: In the worst case, every state in every component
participate in a basic scenario, and hence the SBM may have as
many as O(MC) states. Once we have determined the states in
the SBM, we need to determine the transitions between each pair
of states. Therefore, the complexity of the generation of a SBM
is O(M2C). The complexity of solving a SBM 12 is O(M3C).
Thus, the time complexity of generating and solving the SBM for
a basic scenario is O((M2C + M3C)) = O(M3C). The space
complexity of generating and solving a basic scenario’s SBM is
O(M2C) — once we have solved a SBM, we can reuse its space
as we generate SBMs one at a time.
Contention Modeling: In the worst case, there is contention in
every state in the SBM of a basic scenario. If, as a result, we add
a queueing state corresponding to each state, we double the size
of every SBM of each basic scenarios, which does not affect the
worst case complexity of solving it (O((2MC)3 = O(8M3C) =
O(M3C)). Thus, in the worst case, we have O(MC) QNs to solve.
Since we assume product-form QN, the worst case complexity of
solving one such QN is O(EIE) [20]. Thus, the worst case time
complexity of solving all QNs would be O(MCEIE).
SEQ scenarios: Since there are at most S scenarios in the system,
there are at most S states in the SBM of a SEQ scenario, because
each scenario is represented by a state in the SBM of a SEQ sce-
nario. Therefore, the complexities of generating and solving the
SBM of a SEQ scenario are O(S2) and O(S3), respectively, and
the space complexity is O(S2), as discussed above.
PAR scenarios: In the worst case, all S scenarios run in paral-
lel. In Step 2.2, since each concurrency-level model has at most
O(I) states, the complexity of solving for all S of them is O(SI3).
Step 2.4 requires computing P (Cj) for each Combj , therefore the
complexity is O(IS) as we have IS combinations. In computing
the reliability of a combination in Step 2.5, we need to multiply the
reliabilities for each child scenario Sceni, and hence the complex-
ity of this step is O(SIS). Finally, in Step 2.6, we compute scenario
reliability by multiplying R(Cj) and P (Cj) for each scenario, so
the complexity is O(IS). Therefore, the complexity of solving
for reliability of a PAR scenario is O(SI(SI3 + 2IS + SIS)) =
O(SI(SI3 + (S + 2)IS)). The space complexity of solving the

12The time complexity of solving a Markov chain with N states is
O(N3), and the space complexity for storing the corresponding
rate matrix is N2.
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Table 7: Summary of computational costs in practice
U C M SB I E Flat Model SHARP

MIDAS 5 12 5 5 6 8 1.52 × 1012 692
GPS 5 5 17 21 1 43 1.17 × 1011 1331
CS 2 9 2 1 8 2 1.34 × 108 737

PAR scenarios is O(SI), as we need to store the results of the
concurrency-level models.

Note that we have not considered the computational cost savings
of model truncation (Step 2.3) in this complexity analysis, as model
truncation does not reduce the worst-case complexity.
Overall Complexity: First, since there are SB basic scenarios, the
complexity of generating and solving all SB SBMs of the basic
scenarios is O(SB(M3C + MCEIE))). There are SI intermedi-
ary scenarios, which each of them could either be s SEQ or PAR
scenario. As we do not know which of SEQ or PAR scenario is
more expensive to solve in the worst case (it depends on the val-
ues of S and I), we describe the complexity of solve an inter-
mediary scenario to be O(max(S3,SI3 + (S + 2)IS))). There-
fore, the overall time complexity is O(SB(M3C + MCEIE)) +
SI max(S3,SI3 + (S + 2)IS)).

In analyzing the overall space complexity, we need to consider
the space needed to store the results of the scenarios that have been
processed, in addition to the space needed to store the SBM of the
scenario that is being processed. Since we store the ri and ti of
each S scenario in the worst case, the space needed to store the re-
sults of S scenarios is O(2S). The “last” scenario could be a basic,
SEQ, or a PAR scenario, so the space complexity is the maximum
space needed among the three types of scenarios. Thus, the overall
space complexity is O(S + max(M2C, S2,SI)).

In the flat model, we first apply parallel composition using all
components, for which the complexity is O(M2C). The time com-
plexity of solving the flat model is O(M3C). Therefore, the overall
time complexity of the flat model approach is O(M2C + M3C) =
O(M3C). Since the flat model has as many as O( MC) states, its
space complexity is O(M2C).

5.1.2 Computational Cost Analysis
Table 7 summarizes the computational costs to solve for system

reliability using the flat model and SHARP. We denote the number
of unique components with U; C is the total number of compo-
nents; SB is the number of basic scenarios; and M = max(Mj),
where Mj is the number of states of Compj . Additionally, Ii is
the number of instances of Sceni, and I = max(Ii) for all Sceni.
The computational cost savings using SHARP are significant for
all three systems’ evaluation.

