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Abstract—Differential privacy (DP) is a framework to quantify
to what extent individual privacy in a statistical database is
preserved while releasing useful aggregate information about
the database. In this work, we aim an exploratory study
to understand questions related to the optimality of noise
generation mechanisms (NGMs) in differential privacy by
taking into consideration the (i) query sensitivity, (ii) query
side information, and (iii) the presence of longitudinal and
collusion attacks. The results/observations from our study serve
three important purposes: (i) provide us with conjectures on
appropriate (in the sense of privacy-utility tradeoffs) oblivious
NGM selection for scalar queries in both non-Bayesian as well
as Bayesian user settings, (ii) provide supporting evidence and
counterexamples to existing theory results on the optimality of
NGMs when they are tested on a relaxed assumption set, and
(ii) lead to a string of interesting open questions for the theory
community in relation to the design and analysis of provably
optimal oblivious differential privacy mechanisms.

Index Terms—Privacy, Noise Generation Mechanisms, Utility

1. Introduction

Organizations such as the Census Bureau, hospitals,
and Internet companies have long maintained databases of
personal information. The census bureau may, for instance,
publish the result of a statistical query such as “How many
individuals have incomes that exceed $100,000?” An im-
plicit hope here is that the released aggregate information
is sufficiently anonymous so as not to breach the privacy of
any individual. Unfortunately, publication schemes initially
thought to be “private” have succumbed to privacy attacks
[1], highlighting the urgent need for mechanisms that are
provably private.

Differential Privacy (DP) is a formal framework to quan-
tify to what extent individual privacy in a statistical database
is preserved while releasing useful aggregate information
about the database. It provides strong privacy guarantees by
requiring the indistinguishability of whether an individual
is in the dataset or not based on the released information.
The key idea of differential privacy is that the presence or
absence of any individual data in the database should not
affect the final released statistical information significantly,
and thus it can give strong privacy guarantees against an
adversary with arbitrary auxiliary information. Since its
introduction in [2] by Dwork et. al., differential privacy has
spawned a large body of research in differentially private
data-releasing mechanism design and performance analysis
in various settings, e.g., statistical query processing, ma-
chine learning, pricing, etc. Differential privacy is a privacy-
preserving constraint imposed on the query output releasing
mechanisms, and to make use of the released information, it
is important to understand the fundamental tradeoff between
utility(accuracy) and privacy.
Research Motivation - When answering a scalar (single-
dimensional numeric) query, differential privacy is usually
achieved by adding some noise to the result of the query on
a given dataset via a noise generation mechanism (NGM)

[see Section 2.5]. It is evident that adding random noise
to a correct query output in order to preserve privacy will
generate an error for the query generator (QG), and will
result in its loss. The important question at hand here is,
for a given query, what is the best NGM(s) that for a given
desired level of privacy, guarantees a low loss to the QG?
Quite a few researchers (see ‘Related Work’) have focussed
on this question in theory, and either (i) proposed provably
universally optimal NGMs for specific query types (e.g.,
count) under general QG loss functions, (ii) prove that for
general query functions, there exists no universally optimal
NGM that minimize QG loss, or (iii) prove the optimality
of a given NGM for specific queries under restricted condi-
tions related to the query sensitivity and side information.
However, for DP to be prevalently used in practice, we need
to find an answer to the question of what NGM(s) provide
good (if not optimal) privacy-utility tradeoffs (see Section
2.4) for general query types when QGs possess general
loss functions, and in scenarios unrestricted by assumptions
related to query sensitivity and side information.

Goal - Our primary goal in this paper is to conduct an
exploratory study to understand questions and challenges
related to the design and analysis of optimal oblivious noise
generation mechanisms (NGMs) in differential privacy (see
Section 4.1).

Contributions - In regard to our goal, for the general
utility-maximization framework in DP, we use experiments
to understand the privacy-utility impact of adding various
oblivious noise generation mechanisms (NGMs) to the out-
put of single real-valued (scalar) query functions having
arbitrary sensitivity. More specifically, for a given scalar
query function of a particular output domain (continuous
or discrete), we investigate the existence and design of
high utility preserving oblivious NGMs for a given privacy
regime (high or low) in a Bayesian setting. Our study
takes into consideration (i) different privacy regimes (lev-
els of privacy strength), (ii) continous and discrete query
output domains, (iii) varied levels of query sensitivity, (iv)
query side information, and (v) the presence of collusion
and longitudinal attacks on a query (see Sections 4.1 and
5.3). Our experiments help provide supporting evidence and
counterexamples to existing theory results on the optimality
of NGMs when they are tested on a relaxed assumption
set. The experimental results (see Section 5) also provide
us with conjectures on appropriate (in the sense of privacy-
utility tradeoffs) oblivious NGM selection for scalar queries
with side information in Bayesian user settings, for which a
general theory is yet to be developed. Following our exper-
imental results, as a secondary goal, we propose interesting
and important open questions for the theory community
in relation to the design and analysis of provably optimal
oblivious DP mechanisms.



