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Abstract

Wireless sensor systems aid scientific studies by instrtingethe real world and collecting
measurements. Given the large volume of measurementsteallby sensor systems, one prob-
lem arises — an automated approach to identifying the ‘@starg” parts of these data sets, or
anomaly detectionA good anomaly detection methodology should be able torately iden-
tify many types of anomalies, be robust, require relatiViégtle resources, and perform detection
in (near) real-time. Thus, in this paper we focus on an ampré@online anomaly detection
in measurements collected by sensor systems, where owaéeal, using real-world datasets,
shows that our approach is accurate (it detects over 90%edditbmalies with few false posi-
tives), works well over a range of parameter choices, ané'sasall (CPU, memory) footprint.

Keywords: anomaly detection, sensor systems, real-world deploysnent

1. Introduction

Wireless sensor systems have significant potential fongisicientific studies by instrument-
ing the real world and collecting measurements, with thediobserving, detecting, and track-
ing scientific phenomena that were previous only partialigeyvable or understood. However,
one obstacle to achieving the full potential of such systesihe ability to process, in a timely
and meaningful manner, the huge amounts of measurememtsdlect. Given such large vol-
umes of collected measurements, one natural question ragh€an we devise anffcient
automated approach to identifying the “interesting” padbthese data setsRor instance, con-
sider a marine biology application collecting fine-graimeeasurements in near real-time (e.g.,
temperature, light, micro-organisms concentrations) e- imight want to rapidly identify “ab-
normal” measurements that might lead to algal blooms whiachhave devasting consequences.
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We can view identification of such “interesting” or “unexpet’ measurements (or events) in
collected data as anomaly detection. In the remainder opéper, we use the generic term
“anomaly” for all interesting (typically, other-than-moal) events occurring either on the mea-
sured phenomena or the measuring equipment. Autonuatiéae (or near real-time) anomaly
detection in measurements collected by sensor syssaims focus of this paper.

Anomalies can have a variety of lengths, magnitudes, artdrpat For instance, Figure 1(a)
depicts a long duration, relatively gradual change in sereaaling, whereas Figure 2(b) includes
several short duration, quite abrupt change in sensormgadiBoth scenarios correspond to
anomalous events and should be accurately detected by aragndetection methodology.

Thus, a good anomaly detection methodology should haveoll@ving properties. First,
it should be able to accurately identify all types of anoeslas well as normal behavior (i.e.,
it should have low false negative and false positive rat8gcond, it should be robust, i.e., the
methodology should be relatively insensitive to paramsdttings as well as pattern changes in
the data sets. Third, it should require relatively small ants of resources, as these are typically
limited in sensor systems. That is, to run on sensor systirakpuld ideally have low com-
putational complexity, occupy little memory space, andureglittle transmission power. Last,
it is also desirable for a detection algorithm to be able tiecteanomalies in real-time or near
real-time. This is particularly important for sensor syssecorresponding to temporary deploy-
ments (as it might not be as useful to detect anomalies omcddployment is over) and those
monitoring hazardous natural phenomena (e.g., spreadnédiminants in aquatic ecosystems),
where prompt detection (and reaction) can be essentiatiteieg loss of life and money.

Anomaly detection, in general, has been studied in a numb®&rsbems contexts, most no-
tably in networking, where several techniques have beepgsed for detecting network fiec
anomalies [1, 2, 3, 4]. While one might take the approach gbtidigone (or more) of these tech-
nigues to sensor systems, we believe that they do not satishe desirable properties described
above, at least in their current form. In Section 6, we pre\(&) quantitative results from apply-
ing network anomaly detection techniques to data collelsyaal sensor systems deployments,
and (b) intuition for why these techniques did not yield goesults on such data. Consequently,
the properties required of arffective anomaly detection method for sensor data and our ex-
perience with applying network tffic anomaly detection techniques to sensor measurements,
motivated us to explore methoddtérent from prior work in network anomaly detection.

We also note that little exists in the literature on the tadianomaly detection in sensor sys-
tems data. Mostforts are focused on detection of faulty sensor reading$, asithose depicted
in Figures 3(a) and 3(b) — these are typically short duragients, with values significantly de-
viating from the “normal” sensor readings [5]. Often, suemsor data faults are modeled as
outliers and can be detected using simple Rule-based agfear by using statistical models
to capture the pattern of normal sensor readings and flaggingignificantly diferent samples
as faulty [6]. In this work, we view faulty sensor readingsaaspecial case of anomalies. As
illustrated in Section 4, our approach is able to capturé $adty readings, as well as other long
duration, “gradual” anomalies such as the one depictedgargil(a).

To the best of our knowledge, the onlffats focused on anomaly detection in sensor systems
data are [7, 8, 9]. Briefly, [7, 8] view measurements collddig a sensor system as coming from
the same (unknown) distribution and “pre-defines” anomsa®outliers. The main focus of that
effort, which is angff-line approach, is on minimizing communication overhead (ingnaitting
data needed for anomaly detection) and correspondingyoengumption. In contrast, we focus
on anonline approach that, on-the-fly, builds an adaptive model of “raifrdata and doesot
a priori define what is an anomaly. For instance, the approefh 8] might only flag the most
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extreme measurement in Figure 1(a) as an anomaly, whereapproach would flag the entire
event (outlined by the dashed rectangle) as an anomaly \Weagimore detailed description
of [7, 8] and a quantitative comparison in Section 6. In [9]hamge point detection based
approach is used for detecting distribution changes (egan, variance, covariances) in sensor
measurements. However, (a) this approach assumes knawbétige (time varying) probability
distribution from which sensor measurements are sampigdr(ation often not available in
real-world deployments), and (b) such techniques do not (aeéast in their current form) our
efficiency criteria (see Section 6).
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Figure 1: (a) Data set with long duration anomaly and (b) exarnph piecewise linear model.

In this work, we formulate the problem of anomaly detectiosénsor systems as an instance
of identifying unusual patterns in time series data problédi course, one possible direction
would then be to construct a timeseries-based approachbasgd on [6]. However, we also did
not find this direction to befeective as such techniques are (typically) not well-suitedittect-
ing long duration anomalies. So, we do not pursue this dordurther here, but in Section 6,
we do illustrate quantitative results corresponding toydpg a representative timeseries-based
approach to data collected by real sensor systems deplagraad provide intuition for why
such a technique did not yield good results.

In contrast, the basic idea behind our approach is to contpareollected measurements
against a reference time series. But, to do tfigiently and robustly, the following challenging
problems need to be solved: (1) How do define a reference &nes®; (2) How to compare two
time series ficiently?; (3) What metric to use in deciding whether two semsta time series
are similar or diferent?; and (4) How to update the reference time series,aptdd (normal)
changes in sensor data patterns?

We address these challenges by proposing and evaluatingoamady detection algorithm,
termed Segmented Sequence Analysis (SSA) that exhibitdabieable characteristics stated
above. Briefly, SSA leverages temporal and spatial coroglatin sensor measurements and
constructs a piecewise linear model of sensor data timessefiis is motivated by [10] which
focused on searching fdmown patternsn time series (see Section 6). To detect anomalies,
we compare the piecewise linear models of sensor data ¢tedleluring a time interval) and
a reference model, with significantfiirences (as determined by a proposed similarity metric)
flagged as anomalies. We use data from real-world deploysrergvaluate our approach and
demonstrate its accuracy, robustness, dhdiency. In summary, our the main contributions are:

e We propose an approach to anomaly detection in sensor sydteanis able to detect
anomalies accurately and in anlinemanner (Section 2).
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e We perform an extensive study using data sets from two rgdbgments, one consisting
of about 30000 environmental temperature measurements collecte@® Isgi2sor nodes
for around 43 days, and the other consisting of more thafd®soil temperature, mois-
ture, and air humidity measurements collected by 3 senstesfor over 5 months. This
study illustrates that our approach is accurate (it det@ots 90% of the anomalies with
few false positives), works well over a range of parameteiags, and has a small (CPU,
memory) footprint (Sections 3 and 4).

e We show that our (online) SSA-based based approach is mouesde than potential other
(offline) technique's which are more computationally intensive (Section 5 and 6)

2. Methodology

In this section, we first describe a tiered sensor systenitacthire that is representative of
data collection deployments. We then formulate the probdéranomaly detection in sensor
readings as an instance of the problem of identifying uniysatéerns in time series data. Lastly,
we describe our method for detecting anomalous sensomgsadi

2.1. Sensor systems for data collection

We consider a typical tiered sensor system [11] consistintyo tiers: a lower-tier of
resource-constrained battery-operated wirefaeteswith one or more attached sensors (e.g.,
temperature, humidity, acceleration), and an upper tienofe capablenasternodes each of
which has significantly higher computation, storage, angiroanication capabilities than the
motes. Here, we are interested in the class of data coliesgosor systems, where each mote
(usually) collects periodic sensor data, possibly perfosmme local processing on the data, and
then transfers the resulting data over multiple hops. Weehtite measurements collected by
a sensom as a time serieB[t],t = 1,2,.... For example, suppose a sensing system had 20
motes, each collecting data from 3 sensors. Then, we woulkldotal of 60 time series (3 from
each of the 20 motes), and we would represent these aglag&t m=1,2,...,60;t =1,2,.. .}.

