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Abstract

Wireless sensor systems aid scientific studies by instrumenting the real world and collecting
measurements. Given the large volume of measurements collected by sensor systems, one prob-
lem arises – an automated approach to identifying the “interesting” parts of these data sets, or
anomaly detection. A good anomaly detection methodology should be able to accurately iden-
tify many types of anomalies, be robust, require relativelylittle resources, and perform detection
in (near) real-time. Thus, in this paper we focus on an approach to online anomaly detection
in measurements collected by sensor systems, where our evaluation, using real-world datasets,
shows that our approach is accurate (it detects over 90% of the anomalies with few false posi-
tives), works well over a range of parameter choices, and hasa small (CPU, memory) footprint.

Keywords: anomaly detection, sensor systems, real-world deployments.

1. Introduction

Wireless sensor systems have significant potential for aiding scientific studies by instrument-
ing the real world and collecting measurements, with the aimof observing, detecting, and track-
ing scientific phenomena that were previous only partially observable or understood. However,
one obstacle to achieving the full potential of such systems, is the ability to process, in a timely
and meaningful manner, the huge amounts of measurements they collect. Given such large vol-
umes of collected measurements, one natural question mightbe: Can we devise an efficient
automated approach to identifying the “interesting” partsof these data sets?For instance, con-
sider a marine biology application collecting fine-grainedmeasurements in near real-time (e.g.,
temperature, light, micro-organisms concentrations) – one might want to rapidly identify “ab-
normal” measurements that might lead to algal blooms which can have devasting consequences.
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(Leana Golubchik),ramesh@usc.edu (Ramesh Govindan)
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We can view identification of such “interesting” or “unexpected” measurements (or events) in
collected data as anomaly detection. In the remainder of thepaper, we use the generic term
“anomaly” for all interesting (typically, other-than-normal) events occurring either on the mea-
sured phenomena or the measuring equipment. Automatedonline (or near real-time) anomaly
detection in measurements collected by sensor systemsis the focus of this paper.

Anomalies can have a variety of lengths, magnitudes, and patterns. For instance, Figure 1(a)
depicts a long duration, relatively gradual change in sensor reading, whereas Figure 2(b) includes
several short duration, quite abrupt change in sensor readings. Both scenarios correspond to
anomalous events and should be accurately detected by an anomaly detection methodology.

Thus, a good anomaly detection methodology should have the following properties. First,
it should be able to accurately identify all types of anomalies as well as normal behavior (i.e.,
it should have low false negative and false positive rates).Second, it should be robust, i.e., the
methodology should be relatively insensitive to parametersettings as well as pattern changes in
the data sets. Third, it should require relatively small amounts of resources, as these are typically
limited in sensor systems. That is, to run on sensor systems,it should ideally have low com-
putational complexity, occupy little memory space, and require little transmission power. Last,
it is also desirable for a detection algorithm to be able to detect anomalies in real-time or near
real-time. This is particularly important for sensor systems corresponding to temporary deploy-
ments (as it might not be as useful to detect anomalies once the deployment is over) and those
monitoring hazardous natural phenomena (e.g., spread of contaminants in aquatic ecosystems),
where prompt detection (and reaction) can be essential to reducing loss of life and money.

Anomaly detection, in general, has been studied in a number of systems contexts, most no-
tably in networking, where several techniques have been proposed for detecting network traffic
anomalies [1, 2, 3, 4]. While one might take the approach of adapting one (or more) of these tech-
niques to sensor systems, we believe that they do not satisfyall the desirable properties described
above, at least in their current form. In Section 6, we provide (a) quantitative results from apply-
ing network anomaly detection techniques to data collectedby real sensor systems deployments,
and (b) intuition for why these techniques did not yield goodresults on such data. Consequently,
the properties required of an effective anomaly detection method for sensor data and our ex-
perience with applying network traffic anomaly detection techniques to sensor measurements,
motivated us to explore methods different from prior work in network anomaly detection.

We also note that little exists in the literature on the topicof anomaly detection in sensor sys-
tems data. Most efforts are focused on detection of faulty sensor readings, such as those depicted
in Figures 3(a) and 3(b) – these are typically short durationevents, with values significantly de-
viating from the “normal” sensor readings [5]. Often, such sensor data faults are modeled as
outliers and can be detected using simple Rule-based approaches or by using statistical models
to capture the pattern of normal sensor readings and flaggingany significantly different samples
as faulty [6]. In this work, we view faulty sensor readings asa special case of anomalies. As
illustrated in Section 4, our approach is able to capture such faulty readings, as well as other long
duration, “gradual” anomalies such as the one depicted in Figure 1(a).

To the best of our knowledge, the only efforts focused on anomaly detection in sensor systems
data are [7, 8, 9]. Briefly, [7, 8] view measurements collected by a sensor system as coming from
the same (unknown) distribution and “pre-defines” anomalies as outliers. The main focus of that
effort, which is anoff-line approach, is on minimizing communication overhead (in transmitting
data needed for anomaly detection) and corresponding energy consumption. In contrast, we focus
on anonlineapproach that, on-the-fly, builds an adaptive model of “normal” data and doesnot
a priori define what is an anomaly. For instance, the approachin [7, 8] might only flag the most
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extreme measurement in Figure 1(a) as an anomaly, whereas our approach would flag the entire
event (outlined by the dashed rectangle) as an anomaly We give a more detailed description
of [7, 8] and a quantitative comparison in Section 6. In [9] a change point detection based
approach is used for detecting distribution changes (e.g.,mean, variance, covariances) in sensor
measurements. However, (a) this approach assumes knowledge of the (time varying) probability
distribution from which sensor measurements are sampled (information often not available in
real-world deployments), and (b) such techniques do not meet (at least in their current form) our
efficiency criteria (see Section 6).
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(a) Long duration anomaly (b) Piecewise linear model for time series data

Figure 1: (a) Data set with long duration anomaly and (b) example of a piecewise linear model.

In this work, we formulate the problem of anomaly detection in sensor systems as an instance
of identifying unusual patterns in time series data problem. Of course, one possible direction
would then be to construct a timeseries-based approach, e.g., based on [6]. However, we also did
not find this direction to be effective as such techniques are (typically) not well-suited for detect-
ing long duration anomalies. So, we do not pursue this direction further here, but in Section 6,
we do illustrate quantitative results corresponding to applying a representative timeseries-based
approach to data collected by real sensor systems deployments and provide intuition for why
such a technique did not yield good results.

In contrast, the basic idea behind our approach is to comparethe collected measurements
against a reference time series. But, to do this efficiently and robustly, the following challenging
problems need to be solved: (1) How do define a reference time series?; (2) How to compare two
time series efficiently?; (3) What metric to use in deciding whether two sensor data time series
are similar or different?; and (4) How to update the reference time series, to adapt to (normal)
changes in sensor data patterns?

We address these challenges by proposing and evaluating an anomaly detection algorithm,
termed Segmented Sequence Analysis (SSA) that exhibits thedesirable characteristics stated
above. Briefly, SSA leverages temporal and spatial correlations in sensor measurements and
constructs a piecewise linear model of sensor data time series. This is motivated by [10] which
focused on searching forknown patternsin time series (see Section 6). To detect anomalies,
we compare the piecewise linear models of sensor data (collected during a time interval) and
a reference model, with significant differences (as determined by a proposed similarity metric)
flagged as anomalies. We use data from real-world deployments to evaluate our approach and
demonstrate its accuracy, robustness, and efficiency. In summary, our the main contributions are:

• We propose an approach to anomaly detection in sensor systems that is able to detect
anomalies accurately and in anonlinemanner (Section 2).
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• We perform an extensive study using data sets from two real deployments, one consisting
of about 30,000 environmental temperature measurements collected by 23 sensor nodes
for around 43 days, and the other consisting of more than 10,000 soil temperature, mois-
ture, and air humidity measurements collected by 3 sensor nodes for over 5 months. This
study illustrates that our approach is accurate (it detectsover 90% of the anomalies with
few false positives), works well over a range of parameter choices, and has a small (CPU,
memory) footprint (Sections 3 and 4).

• We show that our (online) SSA-based based approach is more accurate than potential other
(offline) techniques1, which are more computationally intensive (Section 5 and 6).