2. Background

We briefly review the essential components of the dif-
ferential privacy framework as applicable to this paper,
viz., the privacy mechanism, query sensitivity, QG utility,
the privacy-utility tradeoff, and popular NGMs in existing
literature. Most of the material in this section is based on
the paper by Ghosh, Roughgarden, and Sundararajan [3] and
is intended as background material, including terminology
and notation used in the remainder of the paper.

2.1. Differentially Private Mechanism

Consider a database with n rows drawn from a finite set
Dn. Each row corresponds to data of an individual entity.
The Hamming distance dH(D1, D2) between two datasets
D1, D2 is the number of entries on which D1 and D2
differ. Two datasets D1, D2 are neighbors if and only if
dH(D1, D2) = 1. A query q takes a database D ∈ Dn

as input and outputs the result q(D) ∈ L in the set L of
legitimate query results.

A differentially private mechanism X (also a noise
generation mechanism (NGM)), is a probabilistic function
from L to some range R, continuous or discrete, that adds
a random noise to the true query output of q(D). Typical
examples of range R of answers to query q are the set of
real numbers, integers, and natural numbers. Let xir denote
the probability that a mechanism X outputs r ∈ R for
input (which is query output) i = q(D) ∈ L. For such a
mechanism X and a parameter α = e−ε ∈ [0, 1], X is ε-
differentially private if and only if

xD1,r

xD2,r
lies in the interval

[e−ε, eε] for every possible output r ∈ R and pair D1, D2
of neighboring databases. A mechanism is oblivious if, for
all r ∈ R, xD1r = xD2r whenever q(D1) = q(D2) - if the
distribution of the noisy query output depends only on the
true query result. We discuss examples of probabilistic noise
generation mechanisms used in the existing DP literature in
Section 2.5.

Intuitively, providing differential privacy implies that the
probability of every response of the privacy mechanism,
and hence the probability of a successful privacy attack
following an interaction with the mechanism, is, up to a
controllable ε factor, independent of whether a given entity
“opts in” or “opts out” of the database.

2.2. Query Sensitivity

Two types of query sensitivity are typically considered
when determining a proper noise mechanism - global sensi-
tivity and smooth sensitivity. Specifically, global sensitivity
(GS) for a query function q over the entire database domain
Dn is defined as:

∆GS = max
D1,D2∈Dn:dH(D1,D2)=1

‖q(D1)− q(D2)‖ . (1)

That is, for a given query, GS denotes the largest difference
of query outputs possible from all dataset pair combinations
having a Hamming distance of one. Since the power of the
noise to be added to a query output is proportional to query
sensitivity values, global sensitivity is the safest way of
adding noise to prevent de-anonymity. However, frequently
an unnecessarily large amount of noise is added, when GS
is used, thus resulting in significant difference between the
observed query output and the true query output.

One approach to adding appropriate noise levels to a
query output is to adopt the use of smooth sensitivity instead.
Before we can introduce smooth sensitivity, we need to
define local sensitivity (LS) as follows:

∆LS(D1) = max
D2∈Dn:dH(D1,D2)=1

‖q(D1)− q(D2)‖ . (2)

However, we cannot use LS directly to add noise to a query
output, as LS is dataset D1 dependent (i.e., sensitive to
the values in the dataset), and does not preserve ε-DP. [4].
Smooth sensitivity (SS) [4] is a function of LS, and is “in
between” global and local sensitivities. The definition of
smooth sensitivity is given as

∆SS(D1) = max
k=0,1,··· ,n

e−kε

(

max
D2∈Dn:dH(D1,D2)=k

∆LS(D2)

)

.

(3)
Like LS, SS is dataset dependent; however, it enables the
addition of an appropriate amount of noise (greater than that
due to LS) to a query output, and most importantly preserves
DP [4], primarily due to the appropriately extra noise added
compared to that in the LS case.

2.3. Query Generator Utility

Utility Without Side Information: For a given query
q, the utility to a query generator (QG) is its measure
of the usefulness of the output of a differentially private
mechanism X for q. One of the goals of X (in theory) is
to guarantee optimal utility to every potential QG (user),
independent of its side information and preferences. The
notion of usefulness, however, is conceptually intuitive but
intractable for quantification. Since, in most cases the output
of X will deviate from the true value of query q, a more
convenient way for researchers to quantify utility is to
measure its expected loss/deviation. In the absence of any
side information available to QG, let l(i, j) be QG’s loss
function when the true answer to q is i while QG believes
it to be j. In general, a loss function is likely to possess
the properties of symmetry and monotonicity, i.e., the loss
function would depend only on i and |j − i|, and would be
non-decreasing in |j−i|. Typical examples of such functions
include l(i, j) = |j−i|, l(i, j) = (j−i)2, and the binary loss
function lbin(i, j), defined as 0 if i = j, and 1 otherwise. As
in [3], here we will measure utility of QG as its expected
loss (as detailed below).
The Presence of Side Information: A QG potentially
has side information pertaining to a query q, which might
stem from other information sources, previous interactions
with mechanism X , introspection, or common sense. For
example, if q requires the count of the number of adults in
Los Angeles contracting flu in December 2015, an estimated
lower bound to the true query output could be the number
of people buying flu drugs from a drug company in that
month. An upper bound to the true query output is the total
adult population of Los Angeles in the month of December.
Information such as the upper bound and lower bound of
the true query output serve as potential side information to
the QG. One of the ways to model this side information is
via a prior probability distribution [3]. For a given q, this
prior distribution represents the belief of the QG (user) on
the query output of q. Note that the use of priors as model
parameters does not in any way affect the preservation or
non-preservation of differential privacy; it only influences
the utility of a QG to discuss the utility of a (differentially
private) mechanism to a potential user.
The Net Utility Function: The net utility function for a
QG is a function of both the side information he has (in
terms of a prior distribution) and his loss function (user’s
preference).