In many data collection applications, these time serieshéxa high degree of temporal
and spatial correlations due to the nature of the physicahpimenon being monitored (e.g.,
temperature or light conditions). We leverage such caticela to detect anomalies (interesting
events) in the sensor data time series. As noted in Sectiandmalies have various lengths,
magnitudes, and patterns, and a good anomaly detectiorodwtiyy should be robust to such
variations.

We first describe the building blocks of our approach, whieeghasis involves building (and
continuously updating) a model of the “normal” and then dateing how similar new sensor
measurements are to the “normal”. We then describe our apprtm anomaly detection.

2.2. Building blocks

At a high level, our approach answers the following questidaw similar is a time series
of sensor measurements to a given “reference” time seri€d®pose we are given two time
series,D"®[t] and D'®'[t], where D"®"[t] is the time series of new sensor data, d@[t]

IMost of these were designed in other contexts, but constjtossible directions that could have been taken for
sensor systems anomaly detection.
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is the reference time series. Then, an anomaly detectiohadeatan: (1) Construct models
corresponding t®""[t] and D'¢[t]; (2) Compare these two models using a similarity measure;
and (3) If the model foD""[t] is not suficiently similar to the model fob"¢[t], conclude that
there are anomalies in the time ser@¥"[t]. Thus, our method involves solving three main
problems: (1) how to construct the models Bte[t] and D'¢'[t], (2) which similarity measure

to use for comparing these models, and (3) how to decide whétle models for two dierent
time series data are iciently similar, given our similarity measure.

Piecewise linear model. We use a piecewise linear model to repred@#t{t] and D'¢'[t].
Figure 1(b) depicts an example piecewise linear repreSentaf sensor measurements collected
by the SensorScope deployment [12]. Each line segmentsemiea small subset of sensor
readings, determined using linear least-squares regresbhe advantages of a piecewise linear
representation of time series data are: (a)$tiscinct since only a few line segments are needed
to represent a large amount of time series data; (b)repsesentativeas essential information
(e.g., significant patterns) in the data is captured; (grbustto changes in model parameters
as well as to faults and noise in sensor measurements (as\deated in Section 4).

A succinct, representative, and robust piecewise lineatahof sensor data time series is
desirable foronline anomaly detection. First, we can compute such a model in neg&time
(Section 2.3). Second, it enables us to creattata drivenreference model that is easy to
update — hence, we do not need prior knowledge about the tfpesomalies that sensor data
might contain. Third, because it is succinct, it enablesousompare two dferent time series
efficiently and transmit models with low overhead. Finally, dese it is representative of the
sensor datpatterns it enables accurate detection of anomalous patterns.

Due to their usefulness in modeling time series data, linaion based approaches have
also been used in other contexts. For example, [10] develapedticient technique to search
for occurrences of &nown patterrwithin a time series. However, the problem of searching for
a known pattern in time series data igfeient from anomaly detection because often we do not
have any prior information about the patterns exhibitedrynaalous sensor readings.

Linearization Error. In order to compute a piecewise linear model, we need to ddfime
linearization errorbetween a sensor data pojrand the line segmehtovering it. We define this
error as the perpendicular distance between the paint the lind. Accordingly, we define the
linearization errok for a piecewise linear model representing a time se¢fb¢q,t = 1,2, 3..., n},
as the maximum linearization error across all the data pariD[t].

How many line segments to usé® also need to determine the number of line segménts,
to use. Intuitively, using a large number of line segmentsresult in a small linearization error
— as explained below, this leads to lower computation casliebger communication cost. (This
tradedr is explored in detail in Section 4.2.)

We automatically determine the number of line segmentsiipmcewise linear model based
on the maximum allowed linearization errgrwhich is a (free) parameter in our approach. For
a fixed choice of maximum linearization errey we use agreedyapproach to determine the
number of line segments needed to represent a time seriestavevith the first two data points
of the time series and fit a line segment, (say}o them. Then we consider the data points one
at a time and recompute using linear least-squares regression to cover a new data plie
compute the distance of the new data point from the linef this distance is greater than
then we start a new line segmehtsuch that the distance between the new data poinktaact
moste. We keep repeating this process until we exhaust all datstgooNote that our approach
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is suited for bothoffline andonlineprocessing. In annlinesetting, whenever the sensor collects
a new reading, we can either recompute the current line seigimeover it or start a new line
segment (depending on the linearization error).

We represent thé& line segments that constitute a piecewise linear model oha series
using their end point§X[i], Y[i]),i = 1,2,...,k}, whereX[i] denotes a sample number (or the
time at which a sample was collected). The correspondlifigis one of the end points of a
line segment and represents an estimate of the actual semsling collected at tim&][i]. For
example, in Figure 1(b), the line segments approximateaasansor readings (shown using dots)
— here we indicate two measurement collection timd$] and X[ j + 1] that correspond to two
end points)Y[j] and Y[ ] + 1], that are part of a piecewise linear model.

Similarity measure. Let{(X[i], Y[i]).i = 1, 2,...,k} and{(X[i], Y[i]),i = 1,2, ...,k} denote
the piecewise linear representation of two time seb§§ and D[t], respectively. In order to
define a similarity measure between any two piecewise linganesentations, we need to first
align them so that theiK[i] values (end points on the x-axis) line up. For example, ictans
two representationgX[i], Y[i]).i = 1,2} and{(X[i], Y[i]),i = 1,2, 3} such thaiX[1] = X[1] and
X[3] = X[2], and henceX[2] < X[2]. In order to align the two representations, we choosetthe
values agX[1] = X[1] = X[1], X[2] = X[2]. X[3] = X[2] = X[3]}. Hence, after alignment, the
new representations afeX[i], Y[il),i = 1, 2,3}, and{(X[i], Y[i]),i = 1, 2, 3}, whereY[1] = Y[1],
Y[3] = Y[2] and theY[2] value (corresponding to the sample at tiX{€]) is computed using the
equation of the line segment joining1] and Y[3].

We define thdifferencebetween the (aligned) piecewise linear representatiohs@time
seriesD[t] and D[t] as:

S(D,D) =

<l

k
DIVl = Vi) (1)
i=1

Here, S(D, D) represents the averageffdrence between thé values of the piecewise linear
representations dD[t] and D[t] over thek line segments. We chose this metric because it is
efficient to compute, and it indirectly captures th&eatience between the two time series.

Threshold computation. We set the thresholgd(for deciding whethes(D, D) is sufficiently
large) to the standard deviation of timétial D"¢'[t]. We remove any CONSTANT anomalies (de-
scribed in Section 3), before computing the standard dewiatintuitively such measurements
are not a good indication of variability in sensor data ay tigpically correspond to faulty data,
e.g., due to low voltage supply to the sensor [5]. Intuigiytie standard deviation is a reasonable
indication of the variability in the “normal” data. A multi of standard deviation could also
be used, but our more conservative approach already réSelttion 3) in a reasonably low false
positive rate; more sophisticated (than threshold-basgpiloaches are part of futurats.

Putting it all together. Given a time series of new sensor dd&@&"[t], and a reference time
series,D"®'[t], our Segmented Sequence Analysis (SSA) based approaciomoady detection
utilizes the following steps (all detailed above):

1. Linearization: We apply our linearization technique to obtain the two pigise linear
models{(X""[i], Y"e"[i])} and{(X"®[i], Y'®'[i])}.

2. Alignment: We align the two linear representations so that they hawsaimeX values.

3. Similarity computation: We compute the similarityg(D"®", D'¢"), between the reference
model and the model for new sensor data using Equation (1).
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4. Anomaly detection: We detect an anomaly using a simple threshold-based agproa
Specifically, ifS(D"Y, D'¢') is greater than a threshojdthen we conclude that the sensor
readingsD"®[t] contain an anomaly.

We now describe in detail our SSA-based anomaly detectamédwork.

2.3. UsingSSAon atiered sensor network

We perform anomaly detection in a tiered sensor network m $tmges — (1) #ocal step,
executed at each mote, followed by (2)aggregationstep, executed at the master nodes. In the
local step we exploit temporal correlations (in sensor iregs), and in the aggregation step we
exploit spatial correlations, as described next.