2. Methodology

In this section, we first describe a tiered sensor system architecture that is representative of
data collection deployments. We then formulate the problemof anomaly detection in sensor
readings as an instance of the problem of identifying unusual patterns in time series data. Lastly,
we describe our method for detecting anomalous sensor readings.

2.1. Sensor systems for data collection

We consider a typical tiered sensor system [11] consisting of two tiers: a lower-tier of
resource-constrained battery-operated wirelessmoteswith one or more attached sensors (e.g.,
temperature, humidity, acceleration), and an upper tier ofmore capablemasternodes each of
which has significantly higher computation, storage, and communication capabilities than the
motes. Here, we are interested in the class of data collection sensor systems, where each mote
(usually) collects periodic sensor data, possibly performs some local processing on the data, and
then transfers the resulting data over multiple hops. We model the measurements collected by
a sensorm as a time seriesDm[t], t = 1,2, . . .. For example, suppose a sensing system had 20
motes, each collecting data from 3 sensors. Then, we would have a total of 60 time series (3 from
each of the 20 motes), and we would represent these as a set{Dm[t],m= 1,2, . . . ,60;t = 1,2, . . .}.

In many data collection applications, these time series exhibit a high degree of temporal
and spatial correlations due to the nature of the physical phenomenon being monitored (e.g.,
temperature or light conditions). We leverage such correlations to detect anomalies (interesting
events) in the sensor data time series. As noted in Section 1,anomalies have various lengths,
magnitudes, and patterns, and a good anomaly detection methodology should be robust to such
variations.

We first describe the building blocks of our approach, where the basis involves building (and
continuously updating) a model of the “normal” and then determining how similar new sensor
measurements are to the “normal”. We then describe our approach to anomaly detection.

2.2. Building blocks

At a high level, our approach answers the following question: How similar is a time series
of sensor measurements to a given “reference” time series?. Suppose we are given two time
series,Dnew[t] and Dre f [t], where Dnew[t] is the time series of new sensor data, andDre f [t]

1Most of these were designed in other contexts, but constitute possible directions that could have been taken for
sensor systems anomaly detection.
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is the reference time series. Then, an anomaly detection method can: (1) Construct models
corresponding toDnew[t] andDre f [t]; (2) Compare these two models using a similarity measure;
and (3) If the model forDnew[t] is not sufficiently similar to the model forDre f [t], conclude that
there are anomalies in the time seriesDnew[t]. Thus, our method involves solving three main
problems: (1) how to construct the models forDnew[t] andDre f [t], (2) which similarity measure
to use for comparing these models, and (3) how to decide whether the models for two different
time series data are sufficiently similar, given our similarity measure.

Piecewise linear model. We use a piecewise linear model to representDnew[t] and Dre f [t].
Figure 1(b) depicts an example piecewise linear representation of sensor measurements collected
by the SensorScope deployment [12]. Each line segment represents a small subset of sensor
readings, determined using linear least-squares regression. The advantages of a piecewise linear
representation of time series data are: (a) It issuccinct, since only a few line segments are needed
to represent a large amount of time series data; (b) It isrepresentativeas essential information
(e.g., significant patterns) in the data is captured; (c) It is robustto changes in model parameters
as well as to faults and noise in sensor measurements (as demonstrated in Section 4).

A succinct, representative, and robust piecewise linear model of sensor data time series is
desirable foronline anomaly detection. First, we can compute such a model in nearreal-time
(Section 2.3). Second, it enables us to create adata drivenreference model that is easy to
update – hence, we do not need prior knowledge about the typesof anomalies that sensor data
might contain. Third, because it is succinct, it enables us to compare two different time series
efficiently and transmit models with low overhead. Finally, because it is representative of the
sensor datapatterns, it enables accurate detection of anomalous patterns.

Due to their usefulness in modeling time series data, linearization based approaches have
also been used in other contexts. For example, [10] developed an efficient technique to search
for occurrences of aknown patternwithin a time series. However, the problem of searching for
a known pattern in time series data is different from anomaly detection because often we do not
have any prior information about the patterns exhibited by anomalous sensor readings.

Linearization Error. In order to compute a piecewise linear model, we need to definethe
linearization errorbetween a sensor data pointj and the line segmentl covering it. We define this
error as the perpendicular distance between the pointj and the linel. Accordingly, we define the
linearization errorǫ for a piecewise linear model representing a time series{D[t], t = 1,2,3...,n},
as the maximum linearization error across all the data points in D[t].

How many line segments to use?We also need to determine the number of line segments,k,
to use. Intuitively, using a large number of line segments will result in a small linearization error
– as explained below, this leads to lower computation cost but larger communication cost. (This
tradeoff is explored in detail in Section 4.2.)

We automatically determine the number of line segments in our piecewise linear model based
on the maximum allowed linearization errorǫ, which is a (free) parameter in our approach. For
a fixed choice of maximum linearization errorǫ, we use agreedyapproach to determine the
number of line segments needed to represent a time series. Westart with the first two data points
of the time series and fit a line segment, (say)l1, to them. Then we consider the data points one
at a time and recomputel1 using linear least-squares regression to cover a new data point. We
compute the distance of the new data point from the linel1. If this distance is greater thanǫ,
then we start a new line segment,l2 such that the distance between the new data point andl2 is at
mostǫ. We keep repeating this process until we exhaust all data points. Note that our approach
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is suited for bothofflineandonlineprocessing. In anonlinesetting, whenever the sensor collects
a new reading, we can either recompute the current line segment to cover it or start a new line
segment (depending on the linearization error).

We represent thek line segments that constitute a piecewise linear model of a time series
using their end points{(X[i],Y[i]), i = 1,2, . . . , k}, whereX[i] denotes a sample number (or the
time at which a sample was collected). The correspondingY[i] is one of the end points of a
line segment and represents an estimate of the actual sensorreading collected at timeX[i]. For
example, in Figure 1(b), the line segments approximate actual sensor readings (shown using dots)
– here we indicate two measurement collection times,X[ j] andX[ j + 1] that correspond to two
end points,Y[ j] andY[ j + 1], that are part of a piecewise linear model.

Similarity measure. Let {(X̂[i], Ŷ[i]), i = 1,2, . . . , k̂} and{(X̃[i], Ỹ[i]), i = 1,2, . . . , k̃} denote
the piecewise linear representation of two time seriesD̂[t] and D̃[t], respectively. In order to
define a similarity measure between any two piecewise linearrepresentations, we need to first
align them so that theirX[i] values (end points on the x-axis) line up. For example, consider
two representations{(X̂[i], Ŷ[i]), i = 1,2} and{(X̃[i], Ỹ[i]), i = 1,2,3} such thatX̃[1] = X̂[1] and
X̃[3] = X̂[2], and hence,̃X[2] < X̂[2]. In order to align the two representations, we choose theX
values as{X[1] = X̂[1] = X̃[1],X[2] = X̃[2],X[3] = X̂[2] = X̃[3]}. Hence, after alignment, the
new representations are{(X[i], Ỹ[i]), i = 1,2,3}, and{(X[i],Y[i]), i = 1,2,3}, whereY[1] = Ŷ[1],
Y[3] = Ŷ[2] and theY[2] value (corresponding to the sample at timeX[2]) is computed using the
equation of the line segment joiningY[1] andY[3].

We define thedifferencebetween the (aligned) piecewise linear representations oftwo time
seriesD̂[t] andD̃[t] as:

S(D̂, D̃) =
1
k

k∑

i=1

|Y[i] − Ỹ[i]| (1)

Here,S(D̂, D̃) represents the average difference between theY values of the piecewise linear
representations of̂D[t] and D̃[t] over thek line segments. We chose this metric because it is
efficient to compute, and it indirectly captures the difference between the two time series.

Threshold computation. We set the thresholdγ (for deciding whetherS(D̂, D̃) is sufficiently
large) to the standard deviation of theinitial D re f [t]. We remove any CONSTANT anomalies (de-
scribed in Section 3), before computing the standard deviation - intuitively such measurements
are not a good indication of variability in sensor data as they typically correspond to faulty data,
e.g., due to low voltage supply to the sensor [5]. Intuitively, the standard deviation is a reasonable
indication of the variability in the “normal” data. A multiple of standard deviation could also
be used, but our more conservative approach already results(Section 3) in a reasonably low false
positive rate; more sophisticated (than threshold-based)approaches are part of future efforts.