For a query q, consider a Bayesian user with a prior p
and loss function l that interacts with a differentially private
mechanism X with range R. Since the range R of X need
not coincide with the set L of legitimate query results (which
includes the side information set), a QG, in general, must
first reinterpret an output r ∈ R of the mechanism X as
a query result j ∈ L. For example, a user that observes
the output “-2” from the α-geometric mechanism (Example



2.1 in [3]) might guess that the actual query result is most
likely to be 0 (since the range of the true query output is
non-negative). In such a case, there needs to be a remap
of mechanism X with range R, which is a probabilistic
function Y from R to L, with yrj denoting the probability
that a user reinterprets the mechanism response r ∈ R as
as a query result j ∈ L. A mechanism X and a remap Y
together induce a new probabilistic mechanism Z = Y ◦X
with zij = (Y ◦ X)ij =

∑

r∈R xiryrj . We define the net
utility function of a QG with prior p as its expected loss
with respect to a mechanism X and a remap Y , for a query
q(D) whose true result is i, and denote it as EU(p, q,D, i)
that is expressed as

EU(p, q,D, i) =
∑

i∈L

pi
∑

j∈L

zij l(i, j),
∑

i∈L

pi = 1. (4)

On a similar note, the net utility function of a non-Bayesian
(Risk-Averse) QG that does not take into account prior
information but accounts for the worst case expected loss
[5], is expressed as

EU(q,D) = max
i∈L

∑

j∈L

zij l(i, j). (5)

2.4. Utility-Privacy Tradeoffs

We assume that the query generator is a rational entity
and would thus want to minimize its expected loss. On the
other hand, the differentially private framework will need to
ensure that its privacy requirements are met and that entity
anonymity is preserved. For differential private frameworks,
we express this conflict/tradeoff between utility and privacy
for countable ranges R as two optimization problems, OPT1
and OPT2, when the QG does and does not account for its
prior, respectively.

minimize
∑

i∈L

pi
∑

j∈L

zij l(i, j)

subject to privacy constraint set on α, z′ijs specific to X,
∑

j∈L

zij = 1, ∀i ∈ L,

zij ≥ 0, ∀i ∈ L, ∀j ∈ L.
(OPT1,Bayesian)

minimize max
i∈L

∑

j∈L

zij l(i, j)

subject to privacy constraint set on α, z′ijs specific to X,
∑

j∈L

zij = 1, ∀i ∈ L,

zij ≥ 0, ∀i ∈ L, ∀j ∈ L.
(OPT2,Risk-Averse)

In both OPT1 and OPT2, the objective function reflects the
minimization of the expected loss of the QG, and the con-
straints, apart from the validity of problem variables, reflect
the ensuring of privacy constraints specific to mechanism
X . Given a query q, if user’s priori (side information) pi
and preference of the loss function l are known, an optimal
mechanism Z can be derived by minimizing the expected
loss (Bayesian model) or the worst case loss (Risk-Averse
model) subject to differential privacy.

2.5. Popular NGMs in Literature

As representative examples of NGMs, we consider three
popular oblivious noise-adding mechanisms in existing lit-
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Figure 1. Laplacian, Staircase, and Geometric mechanisms.

erature: (i) the Laplacian [2], (ii) the Geometric [3], [5], and
(iii) the Staircase [6] mechanisms, defined as follows:

Laplacian :p(x|ε,∆) =
ε

2∆
e−ε

|x|
∆ , ∀x ∈ R (6)

Geometric :p(x|α) = 1 + α

1− α
α|x|, ∀x ∈ Z (7)

Staircase :pγ(x|ε,∆) =
1− α

2∆
√
α
e−ε(k+[x]γ), ∀x ∈ R (8)

where 0 ≤ α = e−ε ≤ 1 is the privacy level, and ∆ is the
sensitivity level. In the Staircase mechanism, the rounding
function [x]γ is defined as:

[x]γ =

{

0, |x| ∈ [k∆, (k + γ)∆)
1, |x| ∈ [(k + γ)∆, (k + 1)∆],

(9)

where k ∈ Z; 0 ≤ γ ≤ 1 controls the shape of the staircase

and is set to
√
α

1+
√
α

in the one-dimensional case, in order

to minimize the expectation of the noise amplitude. Note
that the Geometric mechanism can be applied to quantized
numeric query outputs using the following generalization:

Geometric :p(x|α,∆, d) = d

(

1 + α
d
∆

1− α
d
∆

)

α
|x|
∆ , (10)

for all x ∈ 0,±d,±2d, · · · , where d ≤ ∆ is the quantization
level of the output query, with ∆

d
∈ N. The conventional

Geometric mechanism is a special case when d = ∆ = 1.
A depiction of the three mechanisms is given in Fig. 1.
The quantization level (resolution) here is set to 0.5 (and
therefore the probability mass is one-half of the density).