Local step. During the local phase (executed at individual motes)h @aatem performs the
following tasks: (1) construct or update a reference tim&eseD[ﬁf[t], for its sensor readings,
(2) collect new sensor readingdp'[t],t = 1,2,..., T} over a periodr, (3) construct or update
linear models foDpeYt] and D,rﬁf[t], and (4) perform anomaly detection using the SSA-based
method (refer to Section 2.2).

Reference time serieslo construct a reference time series at mntd:)[ﬁf[t], we use the

following approach. For physical phenomena such as amtapiderature or humidity variations
that exhibit a diurnal pattern, we initially start with a gnserieD[t] consisting of measurements
collected over a period of 24 hours, (say) on day 1 of the depémt. LetD""[t] be the new
sensor readings collected by mat@ver time period corresponding to (say) 9-9:30 a.m. on day
2 of the deployment. For these new readings, we define thedatts inD[t] that were collected
between 9-9:30 a.m. (on day 1)BE[t]. We first look for anomalies in the new sensor readings
D"Wt], and then use the data pointsi®"[t] to updateD"[t] using weighted averaging. For
example, we can use exponential weighted moving averagigpintwise) updat®™[t], i.e.,
Dref[t] = (1- ) x D'[t] + a x D"¥[t], whereD'e![t] denotes the updated reference time series.

Figure 2(a) depicts the time series of humidity readingtectéd by a sensor from the Jug
Bay deployment [13] along with two reference time seriestfaronstructed using = 12 hours
(36 data points with one data point collected every 20 mg)ufEhe reference time series labeled
“Reference time series (including anomalous readingjdimputed using both non-anomalous
as well as anomalous readingft] to update the reference time series, while the “Reference
time series (excluding anomalous readings)” excludes loenalous readings iD"{t]. The
humidity measurements contain two anomalies — sharp ckandiee sensor reading (marked by
bounding rectangles in Figure 2(a)) which cause the huynrdiadings to increase sharply and
then decay over time. It is important to detect these shaapgés in sensor readings.

As shown in Figure 2(a), excluding the anomalous reading3"®i{t] when updating the
reference time series causB&[t] to diverge from the sensor data time series. A diverging
D'e'[t] is likely to result in an increase in false positives (dudoiis of samples being flagged as
anomalies) and failure to “zoom in” on the samples wheregsblaanges in sensor readings occur.
If we include the anomalous readingsfi€"[t] for updating of the reference time series, then
the reference time series exhibits the same patterBS%ft] but with atime lag Our evaluation
results in Section 4 show that this lag is long enough for SSilléntify the anomalous readings.
There is a potential downside in using anomalous readingpdatingD™'[t]. If an anomaly
affects a large number of samples, then SSA will fail to deteatyrad them. We discuss this
in detail in Section 4 and show that for long duration anoeglSSA can identify anomalous
samples that correspond to the start and end of these amrsmahich is also quite useful.



/ Performance Evaluation 00 (2010) 1-24 8

For scenarios where the “normal” pattern of sensor readimigbt not be known or might
not exhibit any periodicity — e.g., sensors deployed for itwoimg of birds’ nests [11], in the
absence of any domain expertise, we assume that the semslimge collected over a large
duration (a 24 hour period in most cases) capture the noratéérmps in the sensor data time
series, and start with such a time series as our referenearlZIthe performance of our local
anomaly detection step depends on the quality of the referdata. A reference data that does
not capture the normal sensor readings or is corrupted byalies can lead to false positives
andor false negatives. In Section 4, using real-world sensatirgys for periodic (e.g., ambient
temperature) as well as aperiodic (e.g., soil moistureatians) phenomena, we show that our
approach for selecting and updatiBé‘?f[t] is robust and works well in practice.

Aggregation step. After performing its local step, each mote sends its linear model,
{OGRMI, YD), i = 1,.,k}, for the new sensor reading®pet], and the results of its local
anomaly detection step to its master node. For each mptee master node performs another
round of anomaly detection by comparing its linear modeiresgjdhe models from other motes
(treating them as reference). Hence, a master node managitaye motes perform®(n?)
model comparisons. The design of our aggregation step éllmasthe observations from several
real-world deployments that often the readings from sendeployed at dierent locations are
correlated [12]. The aggregation step exploits these apedirrelations to detect additional
anomalies (if any) that might not have been detected duliedadcal step.

The final set of anomalies is the union of the anomalies dedeatiring the local and aggre-
gation steps. In our current framework, the master node doeprovide feedback to its slave
motes. Hence, the anomalous readings from motetected only by the aggregation step are
currently not leveraged to improve the accuracy of the lacamaly detection step. Incorporat-
ing a feedback mechanism between the aggregation and tepalis part of futureféorts.

Online fault detection. To achieve online detection, we run the local and aggregati
anomaly detection steps periodically, evdryminutes. For example, it = 30 min, we first
collect new sensor readings for half an hour and then perfamomaly detection using the
framework described above. The anomaly detection inteivatontrols the trade{b between
real-time anomaly detection and resource consumptionisasgsed in detail in Section 4.2.
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Figure 2: Examples of Anomalies in Sensor Readings

2.4. Hybrid approach
As noted in Section 2.2, our piecewise linear represemasgioery succinct — in practice, a
small number of line segments isfBaient to capture the essential information (diurnal pater
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trends lasting for a long duration, etc.) in a time series.weler, because it is designed to
capture significant trends, a piecewise linear representatill mask faults or anomalies that

affect a very small number of sensor samples. The top plot inr&ig(b) shows a temperature
reading time series from the SensorScope datasets [12{harmbttom plot shows whether each
sensor reading was identified as “normal” or “anomalous” BASWhile SSA is able to detect

instances of long duration anomalies (marked by circle&ili$ to detect the three very short
duration anomalies (marked by rectangles in the top plat)iniprove the accuracy of SSA on
short duration anomalies, next we propodsg/arid approach.

Combining SSA with Rule-based methods. We can view data faults in sensor readings
as short duration anomalies (refer to Section 6). Thus,riéasonable to adapt techniques de-
signed for fault detection for identification of short duoatanomalies. Specifically, [14, 6] are
representative of such techniques and they consider: SHDRMalies (a sharp change in the
measured sensor readings between two successive sam{ilESE anomalies (increase in the
variance of sensor readings) and CONSTANT or “Stuck-at'haalges (the sensor reports a con-
stant value). Thus, we use the Rule-based methods [6] f@ilgidesigned for fault detection),
for detection of short range anomalies in our hybrid apgndacadding the following rules.

SHORT Rule To detect SHORT anomalies in the time sefiBft],t = 1,2, 3...}, we keep
track of the change in sensor readings between two suceesamples/D[t] — D[t — 1]|. If this
value is larger than a threshald, then we flagd[t] as anomalous.

CONSTANT RuleTo detect CONSTANT anomalies we calculate moving varisstagstics
of time seriedD[t],t = 1,2,3...}. LetV][t] = variance({D[j]}E_M) be the variance of con-
secutive data readings prior to tirhelf V[t] is less than a threshold., then we flag the set of
samples{D[j]}}iC+l as anomalous.

A rule-based method also exists for detecting NOISE datisfaBut, as shown in Section 4,
SSAis accurate at detecting NOISE faults anomalies; thagjamnot include the NOISE rule as
part of our hybrid method.

To automatically determine the detection threshabdsando, we use the histogram-based
approach [6]. We plot the histogram of the change in sensatimgs between two successive
samples (for SHORT rule) or the variancecafamples (for CONSTANT rule) and select one of
the modes of the histogram as the threshold.

Thus, in scenarios where both short and long duration anesnate expected, we propose
a hybrid approach for anomaly detection. Specifically, evErginutes, we use the Rule-based
methods to detect and mark short duration anomalies, andufe SSA to detect the remaining
anomalied. We evaluate our hybrid approach using real-world datdaeeSection 4 and show
that it is dfective at detecting short and long duration anomalies. ®@aluation also shows
that Rule-based methods boost thigcacy of SSA only in situations where we are interested
in detecting short duration anomalies along with intengstong duration events or anomalies
(e.g., changes in sensor readings patterns). Hence, atisits where detecting short duration
anomalies is not of interest, the additional complexitysifig Rule-based methods is not needed.
Note that we do not need to remove short duration anomalredafa faults) from the data —
e.g., by replacing the sensor readii2fg] corrupted by a SHORT anomaly with the average of
its adjacent sampld3[j — 1] andDJ[j + 1] — in order for SSA to be able to detect long duration

2|t is possible to combine other detection methods with SSA ®igievariants of our hybrid approach, e.g., [6]
proposes other techniques, such as HMM-based methods témtidg sensor data faults. However, other methods in [6]
are much more computationally intensive and require a much tdregaing phase (than our reference model).
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anomalies. Our evaluation results in Section 4 show thattbeence of short duration anomalies
does not impact the accuracy of SSA when it comes to detelainggduration anomalies.