Putting it all together. Given a time series of new sensor data,Dnew[t], and a reference time
series,Dre f [t], our Segmented Sequence Analysis (SSA) based approach to anomaly detection
utilizes the following steps (all detailed above):

1. Linearization: We apply our linearization technique to obtain the two piecewise linear
models{(Xnew[i],Ynew[i])} and{(Xre f [i],Yre f [i])}.

2. Alignment: We align the two linear representations so that they have the sameX values.
3. Similarity computation: We compute the similarity,S(Dnew,Dre f ), between the reference

model and the model for new sensor data using Equation (1).
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4. Anomaly detection: We detect an anomaly using a simple threshold-based approach.
Specifically, ifS(Dnew,Dre f ) is greater than a thresholdγ, then we conclude that the sensor
readingsDnew[t] contain an anomaly.

We now describe in detail our SSA-based anomaly detection framework.

2.3. UsingSSAon a tiered sensor network

We perform anomaly detection in a tiered sensor network in two stages – (1) alocal step,
executed at each mote, followed by (2) anaggregationstep, executed at the master nodes. In the
local step we exploit temporal correlations (in sensor readings), and in the aggregation step we
exploit spatial correlations, as described next.

Local step. During the local phase (executed at individual motes), each motemperforms the
following tasks: (1) construct or update a reference time series,Dre f

m [t], for its sensor readings,
(2) collect new sensor readings{Dnew

m [t], t = 1,2, . . . ,T} over a periodT, (3) construct or update
linear models forDnew

m [t] and Dre f
m [t], and (4) perform anomaly detection using the SSA-based

method (refer to Section 2.2).

Reference time series. To construct a reference time series at motem, Dre f
m [t], we use the

following approach. For physical phenomena such as ambienttemperature or humidity variations
that exhibit a diurnal pattern, we initially start with a time seriesD[t] consisting of measurements
collected over a period of 24 hours, (say) on day 1 of the deployment. LetDnew[t] be the new
sensor readings collected by motemover time periodT corresponding to (say) 9-9:30 a.m. on day
2 of the deployment. For these new readings, we define the datapoints inD[t] that were collected
between 9-9:30 a.m. (on day 1) asDre f [t]. We first look for anomalies in the new sensor readings
Dnew[t], and then use the data points inDnew[t] to updateDre f [t] using weighted averaging. For
example, we can use exponential weighted moving averaging to (pointwise) updateDre f [t], i.e.,
D̃re f [t] = (1−α)×Dre f [t] +α×Dnew[t], whereD̃re f [t] denotes the updated reference time series.

Figure 2(a) depicts the time series of humidity readings collected by a sensor from the Jug
Bay deployment [13] along with two reference time series forit, constructed usingT = 12 hours
(36 data points with one data point collected every 20 minutes). The reference time series labeled
“Reference time series (including anomalous readings)” iscomputed using both non-anomalous
as well as anomalous readings inDnew[t] to update the reference time series, while the “Reference
time series (excluding anomalous readings)” excludes the anomalous readings inDnew[t]. The
humidity measurements contain two anomalies – sharp changes in the sensor reading (marked by
bounding rectangles in Figure 2(a)) which cause the humidity readings to increase sharply and
then decay over time. It is important to detect these sharp changes in sensor readings.

As shown in Figure 2(a), excluding the anomalous readings inDnew[t] when updating the
reference time series causesDre f [t] to diverge from the sensor data time series. A diverging
Dre f [t] is likely to result in an increase in false positives (due tolots of samples being flagged as
anomalies) and failure to “zoom in” on the samples where sharp changes in sensor readings occur.
If we include the anomalous readings inDnew[t] for updating of the reference time series, then
the reference time series exhibits the same patterns asDnew[t] but with atime lag. Our evaluation
results in Section 4 show that this lag is long enough for SSA to identify the anomalous readings.
There is a potential downside in using anomalous readings inupdatingDre f [t]. If an anomaly
affects a large number of samples, then SSA will fail to detect many of them. We discuss this
in detail in Section 4 and show that for long duration anomalies, SSA can identify anomalous
samples that correspond to the start and end of these anomalies, which is also quite useful.
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For scenarios where the “normal” pattern of sensor readingsmight not be known or might
not exhibit any periodicity – e.g., sensors deployed for monitoring of birds’ nests [11], in the
absence of any domain expertise, we assume that the sensor readings collected over a large
duration (a 24 hour period in most cases) capture the normal patterns in the sensor data time
series, and start with such a time series as our reference. Clearly, the performance of our local
anomaly detection step depends on the quality of the reference data. A reference data that does
not capture the normal sensor readings or is corrupted by anomalies can lead to false positives
and/or false negatives. In Section 4, using real-world sensor readings for periodic (e.g., ambient
temperature) as well as aperiodic (e.g., soil moisture variations) phenomena, we show that our
approach for selecting and updatingDre f

m [t] is robust and works well in practice.

Aggregation step. After performing its local step, each motem sends its linear model,
{(Xnew

m [i],Ynew
m [i]), i = 1, ., k}, for the new sensor readings,Dnew

m [t], and the results of its local
anomaly detection step to its master node. For each motem, the master node performs another
round of anomaly detection by comparing its linear model against the models from other motes
(treating them as reference). Hence, a master node managingn slave motes performsO(n2)
model comparisons. The design of our aggregation step is based on the observations from several
real-world deployments that often the readings from sensors deployed at different locations are
correlated [12]. The aggregation step exploits these spatial correlations to detect additional
anomalies (if any) that might not have been detected during the local step.

The final set of anomalies is the union of the anomalies detected during the local and aggre-
gation steps. In our current framework, the master node doesnot provide feedback to its slave
motes. Hence, the anomalous readings from motem detected only by the aggregation step are
currently not leveraged to improve the accuracy of the localanomaly detection step. Incorporat-
ing a feedback mechanism between the aggregation and local steps is part of future efforts.

Online fault detection. To achieve online detection, we run the local and aggregation
anomaly detection steps periodically, everyT minutes. For example, ifT = 30 min, we first
collect new sensor readings for half an hour and then performanomaly detection using the
framework described above. The anomaly detection interval, T, controls the trade-off between
real-time anomaly detection and resource consumption, as discussed in detail in Section 4.2.
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Figure 2: Examples of Anomalies in Sensor Readings

2.4. Hybrid approach
As noted in Section 2.2, our piecewise linear representation is very succinct – in practice, a

small number of line segments is sufficient to capture the essential information (diurnal patterns,
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trends lasting for a long duration, etc.) in a time series. However, because it is designed to
capture significant trends, a piecewise linear representation will mask faults or anomalies that
affect a very small number of sensor samples. The top plot in Figure 2(b) shows a temperature
reading time series from the SensorScope datasets [12], andthe bottom plot shows whether each
sensor reading was identified as “normal” or “anomalous” by SSA. While SSA is able to detect
instances of long duration anomalies (marked by circles) itfails to detect the three very short
duration anomalies (marked by rectangles in the top plot). To improve the accuracy of SSA on
short duration anomalies, next we propose ahybrid approach.

Combining SSA with Rule-based methods. We can view data faults in sensor readings
as short duration anomalies (refer to Section 6). Thus, it isreasonable to adapt techniques de-
signed for fault detection for identification of short duration anomalies. Specifically, [14, 6] are
representative of such techniques and they consider: SHORTanomalies (a sharp change in the
measured sensor readings between two successive samples),NOISE anomalies (increase in the
variance of sensor readings) and CONSTANT or “Stuck-at” anomalies (the sensor reports a con-
stant value). Thus, we use the Rule-based methods [6] (originally designed for fault detection),
for detection of short range anomalies in our hybrid approach by adding the following rules.

SHORT Rule: To detect SHORT anomalies in the time series{D[t], t = 1,2,3...}, we keep
track of the change in sensor readings between two successive samples,|D[t] − D[t − 1]|. If this
value is larger than a thresholdσs, then we flagD[t] as anomalous.