3. Related Work

In this section, we briefly describe the state-of-the-art
optimal oblivious DP NGM design for scalar queries. We
focus on this literature to explore the drawbacks of existing
research with respect to determining optimal NGMs for
queries without any constraints on the availability of side
information and query sensitivity, which in turn would shape
directions for our ongoing and future research.

Ghosh, Roughgarden, and Sundararajan [3], [5] show
that for a single count query, with special property ∆GS =
∆LS = 1, for a general class of utility functions, the univer-
sally optimal mechanism (see definition below) for preserv-
ing differential privacy is the Geometric (noise) mechanism.
In [5], the authors propose mechanism analysis similar to
that in [3], with similarities and differences as follows: both
[5] and [3] study a count query where the query output
is integer-valued, bounded, with unit sensitivity. The cost
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Figure 2. Problem Difficulty Levels (low to high) w.r.t. Optimal NGM
Design

function only depends on the additive noise magnitude and
is an increasing function of the noise magnitude. [5] is based
on a non-Bayesian risk-averse model, however, where [3] is
based on a Bayesian model. In [5], the authors show that
although there is no optimal solution to the minimax opti-
mization problem (to optimize privacy-utility tradeoff) for a
general class of cost functions, each solution corresponding
to a specific cost function instance can be derived from the
same Geometric mechanism by randomly remapping. From
[3] and [5], it easily follows that the Geometric mechanism
is universally optimal (see definition below) for every count
query under both, the Bayesian and risk-averse models.

Moreover, [7] states the following definition of universal
optimality of a differentially private mechanism.
Definition 1. Given a query and a privacy level ε, a ε-

differential private mechanism X is universally optimal
if and only if every user/QG u derives as much utility
from X as from the mechanism Xu which is optimally
tailored to u, no matter what u’s side information and
preferences are.

The above definition of universal optimality reflects an
extremely strong utility guarantee, regardless of the side
information and preferences of QG, for Bayesian and risk-
averse QG models. Unfortunately, such a strong guarantee
does not hold for general queries under either the Bayesian
or risk-averse model. Brenner et al. showed the impossibility
of universally optimal oblivious mechanism for histograms,
generalizations of count queries, and several other queries
satisfying certain properties, for Bayesian and risk-averse
users [7]. Geng et al. recently proposed a Staircase mech-
anism [6], [8] and proved optimality (not universal) only
under the risk-averse model for general real-valued query
functions where the query output can take any real value.
However, the optimality of the Staircase mechanism holds
only under the following assumptions stated in [6], [8]:

• The query output domain is the entire real domain
ranging from -∞ to +∞.

• There is no side information available to a QG about
the output of the query function is known.

• Local sensitivity equals global sensitivity, or the
sensitivity should remain constant over all possible
query outputs, so that the optimal NGM is in the
family of NGMs that are query-output independent.

However, the first and last assumptions do not hold true for
many query functions in practice, e.g., quite a few queries
whose outputs are scalar non-integers.

Nissim, Raskhodnikova, and Smith [4] show that for
certain nonlinear query functions, one can improve the query
output utility by adding data-dependent noise calibrated to
the smooth sensitivity of the query function, which is based
on the local sensitivity of the query function. In the model
in [6], the authors use only global sensitivity of the query
function to prove the optimality of the Staircase mechanism
for nonlinear query functions, and assume that the local
sensitivity is the same as the global sensitivity. A summary
illustration stating the difficulty (low to high) level of open
problems is shown in Figure 2. Level 1 has already been
tackled by researchers, whereas w.r.t. Level 5, the Geometric
mechanism, as of yet, is the only proven instance of a
universally optimal mechanism for the count query.

4. Challenges, Opportunities, and Our Ap-
proach

We begin with possible open research directions, fol-
lowed by corresponding challenges and our approach to
making progress on these open questions.

4.1. Problem Statement

Based on the above survey of the state of the art in
optimal differential private mechanisms, we first state the
following interesting open research directions. Each ques-
tion is then mapped to a corresponding level in figure 2.

• R1: Do there exist universally optimal oblivious
mechanisms for queries other than those stated in
[7]? (Level 6.)

• R2: The authors in [6] show that the optimal mech-
anism for a single real-valued query under the risk-
averse model is the Staircase mechanism. This opti-
mality holds under the assumption of constant sensi-
tivity over all query outputs, which holds in general
only if the worst case global sensitivity is considered
(i.e., “optimal in the sense of very large noise); but,
in general, this is not true for under a better/tighter
sensitivity metric such as smooth sensitivity. Thus,
a natural question here is: what would the optimal
mechanism be if we relax the assumption of constant
noise over query outputs? (From Level 1 to Level 2.)