Complexity and Overhead. Of all the steps in SSA, linearization requires the most-com
putation, with the worst case complexity bei@§n?), wheren is the number of measurements
accumulated in a time slot of length Since we use linear least-squares regression to determine
the best-fit line segment, the cost of approximatin@ne dimensional) data points with a line
segment i90(d). However, our greedy approach performs a least-squagess®on fit every
time a new sensor sample is recorded. In the worst case, wanegalyto perform least-squares
regressiom times (once for each data point) resultingd(n?) computational complexity for the
linearization step, and hence, for SSA. In practice, SSAlitecdficient, as shown in Section 4
(asn is typically not very large). We note that the Rule-basedhoé$ used in our hybrid ap-
proach are simple and ha@n) computational complexity; thus, they do not increase trezall
complexity of the hybrid approach.

SSA incurs a communication overhead every time a mote canigg\linear model to its
master node. Note that a mote needs to convey 4 data poinfis@segment — twX[i] values
(sample times) and the corresponding Mg values. Since a mote’s linear model consist& of
line segments, the communication overhea@(is). Note that this overhead is incurred evdry
minutes since a mote recomputes its linear model once @varnutes.

3. Experimental setup

Sensor datasets. The sensor data time series used in our evaluations come tfie Sen-
sorScope [12] and the Life Under Your Feet [13] projects. hBotojects represent the state-
of-the-art in sensor systems and collect measurementsryndierent environments. Hence,
the two datasets allow us to evaluate SSA on representati/digerse sensor system data.

In the SensorScope project, large networks of sensors ateyeel to collect environmental
data such as temperature, humidity, solar radiation, etthi$ paper, we use temperature read-
ings collected from 23 sensors deployed in the Grand St.8dnpass between Switzerland and
Italy in 2007. Each sensor collected samples every 2 mirfatet3 days. Since the temperature
measurements exhibit a diurnal pattern, the sensor datastémes are periodic with the period
being 720 data points (collected every 24 hours). In whaoviad, we show results for all 23
sensor data time series. We refer to these time series agrSenpe 1 through SensorScope 23.

Our second sensor data source is from the Life Under Your freg@ct [13], which studies
soil ecology in a number of locations. We use data sets delliesit the Jug Bay Wetland Sanctu-
ary in Anne Arundel County, Maryland between June, 2007 amdl £2008. In this deployment,
sensors were placed in the nests of Box Turtles to studyfieeteof soil temperature and soil
moisture on the incubation of turtle eggs. Measurementsibfeamperature, soil moisture, box
temperature, and box humidity are collected every 20 minfde more than 5 months. These
measurements exhibit very diverse patterns. For examgpldepicted in Figure 3(a), the soil
moisture data are non-periodic — here the soil moistureimgadare close to 8% when it is not
raining, but they exhibit a sharp jump followed by a gradusdaly when it rains. Hence, for the
soil moisture time series, instances of rainfall are thenzal@s (or events) of interest that we try
to detect using SSA. In contrast, the box humidity data setperiodic with a period of 72 data
points (or 24 hours). The Jug Bay dataset consists of readiingn 3 diferent sensors. In what
follows, we show results for soil moisture readings cokelcfwe refer to them as Soil Moisture
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Anomaly [ Description [ Duration

Change in mean Anomalous readings fier significantly from Long
average value of normal readings (e.g., as in Figure 1(a))

Change in variance‘

than normal readings (e.g., as in Figure 3(c))

Short spike [ Equivalent to SHORT fault data type [5] (e.g., as in Figure 3(4))Short
Constant reading ‘ Sensor reports a constant value over a period of time ‘ Long & Short

(e.g., as in Figure 3(b))
Change in shape Anomalous readings fler in mean anfr variance from normal| Long & Short
readings but with shorter duration th@hange in mean
andChange in variancée.g., as in Figure 3(d))

l
Anomalous readings exhibit less or more variability ‘ Long & Short ‘
l

Table 1: Anomaly categories

1, Soil Moisture 2, and Soil Moisture 3), as well as the box ity data time series (we refer
to them as Box Humidity 1, Box Humidity 2, and Box Humidity 3).
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Figure 3: Soil Moisture Readings, Constant, Change in Ylagaand Change in Shape anomalies

Anomaliesin the data sets. To the best of our knowledge, there are no publicly avadatzta
sets with anomalies already annotated. Thus, to obtainrtheng truth, we visually inspected
the sensor data time series from the SensorScope and theayuweBloyments, to identify long
and short duration anomalies. This is consistent with cinpeactice for other data sets (e.qg.,
Internet traces in [1]) that lack ground truth. To identibng duration anomalies, we used the
(subjective) criterion of “what kind of patterns would a hamfind interesting?”. The short
duration anomalies that we identified resemble sensor dattsftypes (SHORT, NOISE, and
CONSTANT faults) described in [5, 6]. We categorize thesmtdied anomalies into five groups
shown in Table 1. We note that this categorization is doneefse of results presentation (in
Section 4)nly and isno way usedn our anomaly detection approach.
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4. Experimental Results

We now evaluate our SSA-based approach and illustrate ddrggss using the following
criteria (a comparison with related literature is preséieSection 6).

e Accuracy SSA alone detects most long duration anomalies (plus éfisignt fraction of
the short duration ones), and our hybrid approach detedts lmmg and short duration
anomalies accurately.

e Sensitivity Our results are not sensitive to SSA’s parameter, namelyeaettings of the
linearization periodr', and the maximum linearization errer

e Cost SSA has low computation and memory cost, and hence it cafféetieely imple-
mented in sensor systems.

e RobustnessSSA is robust to the presence of sensor data faults in teearate time series
(i.e., there is no need to “clean” the data before running)SSA

4.1. Accuracy evaluation

We first describe our method’s accuracy, using the data sdtha ground truth identification
described in Section 3. We use (1) number of false positde®ting non-exist anomalies), and
(2) number of false negatives (not being able to detect amaty) as our metrics. Specifically,
the results in the tables below are presented as followsx/theumber indicates that out ofy
anomalies were detected correctly (corresponding-t false negatives) plus we also indicate
the number of corresponding false positives (FP). Notedlahg duration anomaly may consist
of many consecutive data points. In this paper, we focus tectieg these events rather than on
identifying each and every anomalous data point within anev(Thus, when 50% or more of
the data points of a long duration anomaly are identified b &Sanomalous, we consider this
to be a successful detection

The accuracy results of our hybrid approach on all data setgigen in Tables 2 and 3. Our
hybrid method is able to detect long duration and short camatnomalies, with a small number
of false positives, and often without any false negativesstf the false positives are due to the
Rule-based part of the hybrid approach rather than to the @8 as explained below).

Tables 2 and 3 also show that long duration anomalies — pé&atlg theChange in Meamand
Change in Shapanomalies — occur quite often in the SensorScope and the dygl@asets
(refer to the last row of both tables). For example, over therse of 43 days, a total of 84
instances ofChange in Mearand 139 instance€hange in Shapanomalies occurred in the
SensorScope datasets; on average, 2 instand@sasfge in Mearand 3 instances dthange in
Shapeanomalies per day. Previously, others have shown that gdoation anomalies or data
faults (Short spikes, Constant readings, Noise faultsjjaite prevalent in real-world datasets [5,
6]; this work is the first to demonstrate that long durationraalies occur quite often as well.

Under our hybrid approach, anomalies can be detected & tlifferent stages — the Rule-
based methods, the local step in SSA, and the aggregatanss&A. For both the SensorScope
and the Jug Bay datasets, we found that the aggregator st@pAndid not add significantly
to the accuracy of SSA. This is because the combination oRille-based methods and the

30f course, more sophisticated approaches are possibleshuiraresults indicate, this simple approach already
results in good accuracy and allows us to focus on evaluafi@8A, without additional complications.
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local step in SSA was able to detect most of the anomalies. a¥efacus on understanding
the contribution to our hybrid approache’s accuracy of SSAtke Rule-based methods. The
first two rows of Table 4 show the results of applying SSA alfmi¢hout the use of Rule-based
methods) on the Soil Moisture 1 and the SensorScope 1 tiness@&ased on these results, we
make the following observations: (1) SSA is accurate atafielg long duration anomalies such
asChange in AverageChange in VarianceandChange in Shapend (2) SSA can fail to detect
short duration anomalies such &ort spikesFor example, while it is able to detect more than
70% of the Short spikes in Soil Moisture 1, it detects onlyw@®0% of the Short spikes in
SensorScope 1. This makes sense, as SSA is intended masader duration anomalies.