CONSTANT Rule: To detect CONSTANT anomalies we calculate moving variancestatistics
of time series{D[t], t = 1,2,3...}. Let V[t] = variance({D[ j]} j=t

j=t−c+1) be the variance ofc con-
secutive data readings prior to timet. If V[t] is less than a thresholdσc, then we flag the set of
samples{D[ j]} j=t

j=t−c+1 as anomalous.
A rule-based method also exists for detecting NOISE data faults. But, as shown in Section 4,

SSA is accurate at detecting NOISE faults anomalies; thus, we do not include the NOISE rule as
part of our hybrid method.

To automatically determine the detection thresholds,σs andσc, we use the histogram-based
approach [6]. We plot the histogram of the change in sensor readings between two successive
samples (for SHORT rule) or the variance ofc samples (for CONSTANT rule) and select one of
the modes of the histogram as the threshold.

Thus, in scenarios where both short and long duration anomalies are expected, we propose
a hybrid approach for anomaly detection. Specifically, everyT minutes, we use the Rule-based
methods to detect and mark short duration anomalies, and then use SSA to detect the remaining
anomalies2. We evaluate our hybrid approach using real-world datasetsin Section 4 and show
that it is effective at detecting short and long duration anomalies. Our evaluation also shows
that Rule-based methods boost the efficacy of SSA only in situations where we are interested
in detecting short duration anomalies along with interesting long duration events or anomalies
(e.g., changes in sensor readings patterns). Hence, in situations where detecting short duration
anomalies is not of interest, the additional complexity of using Rule-based methods is not needed.
Note that we do not need to remove short duration anomalies (or data faults) from the data –
e.g., by replacing the sensor readingsD[ j] corrupted by a SHORT anomaly with the average of
its adjacent samplesD[ j − 1] andD[ j + 1] – in order for SSA to be able to detect long duration

2It is possible to combine other detection methods with SSA to design variants of our hybrid approach, e.g., [6]
proposes other techniques, such as HMM-based methods, for detecting sensor data faults. However, other methods in [6]
are much more computationally intensive and require a much longer training phase (than our reference model).
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anomalies. Our evaluation results in Section 4 show that thepresence of short duration anomalies
does not impact the accuracy of SSA when it comes to detectinglong duration anomalies.

Complexity and Overhead. Of all the steps in SSA, linearization requires the most com-
putation, with the worst case complexity beingO(n2), wheren is the number of measurements
accumulated in a time slot of lengthT. Since we use linear least-squares regression to determine
the best-fit line segment, the cost of approximatingd (one dimensional) data points with a line
segment isO(d). However, our greedy approach performs a least-squares regression fit every
time a new sensor sample is recorded. In the worst case, we mayneed to perform least-squares
regressionn times (once for each data point) resulting inO(n2) computational complexity for the
linearization step, and hence, for SSA. In practice, SSA is quite efficient, as shown in Section 4
(asn is typically not very large). We note that the Rule-based methods used in our hybrid ap-
proach are simple and haveO(n) computational complexity; thus, they do not increase the overall
complexity of the hybrid approach.

SSA incurs a communication overhead every time a mote conveys its linear model to its
master node. Note that a mote needs to convey 4 data points perline segment – twoX[i] values
(sample times) and the corresponding twoY[i] values. Since a mote’s linear model consists ofk
line segments, the communication overhead isO(k). Note that this overhead is incurred everyT
minutes since a mote recomputes its linear model once everyT minutes.

3. Experimental setup

Sensor datasets. The sensor data time series used in our evaluations come from the Sen-
sorScope [12] and the Life Under Your Feet [13] projects. Both projects represent the state-
of-the-art in sensor systems and collect measurements in very different environments. Hence,
the two datasets allow us to evaluate SSA on representative and diverse sensor system data.

In the SensorScope project, large networks of sensors are deployed to collect environmental
data such as temperature, humidity, solar radiation, etc. In this paper, we use temperature read-
ings collected from 23 sensors deployed in the Grand St. Bernard pass between Switzerland and
Italy in 2007. Each sensor collected samples every 2 minutesfor 43 days. Since the temperature
measurements exhibit a diurnal pattern, the sensor data time series are periodic with the period
being 720 data points (collected every 24 hours). In what follows, we show results for all 23
sensor data time series. We refer to these time series as SensorScope 1 through SensorScope 23.

Our second sensor data source is from the Life Under Your Feetproject [13], which studies
soil ecology in a number of locations. We use data sets collected at the Jug Bay Wetland Sanctu-
ary in Anne Arundel County, Maryland between June, 2007 and April, 2008. In this deployment,
sensors were placed in the nests of Box Turtles to study the effect of soil temperature and soil
moisture on the incubation of turtle eggs. Measurements of soil temperature, soil moisture, box
temperature, and box humidity are collected every 20 minutes for more than 5 months. These
measurements exhibit very diverse patterns. For example, as depicted in Figure 3(a), the soil
moisture data are non-periodic – here the soil moisture readings are close to 8% when it is not
raining, but they exhibit a sharp jump followed by a gradual decay when it rains. Hence, for the
soil moisture time series, instances of rainfall are the anomalies (or events) of interest that we try
to detect using SSA. In contrast, the box humidity data sets are periodic with a period of 72 data
points (or 24 hours). The Jug Bay dataset consists of readings from 3 different sensors. In what
follows, we show results for soil moisture readings collected (we refer to them as Soil Moisture
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Anomaly Description Duration

Change in mean Anomalous readings differ significantly from Long
average value of normal readings (e.g., as in Figure 1(a))

Change in variance Anomalous readings exhibit less or more variability Long & Short
than normal readings (e.g., as in Figure 3(c))

Short spike Equivalent to SHORT fault data type [5] (e.g., as in Figure 3(a))Short

Constant reading Sensor reports a constant value over a period of time Long & Short
(e.g., as in Figure 3(b))

Change in shape Anomalous readings differ in mean and/or variance from normal Long & Short
readings but with shorter duration thanChange in mean
andChange in variance(e.g., as in Figure 3(d))

Table 1: Anomaly categories

1, Soil Moisture 2, and Soil Moisture 3), as well as the box humidity data time series (we refer
to them as Box Humidity 1, Box Humidity 2, and Box Humidity 3).
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Figure 3: Soil Moisture Readings, Constant, Change in Variance and Change in Shape anomalies

Anomalies in the data sets. To the best of our knowledge, there are no publicly available data
sets with anomalies already annotated. Thus, to obtain the ground truth, we visually inspected
the sensor data time series from the SensorScope and the Jug Bay deployments, to identify long
and short duration anomalies. This is consistent with current practice for other data sets (e.g.,
Internet traces in [1]) that lack ground truth. To identify long duration anomalies, we used the
(subjective) criterion of “what kind of patterns would a human find interesting?”. The short
duration anomalies that we identified resemble sensor data faults types (SHORT, NOISE, and
CONSTANT faults) described in [5, 6]. We categorize these identified anomalies into five groups
shown in Table 1. We note that this categorization is done forease of results presentation (in
Section 4)onlyand isno way usedin our anomaly detection approach.
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4. Experimental Results

We now evaluate our SSA-based approach and illustrate its goodness using the following
criteria (a comparison with related literature is presented in Section 6).

• Accuracy: SSA alone detects most long duration anomalies (plus a significant fraction of
the short duration ones), and our hybrid approach detects both, long and short duration
anomalies accurately.

• Sensitivity: Our results are not sensitive to SSA’s parameter, namely tothe settings of the
linearization periodT, and the maximum linearization errorǫ.

• Cost: SSA has low computation and memory cost, and hence it can be effectively imple-
mented in sensor systems.

• Robustness: SSA is robust to the presence of sensor data faults in the reference time series
(i.e., there is no need to “clean” the data before running SSA).