• R3: More ambitiously, given user preferences and
side information, is there an optimal mechanism for
a scalar query in the Bayesian model? This question
can be treated as a relaxed version of the harder
question of finding a universally optimal mechanism,
as a mechanism of the latter type is optimal in the
sense of arbitrary user preferences and side informa-
tion. (From Level 1 to Level 3.)

Challenges- R1 is challenging due to the difficulty of (i)
determining general or specific properties of such queries
that are necessary and/or sufficient criteria for any NGM to
be universally optimal for those queries, and (ii) determining
the necessary and/or sufficient conditions (e.g., mathemat-
ical properties of the noise distributions) for the existence
of universally optimal mechanisms for such queries. In the
case of R2, relaxing the assumption of constant sensitivity
leads to loss of linearity in the original (linear programming)
optimization problem in [6] used to model the privacy-utility
tradeoff, which is quite difficult to solve for general loss
functions. In the case of R3 (i.e., given side information),
determining a side-information specific optimal mechanism
for general or a specific scalar query is a non-trivial task, the
challenge being similar to those in (i) and (ii), but in settings
when QG’s have prior information on the query output.

Given these challenges, in this paper, we would like to
address the following simplified but related questions and
answer them via experiments assisted by some analysis:

1) “Utility-Privacy Tradeoff of Existing Mechanisms”:
With reference to R2, the Staircase mechanism is
known to perform better in theory than the Lapla-
cian mechanism (known to be the best mechanism
for real-query outputs prior to the work by [6]) in
the low-medium privacy regime for real query out-
put [6]. We are interested in investigating the extent
of this improvement. To this end, we will study this
under arbitrary sensitivity and ε-differential privacy
settings.

2) “Presence of side information”: With reference to
R3, given user preferences and partial user side
information, can we figure out a heuristic differ-
entially private mechanism that takes advantage of
partial side information and performs better than



the risk-averse (non Bayesian) Staircase mecha-
nism? If so, what would such a heuristic mechanism
look like? What would be the performance gap
region of the privacy-utility tradeoff?

Studying the problem of side-information specific op-
timal differential privacy mechanism is non-trivial. Many
of the query outputs are expected to be distributed in a
certain manner. For example, consider a query asking for
the mean of a certain attribute of a large database. The
Central Limit Theorem tells us that (assuming independent
and identically distributed entries), the mean (query output)
should be Gaussian distributed, no matter how the original
entries are distributed. A similar idea applies to other queries
such as maximum query, where we can reasonably expect a
high probability of large numbers and a low probability of
small numbers in a large database. More specifically, if the
entries are independent and uniformly distributed, the max
query output will be beta distributed over the query output
domain (scaled and shifted).

Moreover, based on the open question in [5], it is
still not clear whether collusion-resistance and simultaneous
utility maximization hold for other types of queries (i.e.,
other than the count query considered in [5]). This inspires
another interesting question: for queries other than count,
how would the utility function behave (e.g., as a function of
the number of QGs) when QGs interact and can potentially
share information of a particular query output?
Approach - We focus on experimentally addressing the
above-mentioned questions in the rest of this paper, i.e.,
respecting the intricacies of finding the answers to our
questions in theory, instead of analytically modeling ar-
bitrary sensitivity and side information and resolving the
questions via mathematical rigor, we will run experiments
for certain query functions on sampled values in the DP
parameter space and the prior distribution space. Based on
our observations, we will come up with conjectures whose
proofs/disproofs would be open problems for the theory
community working on DP. To the best of our knowledge,
ours is the first work touching upon an experimental perfor-
mance evaluation of oblivious noise generating mechanisms
(NGMs) for differential privacy (DP).

4.2. Experimental Methodology

In this section, we propose our methodology to run
experiments whose outcome would lead us to major con-
jectures about the optimality of NGMs in the presence of
query side information.

4.2.1. Dataset Domains and Query Functions. Recall that
here, we focus only on numeric queries and differential
private (DP) mechanisms which are oblivious. Our goal is to
study the utility-privacy tradeoff of three popular oblivious
mechanisms, and investigate the (simplified) open questions
posed above. We note that, given our goal, there is no need
to perform experiments on large-scale real datasets to obtain
our results, for the following reasons.

Given a database and a query result, there are three major
components that DP outcomes depend on: (i) the true query
output, (ii) the query sensitivity metric, and (iii) correspond-
ing DP noise generating mechanism. However, oblivious
mechanisms are not database dependent conditioned on the
unperturbed query output. If two databases have same true
query output, then the oblivious mechanisms apply noise to
the query output in exactly the same manner, oblivious of
the database. This implies that the DP mechanism output
depends on the true query output and the query sensitivity.
The latter again depends on the database if we consider
local sensitivity, and does not depend on the database if we
consider global sensitivity.

However, LS cannot be used to generate noise for a true
query output because it does not preserve DP. Researchers

usually consider global sensitivity or smooth sensitivity
instead for adding noise. The bad news here is that, to
experimentally obtain these two sensitivities, by definition,
we need to investigate all possible databases over the entire
database space, which is in practice infeasible. On the other
hand, the good news is that, we can remove the need
to compute sensitivity values by simply normalizing the
performance metric (i.e., expected loss) by global sensitivity.