Comparing the computational costs of the three systems yields
some interesting observations. We noticed that it is more expensive
to solve the GPS system model than the MIDAS model, since the
GPS system is modeled with 21 basic scenarios and we generate
and solve an SBM for each scenario. Although systems with more
basic scenarios are more expensive to solve in SHARP, the compu-
tational costs in practice are still significantly lower as compared to
the flat model. While CS is simpler than MIDAS, it costs more to
solve it for reliability. This is because the number of parallel sce-
nario instances is larger in CS (I = 8) than MIDAS (I = 3), which
results in a larger PAR scenario model.

Since SBMs are likely to be smaller than the flat model, we ar-
gue that SHARP in practice requires significantly less space than
the flat model. The savings are also due to the fact that we can gen-
erate and solve SBMs one at a time, and thus reuse the space. Fur-

thermore, given that SHARP takes the approach of solving many
smaller models rather than one large model, it is possible to solve
the different branches of the hierarchy in parallel. The results dis-
cussed above were confirmed by a number of other example sys-
tems.

5.2 Accuracy
Our goal is to provide evidence that SHARP is sufficiently accu-

rate to be used in making design decisions. Therefore, we compare
the sensitivities of SHARP and the corresponding flat model: if the
differences in the changes of reliability estimates are reasonably
small when the same parameter is varied in the two models, then
SHARP can be considered accurate.

5.2.1 Sensitivity Analysis
First, we compared the sensitivities of SHARP and the flat model

when model parameters change. We vary a parameter within a
range (to be specified below), and observe how system reliability
changes. Here, we present results corresponding to varying failure-
related parameters in the MIDAS and GPS systems. We performed
similar experiments by varying other parameters and using other
systems’ models. The results were qualitatively similar.

The inaccuracies in our estimates come from the solution of the
PAR scenarios, because of the approximations we made (recall Sec-
tion 4.3). We generate the SBM of the basic scenarios using the
same technique as in existing work, therefore the results are the
same. The solution of the SEQ scenarios is exact: the steady state
probability using our stochastic complementation-based approach
is the same as if solved directly (with a flat model) [18].

Next, we study how the inaccuracies propagate to the system
level. In Figures 11(a) - (d), we vary the failure rates of the Sensor
and Hub components in MIDAS, and the EM and RG components
in GPS between 0.1 and 0.5. In Figures 11(f) - (i), we vary the
recovery rates of Sensor and Hub in MIDAS, and EM and RG in
GPS between 0.2 and 0.8. We observe that results obtained from
SHARP closely follow the flat model in these experiments.

We also illustrate that SHARP is useful in highlighting compo-
nents that are more critical to a system’s reliability. For instance,
in Figure 11, when we vary the failure rates of Sensor and Hub
between 0.1 and 0.5, system reliabilities obtained from SHARP
change by 4% and 0.4%, suggesting that under these conditions
Sensor is the more critical component. This is corroborated by the
flat model.

5.2.2 Effect of Contention Modeling
To illustrate the importance of modeling contention in SHARP,

we use CS with a single scenario. By increasing the number of
clients, we can model a highly-contended system. For example, our
results with one server and 8 clients are depicted in Figures 11(e)
and (j), where we present the results of using SHARP without con-
tention modeling, SHARP with contention modeling, as well as re-
sults from the flat model (which includes contention) as a baseline
for comparison. The differences between the results obtained from
SHARP without contention modeling and the flat model can be as
large as 12% (when the failure rate is 0.2), while the results with
contention modeling are much more accurate (the error is generally
about 2%, and no larger than 5%, when the failure rate is 0.2). This
occurs because, without contention modeling SHARP includes the
time spent waiting to be served as processing time, thus overes-
timating the processing time. In turn, this lowers the reliability
because processing a request may trigger a defect in the server that
waiting for service does not. Results obtained using other systems
are qualitatively similar, and are omitted for brevity.
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Figure 11: Sensitivity analysis at the system level
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Figure 12: (a) Computational cost of SHARP with and without
truncation, (b) Errors caused by model truncation

5.2.3 Effect of Model Truncation
In evaluating the effect of truncation (recall Section 4.3.3), we

first study the computational cost savings. As a representative illus-
tration, in Figure 12(a), we plot the number of operations needed
to solve for the reliability of MIDAS with one GUI, AC, and Hub,
and 100 Gateways, with each Gateways connects to two Sensors.
i.e., there are 100 instances of the SensorMeasurement scenario. In
Figure 12(a), we varied the threshold (x-axis, plotted in log-scale),
and plotted the number of operations needed to solve SHARP with
truncation. We fixed the scenario reliability of SensorMeasurement
at 0.99, and the completion time at 1. The cost without truncation
is our baseline, and can be considered as having a threshold of 0.
As we can see from Figure 12(a), the computational cost savings
can be significant.