4.1. Accuracy evaluation

We first describe our method’s accuracy, using the data sets and the ground truth identification
described in Section 3. We use (1) number of false positives (detecting non-exist anomalies), and
(2) number of false negatives (not being able to detect an anomaly) as our metrics. Specifically,
the results in the tables below are presented as follows - thex/y number indicates thatx out of y
anomalies were detected correctly (corresponding toy− x false negatives) plus we also indicate
the number of corresponding false positives (FP). Note thata long duration anomaly may consist
of many consecutive data points. In this paper, we focus on detecting these events rather than on
identifying each and every anomalous data point within an event. (Thus, when 50% or more of
the data points of a long duration anomaly are identified by SSA as anomalous, we consider this
to be a successful detection3.)

The accuracy results of our hybrid approach on all data sets are given in Tables 2 and 3. Our
hybrid method is able to detect long duration and short duration anomalies, with a small number
of false positives, and often without any false negatives. Most of the false positives are due to the
Rule-based part of the hybrid approach rather than to the SSApart (as explained below).

Tables 2 and 3 also show that long duration anomalies – particularly theChange in Meanand
Change in Shapeanomalies – occur quite often in the SensorScope and the Jug Bay datasets
(refer to the last row of both tables). For example, over the course of 43 days, a total of 84
instances ofChange in Meanand 139 instancesChange in Shapeanomalies occurred in the
SensorScope datasets; on average, 2 instances ofChange in Meanand 3 instances ofChange in
Shapeanomalies per day. Previously, others have shown that shortduration anomalies or data
faults (Short spikes, Constant readings, Noise faults) arequite prevalent in real-world datasets [5,
6]; this work is the first to demonstrate that long duration anomalies occur quite often as well.

Under our hybrid approach, anomalies can be detected at three different stages – the Rule-
based methods, the local step in SSA, and the aggregator stepin SSA. For both the SensorScope
and the Jug Bay datasets, we found that the aggregator step inSSA did not add significantly
to the accuracy of SSA. This is because the combination of theRule-based methods and the

3Of course, more sophisticated approaches are possible, but as our results indicate, this simple approach already
results in good accuracy and allows us to focus on evaluationof SSA, without additional complications.
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local step in SSA was able to detect most of the anomalies. We now focus on understanding
the contribution to our hybrid approache’s accuracy of SSA vs. the Rule-based methods. The
first two rows of Table 4 show the results of applying SSA alone(without the use of Rule-based
methods) on the Soil Moisture 1 and the SensorScope 1 time series. Based on these results, we
make the following observations: (1) SSA is accurate at detecting long duration anomalies such
asChange in Average, Change in Variance, andChange in Shape, and (2) SSA can fail to detect
short duration anomalies such asShort spikes. For example, while it is able to detect more than
70% of the Short spikes in Soil Moisture 1, it detects only about 50% of the Short spikes in
SensorScope 1. This makes sense, as SSA is intended more for longer duration anomalies.

The utility of the hybrid approach can be seen, e.g., by comparing theShortresults for Soil
Moisture 1 and SensorScope 1 in Tables 2 and 3 with those in Table 4. The hybrid approach
outperforms SSA on short duration anomalies as it uses Rule-based methods, designed specifi-
cally for short duration anomalies likeShort spikesandConstant readings. However, our hybrid
approach incurred a higher false positive rate than SSA, anda detailed inspection of the samples
falsely identified as anomalous revealed that this increasewas due to the Rule-based methods.
Prior work [6] showed that Rule-based methods can incur a high false positive rate mainly be-
cause the histogram method for determining their fault detection threshold (Section 2.4) does not
always identify a good threshold. We also verified this by computing the histogram using the
entire data set, which significantly reduced the false positive rate. However, such an approach
would not beonlineand hence not used here.

We also verified that the Rule-based methods alone do not provide any benefits in detecting
long duration anomalies. For instance, this can be seen by comparing the results for Soil Moisture
1 and the SensorScope 1 data in Tables 2 and 3 with those in Table 4, where our hybrid method
performs the same as SSA w.r.t. to detecting long duration anomalies likeChange in Average
andChange in Shape. In fact, the Rule-based methods can perform quite poorly when used for
identifying long duration anomalies. The last row of Table 4shows the results of applying the
Rule-based methodsaloneon the Box Humidity 2 data - compare that to the Box Humidity 2
results in Table 3. As expected, the Rule-based methods detect the short duration anomalies
(Shortspikes andConstantreadings), but fail to detect most of the long duration anomalies.

4.2. Sensitivity evaluation

The linearization periodT and the maximum linearization errorǫ are the two main parameters
in our SSA-based approach. Next, we present an analysis of the sensitivity of our results to these
parameters’ settings.

Impact of T. SSA computes the similarity measureS(D̂, D̃) everyT time units. The smaller
the value ofT, the more real-time is SSA’s anomaly detection. However, ifT is too small, there
may be too few data points for SSA to accurately capture the pattern of a long duration anomaly.
Thus,T controls the trade-off between (near) real-time anomaly detection and the accuracy of
detecting long duration anomalies.

To characterize the sensitivity of SSA’s accuracy toT, we ran SSA using different values of
T. For SensorScope datasets, we usedT values ranging from 30 minutes (the time to collect 15
data points) to 8 hours (the time to collect 240 data points).For Jug Bay datasets, we variedT
from 2 hours (the time to collect 6 data points) to 24 hours (the time to collect 72 data points).

We found that changingT’s value did not affect SSA’s accuracy w.r.t.Change in Averageand
Change in Varianceanomalies, but it did affect the accuracy w.r.t.Change in Shapeanomalies.
We show examples of SSA’s performance in detecting instances of theChange in Shapeanomaly
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Data Set Change in Mean Change in Var Change in Shape Short Constant False Positives
SensorScope 1 3/4 0/0 6/7 90/90 2/2 7
SensorScope 2 8/8 0/0 6/7 86/86 6/6 6
SensorScope 3 7/7 2/2 9/10 64/64 5/5 12
SensorScope 4 5/5 2/2 12/13 220/222 13/13 27
SensorScope 5 6/6 4/4 9/9 726/819 34/34 0
SensorScope 6 7/7 0/0 8/10 206/206 1/1 7
SensorScope 7 8/8 4/4 12/12 555/567 54/54 0
SensorScope 8 6/6 0/0 9/10 243/243 2/2 4
SensorScope 9 6/6 2/2 11/12 65/65 23/23 6
SensorScope 10 5/5 0/0 10/12 46/46 2/2 3
SensorScope 11 7/7 0/0 8/10 122/122 1/1 6
SensorScope 12 7/7 0/0 11/13 84/84 13/13 7
SensorScope 13 8/8 2/2 13/14 250/250 15/15 5
SensorScope 14 5/5 4/4 5/7 595/633 26/26 19
SensorScope 15 6/6 2/2 8/9 464/475 24/24 12
SensorScope 16 4/4 2/2 7/7 120/120 12/12 25
SensorScope 17 5/5 4/4 6/6 166/166 17/17 13
SensorScope 18 6/7 2/2 16/18 56/56 9/9 12
SensorScope 19 3/3 0/0 4/6 98/98 1/1 15
SensorScope 20 3/3 0/0 3/4 77/78 1/1 9
SensorScope 21 2/2 1/1 3/4 332/337 26/26 5
SensorScope 22 3/3 0/0 3/5 88/88 1/1 11
SensorScope 23 3/3 0/0 4/4 84/84 2/2 17

Total 121/123 31/31 183/209 4837/4999 290/290 238

Table 2: Hybrid method: SensorScope

Data Set Change in Mean Change in Var Change in Shape Short Constant False Positives
Soil Moisture 1 7/8 1/1 8/10 53/55 1/1 0
Soil Moisture 2 8/9 1/1 9/11 74/74 1/1 2
Soil Moisture 3 5/5 0/0 6/7 42/42 0/0 4
Box Humidity 1 2/2 4/4 18/19 15/15 0/0 2
Box Humidity 2 5/5 7/7 27/28 16/16 2/2 2
Box Humidity 3 3/3 2/2 1/1 17/17 2/2 3

Total 30/32 15/15 69/76 217/219 6/6 13

Table 3: Hybrid method: Jug Bay

in SensorScope 2 and Box Humidity 1 time series (for differentT values) in Tables 5(a) and 5(b),
respectively. Very smallT values (corresponding to few data points in a linearizationperiod)
result in a significant number of false positives. AsT grows, the number of false positives
improves and becomes reasonably insensitive toT. The false negative rate is quite insensitive to
the value ofT, with a small increase for very large values ofT. Intuitively, this can be explained
as follows. For a small value ofT, SSA considers only a few data points at a time and even small
differences in these data points (e.g., due to measurement noise) can cause SSA to misclassify
these points as an instance ofChange in Shapeanomaly resulting in an increase in the false
positive rate.4 The small increase in false negatives for large values ofT is due to very short
durationChange in Shapeanomalies being “averaged out” (with a largeT).