To illustrate this idea, recall that the utility (measured
by expected loss) of Laplacian and Staircase mechanisms
from [8] is as follows:

Laplacian :EL(α,∆) =
∆

− logα
(11)

Staircase :EL(α,∆) =
∆
√
α

1− α
. (12)

If we normalize above loss functions by the global sensitiv-
ity ∆, the loss function no longer depends on ∆. Particularly,
the loss function of the Geometric mechanism for count
query does not depend on ∆ either, due to the fact that
∆GS = ∆LS = 1, which is

Geometric :EL(α) =
2α

1− α2
, (13)

Therefore, without loss of generality, given the perfor-
mance metric normalized utility, which we use in our exper-
iments, these experiments need not be done in a database-
specific way. We only need to specify the query output
domain L, which can be continuous or discrete. For scalar
queries, we consider mean, maximum, and count queries in
our experiments.

4.2.2. Deployed (Noise-adding) Mechanisms. The popular
noise-adding mechanisms we explore here are the Laplacian,
Staircase, and Geometric mechanisms. The details of these
mechanisms are given in section 2.5.

4.2.3. Interaction (Remap) Mechanisms. The remap func-
tion, Y , is an optimal mapping mechanism from the noisy
query output, r, to the estimated result, j, in the true query
output domain.

If the true query output domain is real, then Y is nothing
but an impulse/identity function, since the noise we add
has the highest density at the true answer with no bias.
If the true query output domain is discrete, then Y should
be a round() function which rounds the noisy results to the
nearest legitimate discrete value.

4.2.4. Collusion in Query Results. As explained in section
4.1, we would like to understand the drop rate of expected
loss corresponding to the number of cooperating customers.
In our experiments, we make the following assumptions:
each customer can send the same query only once, but
they can attempt to extract useful information by sharing
their query answers with other users asking the same query.
Based on these assumptions, we study the utility-privacy
tradeoffs for collusion attacks. We note here that the case for
longitudinal attacks is exactly the same as that of collusion
attacks because the privacy harm caused due to the same QG
asking k questions on a query is the same as that caused by k
QGs asking one question each on the same query and then
colluding with each other on the perturbed query outputs
[5].

5. Experimental Results and Analysis

In this section, we focus on addressing the simplified
questions posed in Section 4.1 using experiments aided by
analysis.
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Figure 3. Utility-Privacy tradeoff and optimality of three mechanisms. Experimental results are compared to theoretical analysis.

5.1. Utility-Privacy Tradeoff of Existing Mecha-
nisms

5.1.1. Analysis. We assume every entry in the database is
a real number. In the cases of the mean and max queries,
the query outputs are also real numbers. The corresponding
expected disutilities were provided by previous efforts [8]
and has been mentioned in (11) and (12). Note that for con-
tinuous query output domain L (e.g., the entire or bounded
real domain), the Geometric mechanism cannot be applied
since the perturbed query output does not cover entire (all
possible query outputs in) L and thus will not satisfy DP
by definition.

However, in the case of the count query, the query
output is an integer. Consequently, for continuous NGMs,
we have to remap the perturbed query output to integers. We
derive the normalized expected loss based on its definition
in section 2.3, particularly for the count query (∆ = 1), as
follows:

Laplacian :EL(α) =

√
α

1− α
(14)

Staircase :EL(α) = (1− (1−√
α)

2

2
)

√
α

1− α
(15)

Note that we do not need to revisit this for Geometric, since
it has also been shown in (13).

Fig. 3 depicts our analysis results (the ”Theoretical”
curves) of the utility-privacy tradeoff for existing popular
NGMs. Since utility is measured by expected loss, lower
curves stand for better performance. We note that the Stair-
case mechanism outperforms the Laplacian mechanisms for
the mean and maximum queries under low-medium privacy
regions (α < 0.5). Under medium-high privacy regions (α ≥
0.5), there is essentially no statistical difference between the
mechanisms, and therefore we only capture curves under
low-medium privacy regions (so gaps would be more clear).
Although Staircase outperforms Laplacian mechanism, the
performance improvement does not seem very significant.
For the count query, we find that the Geometric mechanism
performs the best in our experiments. This is expected, since
the Geometric mechanism is universally optimal for the
count query.

5.2. Presence of Side Information

Given the setting of having side information, in this
experiment, we show that even without knowing the exact
distribution a priori, we could still do better than applying
the risk-averse optimal mechanism blindly.

5.2.1. Scenario and Experiment Settings. In many real
scenarios, we have only very limited information (if any)
of the exact underlying prior distribution of query output.
This is because given a query and a particular database,
the corresponding query output is only one sample of the
underlying prior distribution. For many cases like medical
records, it is impractical to estimation the underlying prior
distribution by gathering tremendous samples from tremen-
dous databases. To understand whether we can still do better
with very limited side information, in this section, we are
going to design an experiment for this purpose. Even if a
simple toy example showing non-trivial improvement with
very limited side information is representative enough to
claim the optimization problem is worthy.