The utility of the hybrid approach can be seen, e.g., by comgahe Shortresults for Soil
Moisture 1 and SensorScope 1 in Tables 2 and 3 with those ile BabThe hybrid approach
outperforms SSA on short duration anomalies as it uses Based methods, designed specifi-
cally for short duration anomalies likéhort spikesndConstant readingsHowever, our hybrid
approach incurred a higher false positive rate than SSAaatetailed inspection of the samples
falsely identified as anomalous revealed that this increasedue to the Rule-based methods.
Prior work [6] showed that Rule-based methods can incur h fatge positive rate mainly be-
cause the histogram method for determining their faultatite threshold (Section 2.4) does not
always identify a good threshold. We also verified this by pating the histogram using the
entire data set, which significantly reduced the false pesiate. However, such an approach
would not beonlineand hence not used here.

We also verified that the Rule-based methods alone do noiderewy benefits in detecting
long duration anomalies. For instance, this can be seenrbpaong the results for Soil Moisture
1 and the SensorScope 1 data in Tables 2 and 3 with those ia Zathere our hybrid method
performs the same as SSA w.r.t. to detecting long duratieamaties likeChange in Average
andChange in Shapen fact, the Rule-based methods can perform quite poorlgnased for
identifying long duration anomalies. The last row of Tablshbws the results of applying the
Rule-based methoddoneon the Box Humidity 2 data - compare that to the Box Humidity 2
results in Table 3. As expected, the Rule-based methodstdét short duration anomalies
(Shortspikes andConstantreadings), but fail to detect most of the long duration an@saa

4.2. Sensitivity evaluation

The linearization period@ and the maximum linearization erreare the two main parameters
in our SSA-based approach. Next, we present an analysig gtisitivity of our results to these
parameters’ settings.

Impact of T. SSA computes the similarity meas8€D, D) everyT time units. The smaller
the value ofT, the more real-time is SSA’s anomaly detection. However, g too small, there
may be too few data points for SSA to accurately capture thtenpeof a long duration anomaly.
Thus, T controls the trade{d between (near) real-time anomaly detection and the acgufac
detecting long duration anomalies.

To characterize the sensitivity of SSA’s accuracyl'tave ran SSA using dlierent values of
T. For SensorScope datasets, we uBe@lues ranging from 30 minutes (the time to collect 15
data points) to 8 hours (the time to collect 240 data poirfis). Jug Bay datasets, we variéd
from 2 hours (the time to collect 6 data points) to 24 hours {time to collect 72 data points).

We found that changin@’s value did not &#ect SSA’s accuracy w.r.€hange in Averagand
Change in Variancanomalies, but it did féect the accuracy w.r.Change in Shapanomalies.
We show examples of SSA’s performance in detecting instoftteChange in Shapanomaly
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Data Set Change in Mean| Change in Var| Change in Shape| Short Constant | False Positives
SensorScope 1 3/4 0/0 6/7 90/90 2/2 7
SensorScope 2 8/8 0/0 6/7 86/86 6/6 6
SensorScope 3 /7 2/2 9/10 64/64 5/5 12
SensorScope 4 5/5 2/2 12/13 220222 1313 27
SensorScope 5 6/6 4/4 9/9 726819 34/34 0
SensorScope 6 77 0/0 8/10 206206 1/1 7
SensorScope 7 8/8 4/4 12/12 555567 54/54 0
SensorScope 8 6/6 0/0 9/10 243243 2/2 4
SensorScope 9 6/6 2/2 11/12 6565 2323 6
SensorScope 17 5/5 0/0 1012 46/46 2/2 3
SensorScope 11 /7 0/0 8/10 122122 1/1 6
SensorScope 12 77 0/0 11/13 84/84 1313 7
SensorScope 13 8/8 2/2 1314 250250 1515 5
SensorScope 14 5/5 4/4 5/7 595633 26/26 19
SensorScope 15 6/6 2/2 8/9 464475 24724 12
SensorScope 1§ 4/4 2/2 7 120120 12/12 25
SensorScope 17 5/5 4/4 6/6 166166 1717 13
SensorScope 1§ 6/7 2/2 16/18 56/56 9/9 12
SensorScope 19 3/3 0/0 4/6 98/98 1/1 15
SensorScope 2( 3/3 0/0 3/4 7778 1/1 9
SensorScope 21| 2/2 1/1 3/4 332337 26/26 5
SensorScope 27 3/3 0/0 3/5 88/88 1/1 11
SensorScope 23 3/3 0/0 4/4 84/84 2/2 17

Total 121123 3131 183209 48374999 | 290290 238
Table 2: Hybrid method: SensorScope
Data Set Change in Mean| Changein Var| Change in Shapeg Short Constant | False Positives
Soil Moisture 1 7/8 11 8/10 53/55 171 0
Soil Moisture 2 8/9 11 911 7474 11 2
Soil Moisture 3 5/5 0/0 6/7 42/42 0/0 4
Box Humidity 1 2/2 44 1819 1515 0/0 2
Box Humidity 2 5/5 /7 27/28 16/16 2/2 2
Box Humidity 3 3/3 2/2 1/1 1717 2/2 3
Total 3032 1515 6976 217219 6/6 13

Table 3: Hybrid method: Jug Bay

in SensorScope 2 and Box Humidity 1 time series (f@iedentT values) in Tables 5(a) and 5(b),
respectively. Very small' values (corresponding to few data points in a linearizagieriod)
result in a significant number of false positives. Asgrows, the number of false positives
improves and becomes reasonably insensitive. tbhe false negative rate is quite insensitive to
the value ofT, with a small increase for very large valuesTofintuitively, this can be explained

as follows. For a small value df, SSA considers only a few data points at a time and even small
differences in these data points (e.g., due to measuremenj paiseause SSA to misclassify
these points as an instance @fiange in Shapanomaly resulting in an increase in the false
positive rate! The small increase in false negatives for large value§ @ due to very short
durationChange in Shapanomalies being “averaged out” (with a large

4The Change in Averagand theChange in Variancenomalies occur over longer periods of time; thus, to cause a

Method Data Set Change in Mean| ChangeinVar| Change in Shape Short | Constant| FP
SSA Soil Moisture 1 7/8 171 8/10 40/55 1/1 0
SSA SensorScope 1 34 0/0 6/7 46/90 172 1

Rule based| Box Humidity 2 2/5 07 5/28 16/16 22 2

Table 4: SSA vs. Rule-based methods
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TValue 05| 1 | 2 | 4 | 8 T Value 2 4 6 8 12 24
Detected | 7/7 | 7/7 | 6/7 | 6/7 | 6/7 Detected | 1919 | 1919 | 1919 | 1919 | 1819 | 1§19
FP 8 | 4 | 0| 0] 0 FP 17 10 6 1 2 2

(a) SensorScope 2 (b) Box Humidity 1

Table 5: Sensitivity test fof : SSA with diferentT values; Change of shape anomaly

In summary, our evaluation shows that our method is not eas$d the linearization period
T, provided it is long enough to collect a reasonable numbetatd points. The main reason
for this is that beyond a certain value Bf our similarity metricS(D"" D'¢") does not change
significantly withT, as illustrated next.

For a fixedT value, we ran SSA on SensorScope 1 and SensorScope 2 shpanate
recorded the similarity values (w.r.t. to the referenceetiseries) computed evellytime units.
For example, foll = 1 hour, SSA computes a similarity value for new data poinliected every
hour using Equation (1). We then computed the mean and tlenear of the dferences in the
similarity values for diferent values of for SensorScope 1 (and separately for SensorScope 2).
For example, consider a set of SensorScope 1 data poinestalover 2 hours. Let, be the
similarity value for these data points wh&n= 2 hours, and fof = 1 hour, leta;; andas, be
the similarity values for data points collected during thistfand the second hour, respectively.
The mean and variance of thdtérences in the similarity values fér= 1 hour andl' = 2 hours
are computed using the valus — a11] and|a, — a12|. These values capture thefdrence in
the similarity values associated with a set of data pointsliiterentT values.

Table 6(a) shows the results, whé¢$g[t] — S,[t]| is the diference in similarity values cor-
responding tol = g hrs andT = r hrs and the X,y) entry is the corresponding mean and
variance of that dference. The similarity values far > 2 are close, but the similarity values
for T = 1 hr are diferent from those fol = 2 hrs. Recall that SSA compares similarity values
against a threshold to detect anomalies. Hence (for SecspeSL and SensorScope 2), SSA’s
performance withT = 1 hr differs from its performance with = 2 hrs; but forT > 2, SSA's
performance is insensitive to the choicelofWe observed a similar behavior for the other Sen-
sorScope time series. For the Jug Bay dataset, we obsem#ardiehavior forT > 12 hrs. The
range ofT values over which SSA’s performance is insensitive tBedent for the SensorScope
and Jug Bay datasets primarily because of ttiiedinces in sampling intervals (2 minutes for
SensorScope and 20 minutes for Jug Bay). So, it makes satseté#tkes much longer to collect
a suficient number of samples in the Jug Bay data sets and hendeagguargefT to achieve
robust SSA performance.