4TheChange in Averageand theChange in Varianceanomalies occur over longer periods of time; thus, to cause a

Method Data Set Change in Mean Change in Var Change in Shape Short Constant FP
SSA Soil Moisture 1 7/8 1/1 8/10 40/55 1/1 0
SSA SensorScope 1 3/4 0/0 6/7 46/90 1/2 1

Rule based Box Humidity 2 2/5 0/7 5/28 16/16 2/2 2

Table 4: SSA vs. Rule-based methods
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T Value 0.5 1 2 4 8
Detected 7/7 7/7 6/7 6/7 6/7

FP 8 4 0 0 0

T Value 2 4 6 8 12 24
Detected 19/19 19/19 19/19 19/19 18/19 18/19

FP 17 10 6 4 2 2

(a) SensorScope 2 (b) Box Humidity 1

Table 5: Sensitivity test forT: SSA with differentT values; Change of shape anomaly

In summary, our evaluation shows that our method is not sensitive to the linearization period
T, provided it is long enough to collect a reasonable number ofdata points. The main reason
for this is that beyond a certain value ofT, our similarity metricS(Dnew,Dre f ) does not change
significantly withT, as illustrated next.

For a fixedT value, we ran SSA on SensorScope 1 and SensorScope 2 separately, and
recorded the similarity values (w.r.t. to the reference time series) computed everyT time units.
For example, forT = 1 hour, SSA computes a similarity value for new data points collected every
hour using Equation (1). We then computed the mean and the variance of the differences in the
similarity values for different values ofT for SensorScope 1 (and separately for SensorScope 2).
For example, consider a set of SensorScope 1 data points collected over 2 hours. Letα2 be the
similarity value for these data points whenT = 2 hours, and forT = 1 hour, letα11 andα12 be
the similarity values for data points collected during the first and the second hour, respectively.
The mean and variance of the differences in the similarity values forT = 1 hour andT = 2 hours
are computed using the values|α2 − α11| and |α2 − α12|. These values capture the difference in
the similarity values associated with a set of data points for differentT values.

Table 6(a) shows the results, where|Sq[t] − Sr [t]| is the difference in similarity values cor-
responding toT = q hrs andT = r hrs and the (x, y) entry is the corresponding mean and
variance of that difference. The similarity values forT ≥ 2 are close, but the similarity values
for T = 1 hr are different from those forT = 2 hrs. Recall that SSA compares similarity values
against a threshold to detect anomalies. Hence (for SensorScope 1 and SensorScope 2), SSA’s
performance withT = 1 hr differs from its performance withT = 2 hrs; but forT ≥ 2, SSA’s
performance is insensitive to the choice ofT. We observed a similar behavior for the other Sen-
sorScope time series. For the Jug Bay dataset, we observed similar behavior forT ≥ 12 hrs. The
range ofT values over which SSA’s performance is insensitive is different for the SensorScope
and Jug Bay datasets primarily because of the differences in sampling intervals (2 minutes for
SensorScope and 20 minutes for Jug Bay). So, it makes sense that it takes much longer to collect
a sufficient number of samples in the Jug Bay data sets and hence requires a largerT to achieve
robust SSA performance.

Impact of ǫ. As discussed in Section 2.4, forn data points collected during an interval
of lengthT, the worst case running time of our linearization algorithmis O(n2). Such worst
case scenarios arise when a small number of line segments aresufficient to model alln data
points. That is, in the extreme case where a single line segment is sufficient to cover all then
data points, our greedy approach will be forced to solve larger and larger instances of the least-
square regression problem in each iteration – the first iteration will have 2 samples, the second 3
samples, and the (n-1)st will haven samples, resulting inO(n2) complexity. At the other extreme,

false positive corresponding to these anomalies, (random) noise would have to affect a much greater number of samples,
which is unlikely to happen.
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Data sets SensorScope 1 SensorScope 2
|S1[t] − S2[t]| (1.35, 1.40) (1.28, 2.05)
|S2[t] − S3[t]| (0.22, 0.08) (0.25, 0.12)
|S3[t] − S4[t]| (0.25, 0.11) (0.29, 0.17)
|S4[t] − S6[t]| (0.29, 0.14) (0.30, 0.20)

ǫ value
SensorScope1 SensorScope2

# Lines Running Time # Lines Running Time
0.01 92.55 0.08 86.51 0.10
0.05 47.49 0.08 50.50 0.11
0.10 25.45 0.10 29.39 0.12
0.50 3.38 0.34 3.80 0.29
1.00 1.85 0.46 1.98 0.40

(a) Similarity metric as a function ofT (b)Impact ofǫ

Table 6: Robustness to parameters.

is the case where each pair of consecutive samples defines a new line segment, leading toO(n)
line segments andO(n) computation. The number of line segments,k, used to model a sensor
data time series depends on the desired linearization errorǫ. Intuitively, a small value ofǫ will
force us to use more line segments. which would lead to a lowercomputational cost.However,
the communication overhead of our approach isO(k). Thus,ǫ controls the trade-off between
computational cost and communication overhead (or size of the model).

We found that in practice (e.g., in SensorScope and Jug Bay datasets) a small value ofǫ results
in each line segment covering a small number of points. Intuitively, this happens as typically
sensor readings exhibit non-linear patterns (e.g., diurnal or sharp increases in value when an
event occurs), and approximating non-linear patterns using line segments results in only a few
points being covered by a single line. Table 6(b) shows the average number of line segments used
to model 120 data points collected whenT = 4 hrs, for SensorScope 1 and SensorScope 2, for
differentǫ values. As theǫ value is reduced from 1 to 0.01, the average number of line segments
increases from 1.85 (1.98) to 92.55 (86.51) for SensorScope 1 (SensorScope 2). (Note that we
can use at most 119 line segments to model 120 data points). Table 6(b) shows our linearization
approache’s running time (on a PC with a 2.8 GHz processor with 2GB of RAM) on theentire
time series; as expected, it is smaller for smallerǫ values.

Table 6(b) results support our intuition that choosing a small value for ǫ results in faster
execution time. However, the overhead of the communicationbetween a mote and its master is
O(k) (Section 2.4) - a small value ofǫ reduces the computation time at the expense of a larger
communication overhead. In scenarios where the aggregatorstep does not boost the accuracy
of SSA (as is the case with SensorScope and the Jug Bay datasets; Section 4.1), we can either
do away with the aggregator step or invoke it less frequentlythan after everyT minutes. This
can help us reduce the computational cost of the local step (by selecting a smallǫ) while not
incurring a significant communication overhead.

The choice ofǫ can also determine how well a sensor time series is approximated by our
piecewise linear model. Intuitively, we should choose anǫ value that is very small compared to
the thresholdγ against which the similarity measureS(Dnew,Dre f ) is compared to detect anoma-
lies (see Section 2). Withǫ << γ, it is unlikely that linearization errors will significantly impact
the similarity measure, and hence, not impact the accuracy of SSA5. In this paper, we conserva-
tively setǫ = 0.1. We also investigated howǫ affects SSA’s accuracy by trying different values
between 0.1 and 1 for it and found that the accuracy of SSA was the same forthe different values
of ǫ. As shown in Table 6(b)ǫ = 0.1 achieves a good computational cost vs. communication

5As discussed in Section 2, we setγ to be equal to the standard deviation of the initial reference time series;γ for the
SensorScope and Jug Bay Box Humidity datasets was within the interval [4,7] and [6,9], respectively.
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overhead trade-off – choosing a smaller value did not reduce the running time significantly but
led to a large increase in the number of line segmentsk.