Next, we study the error in reliability estimates when truncation
is used. The results are depicted in Figure 12(b). We varied the
threshold in the x-axis, and plotted the error in reliability estimates
as compared to the results without truncation (y-axis). The error is
expectedly smaller for smaller thresholds, The largest error is 0.8%
for the threshold of 10−2. Our experiments with model truncation
suggest it as an effective way of reducing the analysis space for
concurrent systems with minimal losses in accuracy.

6. RELATED WORK
Current literature includes a number of software reliability pre-

diction techniques that are applicable at the architectural level [5,
7, 9, 10, 11, 21, 22, 23, 28, 30]. A comprehensive treatment of
these is given in several surveys on the topic [15, 8, 12, 13]. Many
of these approaches are influenced by [5], which is one of the earli-
est works on reliability prediction that considers a system’s internal
structure using Markov chains. In [5], the states in the reliability
model represent components, while the transitions represent trans-
fer of control between components. These transitions are assumed

to follow the Markov property (i.e., a transition to the next state is
determined only by the current state). The work in [5] assumes a
sequential system, and most existing approaches, with the notable
exception of [7, 22, 28], make the same assumption. Since our
work focuses on concurrent systems, we restrict the remaining dis-
cussion mostly to works that address concurrency. We also com-
ment on approaches that make use of scenario-based models, as
well as approaches based on formalisms other than Markov chains.

As noted earlier, in modeling a concurrent system one typically
needs to keep track of the status of all components. [7, 22, 28] have
taken this approach, in which a state S in a model of a concurrent
system is described by C variables, where C is the number of com-
ponents in the system, i.e., S = (S1, S2, . . . , SC). In [7, 28], com-
ponents are modeled as black-boxes, which are either active or idle,
i.e., Si = 0 when Compi is idle and Si = 1 when Compi is ac-
tive. In addition to scalability problems, this is also a shortcoming
since representing the internal structure of components facilitates
more accurate models. For example, some defects may only be
triggered when the component performs certain functions. To ad-
dress this, instead of modeling the status of a component as either
active or idle, one can use a finer-granularity component model;
this would result in the type of model used in [22], where Si repre-
sents the state of Compi. Specifically, [22] generates component
models from scenario models and then generates a system model
by combining the component models using parallel composition.

In our earlier work in [4], we estimate the reliability of concur-
rency systems, modeled as independent scenarios running in paral-
lel. The major differences between this paper and our earlier work
are (1) we model the dependencies between scenarios in this pa-
per, while in [4] we assume scenarios are independent; (2) we al-
low scenarios that are running in parallel synchronize (recall Sec-
tion 4.3.4); and (3) we explore contention modeling in details (Sec-
tion 2.2.3), which is first hypothesized as future direction in [4].

Existing approaches are also inflexible with respect to different
notions of system failure, e.g., in [5, 10, 11, 21, 28], failures are
represented by transitions to a failure state in the (Markov-chain
based) reliability model. In these models (which assume a single-
threaded system), being in state Si indicates that Compi is active,
while all other components are idle. A transition from a state Si to a
failure state indicates that Compi has failed. This means that if any
active component has failed, the entire system is considered to have
failed. This is also the case in [22], where the system transitions to
a failure state when any active component fails. The work in [7, 9]

131



does not include failure states explicitly; rather essentially a reward
is assigned to each state (with the value of the reward represent-
ing the probability of the system failing in that state), where the
system’s reliability is computed as a Markov reward function [25].
However, the system failure description is still limited, assuming
that the system fails when any (active) component fails. [28] pro-
vides a somewhat richer description of system failures, where a
reliability model includes backup components that can provide ser-
vices when the primary component fails; the system fails when the
primary component and all backup components fail. However, this
approach is not capable (without significant changes) of describing
other notions of system failure, e.g., an OR-type relationship (the
system fails when CompA or CompB fails). Such notions of sys-
tem failure can be described within SHARP, by changing the way
we compute combination reliability in Section 4.3.5.

Some existing approaches make use of scenario models [10, 22,
30], but they assume a sequential system, with the exception of
[22] as described above. For example, in [30] system reliability is
defined as the weighted sum of scenario reliabilities. The weights
represent the probabilities that each scenario occurs, with the as-
sumption that one scenario is active at a time. This is not the case in
our work: in a concurrent system, it is possible to have concurrency
within a scenario, as well as multiple scenarios and/or multiple in-
stances of the same scenario running simultaneously. Moreover,
[30] assumes that the probabilities of each scenario occurring are
known, which is also not the case in our work.

7. CONCLUSIONS
We presented SHARP, a scalable framework for predicting re-

liability of concurrent systems. SHARP models concurrency by
allowing multiple instances of system scenarios to run simultane-
ously. We overcame inherent scalability problems by leveraging
scenario models and using an approximate hierarchical technique
that allowed generation and solution of smaller parts of the overall
model at a given time. Our experimental evaluation showed that
SHARP’s scalability, which is missing from existing techniques,
is achieved without significant degradation in the prediction accu-
racy.
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