Impact of e. As discussed in Section 2.4, fardata points collected during an interval
of length T, the worst case running time of our linearization algoritsn®(n?). Such worst
case scenarios arise when a small number of line segmentsfiicéent to model alln data
points. That is, in the extreme case where a single line segimeuficient to cover all then
data points, our greedy approach will be forced to solveclaagd larger instances of the least-
square regression problem in each iteration — the firstiteravill have 2 samples, the second 3
samples, and the (n-1)st will hamesamples, resulting i®(n?) complexity. At the other extreme,

false positive corresponding to these anomalies, (randomsg mmuld have toféiect a much greater number of samples,
which is unlikely to happen.



/Performance Evaluation 00 (2010) 1-24 16

e value SensorScopel SensorScope2
Data sets SensorScope 1f SensorScope 2 #Lines | Running Time | # Lines | Running Time
1S1[t] — So[t]l (1.35,1.40) (1.28,2.05) 0.01 92.55 0.08 86.51 0.10
|S2[t] — Ss[t]| (0.22,0.08) (0.25,0.12) 0.05 47.49 0.08 50.50 0.11
|S3[t] — Salt]| (0.25,0.11) (0.29,0.17) 0.10 25.45 0.10 29.39 0.12
|Salt] — Se[t]| (0.29,0.14) (0.30,0.20) 0.50 3.38 0.34 3.80 0.29
1.00 1.85 0.46 1.98 0.40
(a) Similarity metric as a function of (b)Impact ofe

Table 6: Robustness to parameters.

is the case where each pair of consecutive samples defineg linaesegment, leading t@(n)
line segments an®(n) computation. The number of line segmeri{sused to model a sensor
data time series depends on the desired linearization erdotuitively, a small value ot will
force us to use more line segments. which would lead to a loaeputational cost.However,
the communication overhead of our approacl®{g). Thus,e controls the trade{d between
computational cost and communication overhead (or sizieeofrtodel).

We found that in practice (e.g., in SensorScope and Jug Bagela) a small value efresults
in each line segment covering a small number of points. tikaly, this happens as typically
sensor readings exhibit non-linear patterns (e.g., diwnaharp increases in value when an
event occurs), and approximating non-linear patternsgulgie segments results in only a few
points being covered by a single line. Table 6(b) shows tkesme number of line segments used
to model 120 data points collected wh&n= 4 hrs, for SensorScope 1 and SensorScope 2, for
differente values. As the value is reduced from 1 to.@1, the average number of line segments
increases from .85 (198) to 9255 (8651) for SensorScope 1 (SensorScope 2). (Note that we
can use at most 119 line segments to model 120 data pointsg G¢b) shows our linearization
approache’s running time (on a PC with a 2.8 GHz processdr 2®B of RAM) on theentire
time series; as expected, it is smaller for smadlealues.

Table 6(b) results support our intuition that choosing albwedue for e results in faster
execution time. However, the overhead of the communicdigiween a mote and its master is
O(K) (Section 2.4) - a small value efreduces the computation time at the expense of a larger
communication overhead. In scenarios where the aggregtgprdoes not boost the accuracy
of SSA (as is the case with SensorScope and the Jug Bay dat8setion 4.1), we can either
do away with the aggregator step or invoke it less frequehty after everyl minutes. This
can help us reduce the computational cost of the local stgpdlecting a smalé) while not
incurring a significant communication overhead.

The choice ofe can also determine how well a sensor time series is appréaériay our
piecewise linear model. Intuitively, we should choose-aialue that is very small compared to
the threshold against which the similarity measus¢D"" D'¢) is compared to detect anoma-
lies (see Section 2). With << v, it is unlikely that linearization errors will significagtimpact
the similarity measure, and hence, not impact the accura®B#°. In this paper, we conserva-
tively sete = 0.1. We also investigated howaffects SSA’s accuracy by tryingftierent values
between (L and 1 for it and found that the accuracy of SSA was the santaéatiterent values
of e. As shown in Table 6(by = 0.1 achieves a good computational cost vs. communication

5As discussed in Section 2, we seto be equal to the standard deviation of the initial refeedimoe seriesy for the
SensorScope and Jug Bay Box Humidity datasets was withimteeval [4 7] and [6 9], respectively.
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overhead tradefd — choosing a smaller value did not reduce the running timeifsigntly but
led to a large increase in the number of line segmknts

4.3. CPU and Memory Usage

In Section 2.4, we discussed the computation complexity @amathead of SSA. We also
measured the running time and memory usage of SSA on a lomethdok with Atom 1.6 GHz
processor and 1.5 GB of RAM. The processing power and avaitabmory of this netbook are
comparable to that of the emerging master class devicesingeday’s tiered sensor network
deployments [11]. We first run a monitoring program in thekgmound, and then run SSA over
all 23 time series in the SensorScope data sets. We recordrthing time for each times series
is recorded. The monitoring program also records the memsage by SSA every second.

We perform two sets of experiments withf@rent linearization period. In Table 4(a), we
show the maximum running time and memory usage of SSA ovénal3 time series. For both
T = 60 and 120, SSA takes less than 5 seconds to process apptelyiB@000 samples with a
small memory footprint. These results show that the comjamutand memory requirements of
SSA are small and well within the resources available onytsdaaster class devices.

T Max Running| Max Memory
Sample Numbef Time (Sec) | Usage (KB)
60 4.876 2048
120 4.796 2052
6000 8000 10000 12000 14000 16000
Sample Number
(a) Running time and Memory Usage of SSA (b) Data set with faulty readings

Figure 4: (a) Resource usage of SSA and (b) Data set withyfesdidings.

4.4. Robustness evaluation

Data faults are quite prevalent in real-world sensor sysleployments [5, 6] and can be
caused by bugs in hardware or software, improper sensdiraadin, or due to motes running
out of battery power [5]. Hence, in a real-world scenaridsitjuite likely that the reference
time serieD"[t] used by SSA may itself contain anomalous readings. Note éisadescribed
in Section 2.3, when updating[t] using new sensor data, we do not discard the anomalous
readings. With an anomaly-free reference time serieglhjtias a result of updating it with these
anomalous data points, the reference time series may alignéxhibit the same pattern as the
anomalous readings. For example, we observed an instatitis pfoblem in a time series from
the SensorScope datasets, as described next.

Figure 4(b) (top plot) shows a SensorScope time series vidthgadurationConstant reading
anomaly that lasted for 6 days. The bottom plot in Figure 4fimws the readings identified as
anomalous by SSA alone and the Rule-based methods. SSAeigabbrrectly identify the
samples corresponding to the start and the finish ofQbiestant readinganomaly but misses
most of the “in-between” anomalous samples. This is due talesign choice to upda®@[t]
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using anomalous samples as well. We can see in Figure 4(opl@o) that after (approximately)
400 successive samples corrupted by @amstant readingagnomaly, the reference time series
values are quite close to the anomalous readings, and aslia 83A does not stops flagging the
subsequent readings as anomalous. In Section 2, we jusiifiedse of anomalous readings to
updateD'¢[t] by demonstrating that it helps us “zoom in” on samples witeeesharp changes
in sensor readings happen (see Figure 2(a)). However, assthimple shows, updatirigj®[t]
using anomalous readings can cause SSA to miss a large nofrdemnples fiected by a long
duration anomaly, and only identify the beginning and end tiihg duration anomalous event.
This again motivates the use of our hybrid approach - i.g.tHe time series in Figure 4(b)
(bottom plot), we identify the samples missed by SSA usirgGONSTANT rule.

The SensorScope time series in Figure 4(b) (top plot) alstagws two instances @&hort
spikes(that occur before the long durati@onstantanomaly). Even though SSA alone fails to
detect them, their presence does not impair SSA’s abilitgetiect the long duration anomaly
that occurs later. Hence, we do not need to “clean” the timesedata before running SSA. We
can see in Figure 4(b) (top plot) that the SHORT faults do ficathe reference time series
significantly, i.e., SSA is robust to faults.

5. Related Work

Anomaly detection is an area of active research. In this@meete briefly survey work most
related to ours, organized into four categories. Moreowerselect representative techniques
from these categories and quantitatively compare themmagair hybrid approach, with results
of this comparison presented in Section 6.

Anomaly detection in sensor systems. This is not a well-studied area. The onljyats we are
aware of that focus on anomaly detection in sensor systetasada [7, 8, 9]. Rajasegarar et al.
[7] present a clustering based method based arearest neighbor algorithm in [7], and a SVM
based approach in [8]. Briefly, these works view measuresneuitected by a sensor system
as coming from the same (unknown) distribution and “prerdgfanomalies as outliers, with
main focus of theseoffline) techniques being on minimizing the communication oveth@a
transmitting data needed for anomaly detection) and theesponding energy consumption. In
contrast, we focus on amlineapproach, without “pre-defining” what is an anomaly. Howeve
we do perform a quantitative comparison between our hylp@ach and the clustering based
method in [7]. The details of this comparison can be foundeoti®n 6.