4.3. CPU and Memory Usage

In Section 2.4, we discussed the computation complexity andoverhead of SSA. We also
measured the running time and memory usage of SSA on a low-endnetbook with Atom 1.6 GHz
processor and 1.5 GB of RAM. The processing power and available memory of this netbook are
comparable to that of the emerging master class devices usedin today’s tiered sensor network
deployments [11]. We first run a monitoring program in the background, and then run SSA over
all 23 time series in the SensorScope data sets. We record therunning time for each times series
is recorded. The monitoring program also records the memoryusage by SSA every second.

We perform two sets of experiments with different linearization periodT. In Table 4(a), we
show the maximum running time and memory usage of SSA over allthe 23 time series. For both
T = 60 and 120, SSA takes less than 5 seconds to process approximately 30,000 samples with a
small memory footprint. These results show that the computation and memory requirements of
SSA are small and well within the resources available on today’s master class devices.
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Figure 4: (a) Resource usage of SSA and (b) Data set with faulty readings.

4.4. Robustness evaluation

Data faults are quite prevalent in real-world sensor systemdeployments [5, 6] and can be
caused by bugs in hardware or software, improper sensor calibration, or due to motes running
out of battery power [5]. Hence, in a real-world scenario, itis quite likely that the reference
time seriesDre f [t] used by SSA may itself contain anomalous readings. Note that, as described
in Section 2.3, when updatingDre f [t] using new sensor data, we do not discard the anomalous
readings. With an anomaly-free reference time series initially, as a result of updating it with these
anomalous data points, the reference time series may eventually exhibit the same pattern as the
anomalous readings. For example, we observed an instance ofthis problem in a time series from
the SensorScope datasets, as described next.

Figure 4(b) (top plot) shows a SensorScope time series with along durationConstant reading
anomaly that lasted for 6 days. The bottom plot in Figure 4(b)shows the readings identified as
anomalous by SSA alone and the Rule-based methods. SSA is able to correctly identify the
samples corresponding to the start and the finish of theConstant readinganomaly but misses
most of the “in-between” anomalous samples. This is due to our design choice to updateDre f [t]
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using anomalous samples as well. We can see in Figure 4(b) (top plot) that after (approximately)
400 successive samples corrupted by theConstant readinganomaly, the reference time series
values are quite close to the anomalous readings, and as a result, SSA does not stops flagging the
subsequent readings as anomalous. In Section 2, we justifiedour use of anomalous readings to
updateDre f [t] by demonstrating that it helps us “zoom in” on samples wherethe sharp changes
in sensor readings happen (see Figure 2(a)). However, as this example shows, updatingDre f [t]
using anomalous readings can cause SSA to miss a large numberof samples affected by a long
duration anomaly, and only identify the beginning and end ofa long duration anomalous event.
This again motivates the use of our hybrid approach - i.e., for the time series in Figure 4(b)
(bottom plot), we identify the samples missed by SSA using the CONSTANT rule.

The SensorScope time series in Figure 4(b) (top plot) also contains two instances ofShort
spikes(that occur before the long durationConstantanomaly). Even though SSA alone fails to
detect them, their presence does not impair SSA’s ability todetect the long duration anomaly
that occurs later. Hence, we do not need to “clean” the time series data before running SSA. We
can see in Figure 4(b) (top plot) that the SHORT faults do not affect the reference time series
significantly, i.e., SSA is robust to faults.

5. Related Work

Anomaly detection is an area of active research. In this section we briefly survey work most
related to ours, organized into four categories. Moreover,we select representative techniques
from these categories and quantitatively compare them against our hybrid approach, with results
of this comparison presented in Section 6.

Anomaly detection in sensor systems. This is not a well-studied area. The only efforts we are
aware of that focus on anomaly detection in sensor systems data are [7, 8, 9]. Rajasegarar et al.
[7] present a clustering based method based onK nearest neighbor algorithm in [7], and a SVM
based approach in [8]. Briefly, these works view measurements collected by a sensor system
as coming from the same (unknown) distribution and “pre-define” anomalies as outliers, with
main focus of these (offline) techniques being on minimizing the communication overhead (in
transmitting data needed for anomaly detection) and the corresponding energy consumption. In
contrast, we focus on anonlineapproach, without “pre-defining” what is an anomaly. However,
we do perform a quantitative comparison between our hybrid approach and the clustering based
method in [7]. The details of this comparison can be found in Section 6.

Tartakovsky et al. use a change point detection based approach, CUSUM (Cumulative Sum
Control Chart), for quickly detecting distribution changes (e.g., mean, variance, covariances) in
sensor measurements [9]. We do not provide a quantitative comparison between CUSUM and
our hybrid approach as we lack sufficient domain knowledge - i.e., the CUSUM based approach
assumes knowledge of the (time varying) probability distribution from which sensor measure-
ments are sampled, and such information is not provided for the SensorScope and the Jug Bay
datasets (and would be quite difficult for us to compute accurately).

In general, change point detection can identify changes in the parameters of a stochastic
process. Often, such changes are anomalous, and hence, change point detection techniques have
been used for change/outlier detection in time series data [15, 16]. However, such existing works
(a) assume that sensor measurements are sampled from a knownor easily inferred distribution
(e.g., Gaussian), an assumption often not true for real world datasets, (b) target a specific subset
of anomalies, and (c) do not use real-world sensor datasets for evaluation. In addition, existing
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change point detection based methods either require a long training phase, or are computationally
intensive, or (in some cases) both – hence, they do not meet our efficiency criteria. Moreover,
not all changes in a time series might be anomalous, i.e., there could be a change and no anomaly
(i.e., a false positive) and vice versa (i.e., a false negative). For example, [15] flags turning points
of a time series from increasing to decreasing – as it is often“normal” for a sensor data time
series to have periodic behavior, this is (likely) not an anomaly. On the other hand, such an
approach would only flag a few turning points, instead of an entire anomalous event, as depicted
in Figure 1(a). We believe that change point detection couldbe a promising approach to anomaly
detection, but that it would require significant work to devise an accurate and efficient online
anomaly detection method based on such techniques.

Fault detection in sensor systems. Short duration anomalies can be viewed as instances of data
faults, errors in measurements, or outliers (see [5]). Sharma et al. focus on SHORT spikes,
NOISE faults, and CONSTANT readings data faults and show that these are quite prevalent in
real-world sensor datasets [6]. They also evaluate the performance of several methods – Rule-
based methods, a least-squares estimation based method, Hidden Markov model (HMM) based
method, and a time series analysis (ARIMA model) based method–that are targeted towards
detecting transient sensor data faults. However, these methods perform poorly at detecting long
duration anomalies. E.g., in Section 4.1 we showed that Rule-based methods are not sufficient for
detecting long duration anomalies. Other than that, we alsocompare the ARIMA model based
approach, which works best in case of data faults affecting more than a few samples, against our
hybrid approach (with details given in Section 6).

Other approaches to sensor data faults detection include [17, 18, 19, 20]. However, these are
not suited for detecting (unknown) long duration anomaliesdue to one or more of the following
assumptions they make: (1) the anomalous data pattern is known a priori [17, 18, 19], (2) the
distribution of normal sensor readings is known [19], and (3) focusing on short duration trends
is enough to capture anomalies [20].

Network anomaly detection. The work in this area includes detecting anomalies such as DDoS
attacks, flash crowds, worm propagating, bulk data transferin enterprise or ISP networks [1, 2,
3, 4]. Techniques such as Principal Component Analysis (PCA) [1] and wavelet analysis [2,
3, 4], used for detecting network traffic anomalies, are not well suited foronline detection in
sensor systems primarily because they are computationallyintensive and difficult to perform in
an online manner. Furthermore, we show that even in an offline manner, these methods perform
poorly in detecting long duration anomaly on sensor system data (as detailed in Section 6).
Our quantitative study (given in Section 6) indicates that astraightforward application of such
techniques, as designed for network anomaly detection, is not very effective on sensor data.