Considering numeric query functions mean and max-
imum. Recall that for i.i.d. entries in a database, from
probability theories we know that the mean and maximum
will be Gaussian and Beta distributed. In our toy experiment,
we define the size of database n = 100, the global sensitivity
to be 10, and the query output domain L to be a bounded
real interval [−10, 10]. (This is just for convenience, so
that the query output of maximum query would not go
to infinity). The prior of their unperturbed query output
are set to be a truncated Gaussian N(0, 1) and a scaled-
and-shifted Beta(n = 100, 1) distribution for mean and
maximum query, respectively. However, in the experiment
we pretend we have very obscure information (worst-case
scenario under the presence of side information) about the
parameters, i.e., we only know rough shapes of the distribu-
tions. More specifically, we assume that we only know that
they behave like N(µ ∈ [−2, 2], σ) and Beta(n, 1), with µ
unclear but in a certain range, σ small and n large due to
large database (n ≥ 100).

5.2.2. Proposed Heuristic Mechanism. We propose a
heuristic DP mechanism in what follows. This heuris-
tic mechanism has two stages. The first stage is a pre-
processing stage which simply rounds all numbers (the true
query outputs) in [−10,−5) to −10, all numbers in [−5, 5)
to 0, and all numbers in [5, 10] to 10, i.e., there are only
three possible outputs {−10, 0, 10} after preprocessing. The
second stage adds generalized Geometric noise presented in
(10) with d = ∆ = 10 (according to the set up of this
experiment) to the pre-processed output of the first stage.
The true query output is then perturbed twice in our heuristic
mechanism.

The idea our heuristic design is that the pre-processing
is actually designed based on the side information we have,
which is assumed to be Gaussian in N(µ ∈ [−2, 2], σ)
and Beta in Beta(n, 1) shape with small σ and large n.
In other words, from side information, we know that the
true result of the mean query has a high probability (due to
small σ) of being in [-2,2], which is centered around 0, and
the true result of the max query has a high probability (due
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Figure 4. Drop rates of expected loss due to collusion. Experimental results are compared to theoretical approximations.

to large n) of being a large number around 10. Therefore,
by discretizing the query output domain (introducing small
loss first), we can then apply Geometric mechanism which is
known to perform better for discrete output domain (gaining
much then).

5.2.3. Experimental Results. We compare the utility-
privacy tradeoff of the proposed heuristic mechanism for
mean and maximum queries under different privacy levels
(α). The experiments are run 106 times for each point and
then averaged to compute the expected loss. All results are
reported with 95% confidence intervals. Our experimental
results are depicted in Fig. 3. The performance curve of our
heuristic mechanism is marked as red crosses. We note that
for both mean and max queries, with simple preprocessing
and application of the Geometric mechanism, we can obtain
significant performance improvement in the low-medium
privacy regime (α < 0.5). Indeed, our heuristic design is
not optimal and not general in any sense, but this is not our
goal in this paper. Rather, we want to show here, through
experiments, the following interesting observations:

1) The pre-processing function should be designed
based on available side information. We can de-
sign a meaningful pre-processing function which
aids performance significantly without knowing the
actual prior.

2) By simply pre-rounding and applying generalized
Geometric mechanism, we can improve the per-
formance significantly without designing anything
new here. This suggests that designing a side-
information specific optimal DP mechanism is non-
trivial.

3) Designing a side-information specific pre-
processing improves performance significantly
without knowing the actual prior. However, it
is not clear if the side-information specific pre-
processing is indispensable. In other words, it is
not clear if a side-information specific optimal DP
mechanism can be designed in just a single-stage.

4) In this heuristic design, we note that the pre-
rounding stage prevents the expected loss from con-
verging to zero under collusion attacks, due to its
irreversibility (see Fig. 4). This suggests interesting
directions for the design of a collusion prevention
mechanism.

5.3. Collusion in Query Results

Here we assume that each user can only pose the same
query once (in a given time period). Let k be the number
of users that cooperate with each other by sharing their
perturbed query results. Dwork [9] shows that the com-
position of k queries, each of which is (ε,δ)-differentially

private, is at least (kε,kδ)-differentially private. However,
this bound is known to be loose [10]. Here, we derive our
approximation for the trend of expected loss drop for large
k. The approximation will be compared with experimental
results as well as the composition bound, to validate the
accuracy of the approximation and to show how loose the
bound is.

5.3.1. Analysis. For k users sharing their perturbed query
results, the first question we would like to ask is: According
to user preference, what would be the best strategy of
utilizing their results? We propose it in the following lemma.

Lemma 1. For Laplacian, Staircase and Geometric mech-
anisms, if user preference (loss function) is de-
fined/known as l(i, j) = |i− j|, the maximum likelihood
estimation (MLE) strategy for collusion in query results
is to use the corresponding sample medians.

Proof: Please see Appendix for details of the proof.
The definitions of l, i and j can be found in section 2.3.