Tartakovsky et al. use a change point detection based agprGSUM (Cumulative Sum
Control Chart), for quickly detecting distribution chasge.g., mean, variance, covariances) in
sensor measurements [9]. We do not provide a quantitativgpadson between CUSUM and
our hybrid approach as we lackfBaient domain knowledge - i.e., the CUSUM based approach
assumes knowledge of the (time varying) probability disttion from which sensor measure-
ments are sampled, and such information is not providedhiiSensorScope and the Jug Bay
datasets (and would be quitdiitiult for us to compute accurately).

In general, change point detection can identify changefeénparameters of a stochastic
process. Often, such changes are anomalous, and hencgeg@int detection techniques have
been used for changmitlier detection in time series data [15, 16]. Howeverhsexisting works
(a) assume that sensor measurements are sampled from a kneasily inferred distribution
(e.g., Gaussian), an assumption often not true for realdaatasets, (b) target a specific subset
of anomalies, and (c) do not use real-world sensor datageevéluation. In addition, existing
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change point detection based methods either require afainiig phase, or are computationally
intensive, or (in some cases) both — hence, they do not meetitaiency criteria. Moreover,
not all changes in a time series might be anomalous, i.eg ttmild be a change and no anomaly
(i.e., a false positive) and vice versa (i.e., a false negati-or example, [15] flags turning points
of a time series from increasing to decreasing — as it is dftenmal” for a sensor data time
series to have periodic behavior, this is (likely) not anraaty. On the other hand, such an
approach would only flag a few turning points, instead of direanomalous event, as depicted
in Figure 1(a). We believe that change point detection cbald promising approach to anomaly
detection, but that it would require significant work to devian accurate andfieient online
anomaly detection method based on such techniques.

Fault detection in sensor systems. Short duration anomalies can be viewed as instances of data
faults, errors in measurements, or outliers (see [5]). 1Bhaet al. focus on SHORT spikes,
NOISE faults, and CONSTANT readings data faults and showttiese are quite prevalent in
real-world sensor datasets [6]. They also evaluate thepeance of several methods — Rule-
based methods, a least-squares estimation based mettioignHVarkov model (HMM) based
method, and a time series analysis (ARIMA model) based ndetthat are targeted towards
detecting transient sensor data faults. However, theskadeiperform poorly at detecting long
duration anomalies. E.g., in Section 4.1 we showed that-Based methods are notBaient for
detecting long duration anomalies. Other than that, we @dsopare the ARIMA model based
approach, which works best in case of data faultscing more than a few samples, against our
hybrid approach (with details given in Section 6).

Other approaches to sensor data faults detection inclugel gl 19, 20]. However, these are
not suited for detecting (unknown) long duration anomaties to one or more of the following
assumptions they make: (1) the anomalous data pattern vgrkagoriori [17, 18, 19], (2) the
distribution of normal sensor readings is known [19], andf¢8using on short duration trends
is enough to capture anomalies [20].

Networ k anomaly detection. The work in this area includes detecting anomalies suchlaxsD
attacks, flash crowds, worm propagating, bulk data transfenterprise or ISP networks [1, 2,
3, 4]. Techniques such as Principal Component Analysis (P@Pand wavelet analysis [2,
3, 4], used for detecting network ffac anomalies, are not well suited fonline detection in
sensor systems primarily because they are computatioimédigsive and diicult to perform in
an online manner. Furthermore, we show that even inféim® manner, these methods perform
poorly in detecting long duration anomaly on sensor systata ¢as detailed in Section 6).
Our gquantitative study (given in Section 6) indicates thatraightforward application of such
techniques, as designed for network anomaly detectiormtigary dfective on sensor data.

Piecewise linear time series models. Piecewise linear models have been used to model time
series data in the other contexts (i.e., not for anomalyctiet®). For example, Keogh developed
an dficient technique to search for occurrences d&hawn patternwithin a time series using

a piecewise linear representation [10]. Specifically, fdm@e series withn points, Keogh'’s
algorithm starts witkk = | 3] line segments and defines a “goodness of fit” metrickfdine
segments aBy=std(ey, ..., &), whereg is the average linearization error for line segmientt

then iteratively merges two consecutive line segmentd &gtcannot be reduced any further;
this process is continued until a single line approximatesentire time series. This process
ends with a family of piecewise linear models for a singleetiseries — one for each valuelgf

1 < k < |§]. Each linear model hasB value associated with it, and the one with the smallest
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By is selected as the final representation.

In contrast, our greedy linearization algorithnifdis as follows: (1) we start with a single
line segment and continue adding more segments, (2) we ugkeeedt “goodness of fit” cri-
terion (maximum linearization error; see Section 2) andy@)compute a single representation
instead of a family of piecewise linear models. The maineadsehind these choices (rather
than, e.g., using Keogh's algorithm) is computational @ssbur goal is anf&cientonline ap-
proach. Briefly, computing a family of models to find the “Beste is wasteful for our purposes,
if it takes significantly greater computation. Hence, wefopur greedy approach.

6. Quantitative comparison

We now present results from a quantitative comparison ohgbrid approach and anomaly
detection technigues based on ARIMA models [6], PCA [1], &ats decomposition [3], and K-
means clustering [7]. As noted above, these techniquesgraven to be fective at detecting
sensor data faults and network anomalies. However, ounatrah shows that an “out-of-a-box”
application of these techniques for detecting sensor syateomalies performs poorly.

Comparison with ARIMA based method. ARIMA (Autoregressive Integrated Moving Av-
erage) models are a standard tool for modeling and forecpsthe series data with periodic-
ity [21], and [6] leverages temporal correlations in semaeasurements to construct an ARIMA
model of sensor data. This model is used to predict the vdlfigure readings, with new sen-
sor readings compared against their predicted value - iflifierence between these values is
above a threshold (the 95% confidence interval for the ptiedis) then the new data is marked
as anomalous. We compare our hybrid approach against thlARIstep method from [6],
where the ARIMA model is used to predict the n&x$ensor readings.

We first trained the ARIMA model to estimate its parametelisagisensor readings (from
SensorScope 1 and SensorScope 2) collected over 3 daysnasgtidata (a separate training
phase was required for SensorScope 1 and SensorScopel2p[6%as training data from 3 days;
these are more favorable conditions for ARIMA as SSA usesateshperiod for its reference
model). The ARIMA L-step method with = 24 hrs flagged 12,135 (of the 30,356 data points in
SensorScope 1) as anomalies. Our inspection revealed aftdd/ anomalies thatfiect more
than 7,500 data points. While the ARIMA L-step method ideadifmost anomalous samples, it
also falsely identified a large number of samples as anorsalble extremely high number of
false positives resulting from the ARIMA L-step method redsiits utility.

We failed to train ARIMA on SensorScope 2 due to the trainiatpdcontaining &onstant
readingsanomaly that fiects almost two-thirds of the samples. This failure hightiigthe lack
of robustness in ARIMA based methods to long duration an@sah the training data. SSA’s
counterpart to the ARIMA training phase is the selectionrofratial reference time series, and
SSA tolerates anomalies in its initial reference time sefgee Section 4.4).

Comparison with network anomaly detection techniques. The techniques such as Principal
Component Analysis (PCA) [1], and wavelet analysis [3, 2jgdd for detecting network fiféc
anomalies are not well suited fonline detection in sensor systems primarily because they are
computationally intensive andfticult to perform in an online manner. However, one can still
ask: How accurately would those technique perform on sensoesystatayi.e., in an dfline
manner. As a reasonably representative technique, we @$83A based approach in [1], which
collects periodic measurements of thefficaon all network links and splits it into “normal”



/Performance Evaluation 00 (2010) 1-24 21

and “residual” tréic using PCA. The residual tifzc is then mined for anomalies using the Q-
statistic test in which L2-norrly||? of the residual triic vectory for a link is compared against
a threshold. If it is greater than the threshold, then th&@draectory is declared anomalous [1].

We ran the PCA based method on the data from SensorScopesdiies 6, 8, 9, 10, 11, and
12. We chose these as their start and end times are the sammpiihto PCA was a data matrix
with 6 columns (one for each sensor) and 29,518 rows (thénataber of samples collected).
Note that the PCA based method is applied irogiine fashion using the entire time series data
from 6 different sensors whereas in our SSA-based hybrid approacstatie aggregator step
would get access to linear models from 6 sensors during tstelpa 4 hours only.

The results for the PCA based method are summarized in Tablefdils to detect most
long duration anomalies (5 out of 3Bhange in Mearanomalies and 4 out of 6Change in
Shapeanomalies). It does better at detectBigort spikesut is still not as accurate as our hybrid
approach. Thus, even under a best case scendfim¢owith access to the entire time series),
the PCA based method does not perform as well as our hybricbagip. Recall that it identifies
anomalies by looking at the L2-norm of the data vector in #®dual space. As pointed out in
[1], the PCA based method works best when ititensityof an anomaly is large compared to
the variability of the normal data. This is not the case withstrof the long duration anomalies
present in the sensor data analyzed in Table 7. For insteiguge 5(a) shows &hange in Mean
anomaly in SensorScope 12 time series that the PCA baseddrfeils to detect. It also shows
aShortanomaly (spike) that the PCA based method is able to detect.

To further illustrate the impact of anomalies’ intensitms the accuracy of a PCA-based
method, we injected anomalies (Short, Noise, and Constantjhe time series SensorScope 9,
and attempted to detect these injected faults using PCAdataesamples corrupted by Short and
Noise anomalies had a higher variance as compared to thehdata whereas, by definition, the
variance of the samples corrupted by the Constant anomayomeer than the normal data. We
found that the PCA based method was able to detect most ofthplss corrupted by SHORT
and NOISE anomalies, but missed the Constant anomaly. Wetdoresent these here due to
lack of space; these results can be found in our technicaltr§?].

Apart from the intensity of an anomaly, the PCA results miglsb be impacted by several
other factors such as sensitivity of PCA to its parametetslack of data preprocessing. For
instance, [23] shows that the performance of PCA is serditithe number of principal compo-
nents included in the normal subspace, and the threshottifasanomaly detection. We note
that, in our experiments, we did vary the number of princgeathponents in the normal subspace,
and Table 7 depicts the best results obtained (i.e., thakehaving only 1 principal component
in the normal space). To our knowledge, the Q-statistic thasehnique that we use here is the
only known method for automatically deciding the detectibreshold. It is also well-known
that anomalies can contaminate the normal subspace and,temid detection by PCA [23].
One way to ameliorate this situation can be to preprocesdateeto identify and remove large
anomalies before applying PCA. However, in our contextnile§i alarge anomaly would itself
have required us to introduce another heuristic (with ite @lvortcomings). We do not pursue
this (or other PCA related improvements) further, as thexrgaial of our PCA-based evaluation
here was to illustrate that, as in the case of network anonitkyction, it is not straightforward
to apply PCA to detect anomalies in sensor data. (This pesthyributed to our choice of a dif-
ferent approach.) Of course, we do not claim that the PCAdashod cannot be made more
effective at detecting sensor data anomalies, but as noteds thot the goal of our work here.

To the same end, we also explore wavelet based methods émtitgtsensor data anomalies.
We select the method presented in [3] as a representatigitgee. This method first separates
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Data Set Change in Mean| ChangeinVar| Change in Shapg Short Constant
SensorScope 6 1/7 0/0 2/10 45206 01
SensorScope 8 1/6 0/0 1/10 59243 02
SensorScope 9 1/6 172 0/12 47/65 423
SensorScope 10 0/5 0/0 0/12 31/46 0/2
SensorScope 11 1/7 0/0 0/10 33122 0/1
SensorScope 12 1/7 0/0 1/13 27/84 6/13

Total 5/38 1/2 4/67 242/766 22/42

Table 7: PCA based method: SensorScope
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Figure 5: Detection of long duration anomalies: PCA and wetehsed methods.

a time series of network data (e.g., aggregate byte couradiok) into low, medium, and high
frequency components using wavelet decomposition. Tactlatemalies, first a (time varying)
deviation scorés computed by combining the local variance of the mediumtagd frequency

components. Local variance is defined as the variance ofdteefdlling within a moving time

window. The deviation score is then compared against atibtés$o detect anomalies.

Data Set Change in Mean| ChangeinVar| Change in Shape Short Constant | False Positive
SensorScope 6 17 0/0 2/10 205206 1/1 26
SensorScope 8 1/6 0/0 2/10 243243 1/2 24
SensorScope 9 1/6 2/2 3/12 6565 1323 42
SensorScope 10 1/5 0/0 3/12 46/46 0/2 47
SensorScope 17 177 0/0 2/10 122122 1 29
SensorScope 17 17 0/0 3/13 80/84 9/13 22

Total 6/38 2/2 1567 761766 2542 190

Table 8: Wavelet based method: SensorScope

We ran the wavelet based anomaly detection method desatime on the same set of data
that we used for evaluating the PCA based method. The reselssimmarized in Table 8. While
the wavelet based method detects more anomalies as compd€h, it does not perform as
well as our hybrid approach at detecting long duration adiesialn particular, it fails to detect
most of theChange in MeamndChange in Shapanomalies. In our evaluation, this method also
incurred a large number of false positives. One possiblsorefor the wavelet based method
not being very ffective on the SensorScope dataset could be that it looksxfonalies in the
medium and high frequency components of a time series, \@hehe long duration anomalies
fall into the low frequency component. The top plot in Fig&@®) shows &Change in Mean
anomaly in SensorScope 11 time series that is captured Bgwhieequency component shown
in the bottom plot. Hence, it is flicult for previously proposed wavelet based methods that
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Data Set Change in Mean| ChangeinVar| Change in Shapg Short Constant
SensorScope 6 2/7 0/0 4/10 56/206 1/1
SensorScope 8 3/6 0/0 5/10 54/243 12
SensorScope 9 3/6 172 5/12 20/65 5/23
SensorScope 10 2/5 0/0 5/12 16/46 1/2
SensorScope 11 3/7 0/0 6/10 49122 1/1
SensorScope 12 37 0/0 5/13 36/84 3/13

Total 16/38 1/2 30/67 243766 12/42

Table 9: Cluster based method: SensorScope

mine for anomalies only in the medium and high frequency comepts [3, 2, 4] to detect such
anomalies. These approaches can possibly be extendedesingtic(s) that mine for anomalies
in the low frequency component. We do not pursue this (orrathprovements to the wavelets
based approach) further as, like in the case of PCA, the noaihod our wavelet based evaluation
of sensor data was to demonstrate that a straightforwatatappn of a wavelet-based technique
designed for network anomaly detection is not veffigetive on sensor data. Of course, we do
not claim that wavelet based techniques cannot be made to avosensor data, but as noted,
that is not the goal of our work here.

Comparison with clustering based method. We compare our hybrid approach with the clus-
tering based method in [7], which first groups the vector efdiegs from several sensors into
clusters of fixed-width. After this, the average inter-tdugdistance between a cluster andits
nearest neighboring clusters is used to determine the atahatusters. We ran this method on
SensorScope time series 6, 8, 9, 10, 11 and 12. The inputs tdustering method are vectors of
readings with the same time stamp from the 6 time series. \Wadfthat the performance of this
method depends strongly on the cluster widitas also noted in [7]. We tried a large number of
w values (from 0.03 to 8) and used the best results found to aoenpith our method.

This method can only identify which data vectors containraalies, but cannot identify
anomalous readings within a data vector. We determine thebeu of detections and false
negatives as in the PCA-based method; so, it is not possibdpbrt false positives for individual
time series. This method did incorrectly flag 18 data vecisranomalous; the actual number of
false positives is between 18 and 108.We give detailedtesuTable 9 and note that the cluster
based method performs poorly in detecting long term an@walich a€hange in mearChange
in shape andConstant Intuitively, this is because this method is designed tectsdutliers and
does not exploit temporal correlations within the timee&rWe can also see that the method has
a lot of false negatives in detectir®hort spikes This makes sense as a spike is determined by
the corresponding data point’s relative position to thevioes and next point, but in the cluster
based method all data points are considered as a whole arteéntporal relationship is lost.

7. Conclusions

We proposed aonline anomaly detection approach for sensor systems measurentzunt
approach utilized piecewise linear models of time seridgclvare succinct, representative, and
robust, and therefore enabled us to (a) compute such madetsar real-time, (b) create models
without prior knowledge about anomaly types that sensax daght contain, and (c) compare

6An SVM-based method [8] comparison is omitted as it assumes ¢hatfeasurements are anomalous; thus it is
unlikely to detect long duration anomalies such asGbestantanomaly in Figure 4.
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and communicate fierent time seriesficiently. Our extensive evaluation study, using real
sensor systems deployments data, illustrated that oupaglpiis accurate, robust, andieent.
Future work includes study of (1) dynamic setting of pararefe.g., the linearization period
and the size of the initial reference model), (2) feedbackhmaisms between the local and ag-
gregation steps of our approach, and (3) other techniqa¢sith useful in our hybrid approach.
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