Using Lemma 1 and applying an approximation [11] of
real-valued sample median distribution for large k, we then
derive the normalized expected loss of the optimal collusion
results for queries with continuous outputs in the following:

Laplacian :EL(α, k) =

√

2

πk

1

(− logα)
(16)

Staircase :EL(α, k) =

√

2

πk

√
α

1− α
(17)

Geometric :EU(α, k) =
1√
2πk

1 + α

1− α
(18)

Not surprisingly, the expected loss drops when the num-
ber of users (k) increases. However, the drop rate is inversely
proportional to

√
k. From above analysis, the curator can

re-define a new privacy level according to the (expected)
number of users (k) and the original privacy level. This
approximation is expected to approach the expected loss
of experimental results for large k and is thus particularly
useful for estimating the trend of utility loss and re-defining
new privacy levels. For the count query, however, the drop
rate of expected loss is difficult to analyze (and is part of
future efforts). We use experimental results to understand
the trend.

5.3.2. Experimental Results. Fig. 4 illustrates how the
expected loss drops as a function of the number of cooper-
ating users (k). The experimental results of each mechanism
for mean and maximum queries are compared with the
corresponding approximations and composition bounds. As
we can see from this figure, for uncountable numeric query



output domain (such as mean and maximum), the expected
loss drops roughly inversely proportionally to

√
k, not much

difference with our approximation. For countable numeric
query output domain (such as count), our experimental
results indicate that the expected loss drops much faster. This
indicates that count query is particularly vulnerable to collu-
sion attacks. That is, cooperating users could narrow down
the target information fairly quickly. To prevent collusion
attacks, a service provider should consider adding correlated
noise between cooperating users [5], as they would not be
able to remove the correlation, resulting in better privacy
protection of sensitive data.

6. Conclusions and Future Work

This paper is focused on the problem of optimal DP
mechanism design for one-dimensional numeric queries. We
consider possible levels of optimality, consider the current
state-of-the-art work in the context of these levels, and state
several open questions that have not been investigated or
answered by current differential privacy research. More-
over, we consider the utility-privacy tradeoff performance
of existing (popular) mechanisms. In the presence of side
information, a heuristic DP mechanism is proposed, largely
to illustrate the non-triviality of optimal design. We also
consider the effect of collusion in query results. Theoretical
bounds under k-fold adaptive composition are compared
with our experimental results, where collusion is based
on the maximal likelihood estimation (MLE) of k query
results. As a main result, we conjecture that a heuristic DP
mechanism betters the Staircase and Laplace mechanism for
scalar output queries in the presence of side information.

As part of future work, we plan to address the problem
of determining optimal noise generation mechanisms when
both side information is present and sensitivity constraints
are relaxed. We also plan to tackle the problem of finding
specific queries for which universally optimal mechanisms
can be designed. Finally, we want to explore the design
and existence of optimal NGMs (both oblivious and non-
oblivious) in the multi-dimensional query output scenario
under the presence or absence of side-information.
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Appendix

In this section, we provide the proof to Lemma 1.
Proof of Lemma 1. Since Geometric mechanism can be
treated as the sampled version of Laplacian mechanism, it
is sufficient for us to prove Lemma 1 just for Laplacian and
Staircase mechanisms.

Recall there are k users colluding in their perturbed
query outputs m1, · · · ,mk. The unperturbed query output is
their target called θ. The noise-adding mechanism X , with
probability density/mass function p

X
(x), is applied to θ so

that
mi = θ + xi, ∀i = 1, · · · , k. (19)

The maximum likelihood estimation (MLE) for θ would
be

θ̂ = argmax
θ

k
∑

i=1

log pX(xi = mi − θ). (20)

Recall for Laplacian, the probability density function is
shown in (6). Based on (20), the MLE θ̂ for Laplacian
mechanism can be derived as

θ̂Lap =argmax
θ

{

k log(
ε

2∆
)−

ε

∆

k
∑

i=1

|mi − θ|

}

=argmin
θ

{

k
∑

i=1

|mi − θ|

}

,

(21)

which is the θ̂ that minimizes the above k-dimensional Man-
hattan distance. Therefore, θ̂Lap is the median of perturbed
query outputs m1, · · · ,mk.

For staircase mechanism, the probability density func-
tion is in (8). One can easily verify that it is equivalent to
the expression in the following

Staircase : pγ(x|ε,∆) =
1− α

2∆
√
α
e−ε(ceil{ |x|

∆
−γ}) (22)

where ceil() is the ceiling function. By applying (20),

θ̂SC =argmax
θ

{

k log(
1 − α

2∆
√
α
) − ε

∆

k
∑

i=1

ceil {|mi − θ| − γ∆}
}

=argmin
θ

{

k
∑

i=1

ceil {|mi − θ| − γ∆}
}

.

(23)

However, since the ceiling function ceil(t) is a non-

decreasing function of t, any θ̂ that minimize the t will also
minimize ceil(t) (not vice versa). Therefore, it is equivalent
to say

argmin
θ

{

k
∑

i=1

{|mi − θ| − γ∆}

}

⊆ θ̂SC (24)

Note that γ∆ is a constant and can be further removed
in summation. Therefore, the median of perturbed query
outputs m1, · · · ,mk is a valid subset of the MLE θ̂SC.