Piecewise linear time series models. Piecewise linear models have been used to model time
series data in the other contexts (i.e., not for anomaly detection). For example, Keogh developed
an efficient technique to search for occurrences of aknown patternwithin a time series using
a piecewise linear representation [10]. Specifically, for atime series withn points, Keogh’s
algorithm starts withk = ⌊ n3⌋ line segments and defines a “goodness of fit” metric fork line
segments asBk=std(e1, ...,ek), whereei is the average linearization error for line segmenti. It
then iteratively merges two consecutive line segments until Bk cannot be reduced any further;
this process is continued until a single line approximates the entire time series. This process
ends with a family of piecewise linear models for a single time series – one for each value ofk,
1 ≤ k ≤ ⌊ n3⌋. Each linear model has aBk value associated with it, and the one with the smallest
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Bk is selected as the final representation.
In contrast, our greedy linearization algorithm differs as follows: (1) we start with a single

line segment and continue adding more segments, (2) we use a different “goodness of fit” cri-
terion (maximum linearization error; see Section 2) and (3)we compute a single representation
instead of a family of piecewise linear models. The main reason behind these choices (rather
than, e.g., using Keogh’s algorithm) is computational costas our goal is an efficientonlineap-
proach. Briefly, computing a family of models to find the “best” one is wasteful for our purposes,
if it takes significantly greater computation. Hence, we optfor our greedy approach.

6. Quantitative comparison

We now present results from a quantitative comparison of ourhybrid approach and anomaly
detection techniques based on ARIMA models [6], PCA [1], wavelets decomposition [3], and K-
means clustering [7]. As noted above, these techniques haveproven to be effective at detecting
sensor data faults and network anomalies. However, our evaluation shows that an “out-of-a-box”
application of these techniques for detecting sensor system anomalies performs poorly.

Comparison with ARIMA based method. ARIMA (Autoregressive Integrated Moving Av-
erage) models are a standard tool for modeling and forecasting time series data with periodic-
ity [21], and [6] leverages temporal correlations in sensormeasurements to construct an ARIMA
model of sensor data. This model is used to predict the value of future readings, with new sen-
sor readings compared against their predicted value - if thedifference between these values is
above a threshold (the 95% confidence interval for the predictions) then the new data is marked
as anomalous. We compare our hybrid approach against the ARIMA L-step method from [6],
where the ARIMA model is used to predict the nextL sensor readings.

We first trained the ARIMA model to estimate its parameters using sensor readings (from
SensorScope 1 and SensorScope 2) collected over 3 days as training data (a separate training
phase was required for SensorScope 1 and SensorScope 2, [6] also uses training data from 3 days;
these are more favorable conditions for ARIMA as SSA uses a shorter period for its reference
model). The ARIMA L-step method withL = 24 hrs flagged 12,135 (of the 30,356 data points in
SensorScope 1) as anomalies. Our inspection revealed a total of 107 anomalies that affect more
than 7,500 data points. While the ARIMA L-step method identified most anomalous samples, it
also falsely identified a large number of samples as anomalous. The extremely high number of
false positives resulting from the ARIMA L-step method reduces its utility.

We failed to train ARIMA on SensorScope 2 due to the training data containing aConstant
readingsanomaly that affects almost two-thirds of the samples. This failure highlights the lack
of robustness in ARIMA based methods to long duration anomalies in the training data. SSA’s
counterpart to the ARIMA training phase is the selection of an initial reference time series, and
SSA tolerates anomalies in its initial reference time series (see Section 4.4).

Comparison with network anomaly detection techniques. The techniques such as Principal
Component Analysis (PCA) [1], and wavelet analysis [3, 2, 4]used for detecting network traffic
anomalies are not well suited foronlinedetection in sensor systems primarily because they are
computationally intensive and difficult to perform in an online manner. However, one can still
ask: How accurately would those technique perform on sensor systems data?, i.e., in an offline
manner. As a reasonably representative technique, we use the PCA based approach in [1], which
collects periodic measurements of the traffic on all network links and splits it into “normal”
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and “residual” traffic using PCA. The residual traffic is then mined for anomalies using the Q-
statistic test in which L2-norm||y||2 of the residual traffic vectory for a link is compared against
a threshold. If it is greater than the threshold, then the traffic vectory is declared anomalous [1].

We ran the PCA based method on the data from SensorScope time series 6, 8, 9, 10, 11, and
12. We chose these as their start and end times are the same. The input to PCA was a data matrix
with 6 columns (one for each sensor) and 29,518 rows (the total number of samples collected).
Note that the PCA based method is applied in anoffline fashion using the entire time series data
from 6 different sensors whereas in our SSA-based hybrid approach, at best, the aggregator step
would get access to linear models from 6 sensors during the past T = 4 hours only.

The results for the PCA based method are summarized in Table 7. It fails to detect most
long duration anomalies (5 out of 38Change in Meananomalies and 4 out of 67Change in
Shapeanomalies). It does better at detectingShort spikesbut is still not as accurate as our hybrid
approach. Thus, even under a best case scenario (offline with access to the entire time series),
the PCA based method does not perform as well as our hybrid approach. Recall that it identifies
anomalies by looking at the L2-norm of the data vector in the residual space. As pointed out in
[1], the PCA based method works best when theintensityof an anomaly is large compared to
the variability of the normal data. This is not the case with most of the long duration anomalies
present in the sensor data analyzed in Table 7. For instance,Figure 5(a) shows aChange in Mean
anomaly in SensorScope 12 time series that the PCA based method fails to detect. It also shows
aShortanomaly (spike) that the PCA based method is able to detect.

To further illustrate the impact of anomalies’ intensitieson the accuracy of a PCA-based
method, we injected anomalies (Short, Noise, and Constant)into the time series SensorScope 9,
and attempted to detect these injected faults using PCA. Thedata samples corrupted by Short and
Noise anomalies had a higher variance as compared to the normal data whereas, by definition, the
variance of the samples corrupted by the Constant anomaly was lower than the normal data. We
found that the PCA based method was able to detect most of the samples corrupted by SHORT
and NOISE anomalies, but missed the Constant anomaly. We do not present these here due to
lack of space; these results can be found in our technical report [22].

Apart from the intensity of an anomaly, the PCA results mightalso be impacted by several
other factors such as sensitivity of PCA to its parameters and lack of data preprocessing. For
instance, [23] shows that the performance of PCA is sensitive to the number of principal compo-
nents included in the normal subspace, and the threshold used for anomaly detection. We note
that, in our experiments, we did vary the number of principalcomponents in the normal subspace,
and Table 7 depicts the best results obtained (i.e., those with having only 1 principal component
in the normal space). To our knowledge, the Q-statistic based technique that we use here is the
only known method for automatically deciding the detectionthreshold. It is also well-known
that anomalies can contaminate the normal subspace and hence, avoid detection by PCA [23].
One way to ameliorate this situation can be to preprocess thedata to identify and remove large
anomalies before applying PCA. However, in our context, defining alarge anomaly would itself
have required us to introduce another heuristic (with its own shortcomings). We do not pursue
this (or other PCA related improvements) further, as the main goal of our PCA-based evaluation
here was to illustrate that, as in the case of network anomalydetection, it is not straightforward
to apply PCA to detect anomalies in sensor data. (This partlycontributed to our choice of a dif-
ferent approach.) Of course, we do not claim that the PCA based method cannot be made more
effective at detecting sensor data anomalies, but as noted, this is not the goal of our work here.

To the same end, we also explore wavelet based methods for detecting sensor data anomalies.
We select the method presented in [3] as a representative technique. This method first separates
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Data Set Change in Mean Change in Var Change in Shape Short Constant
SensorScope 6 1/7 0/0 2/10 45/206 0/1
SensorScope 8 1/6 0/0 1/10 59/243 0/2
SensorScope 9 1/6 1/2 0/12 47/65 4/23
SensorScope 10 0/5 0/0 0/12 31/46 0/2
SensorScope 11 1/7 0/0 0/10 33/122 0/1
SensorScope 12 1/7 0/0 1/13 27/84 6/13

Total 5/38 1/2 4/67 242/766 22/42

Table 7: PCA based method: SensorScope
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Figure 5: Detection of long duration anomalies: PCA and wavelet based methods.

a time series of network data (e.g., aggregate byte counts ona link) into low, medium, and high
frequency components using wavelet decomposition. To detect anomalies, first a (time varying)
deviation scoreis computed by combining the local variance of the medium andhigh frequency
components. Local variance is defined as the variance of the data falling within a moving time
window. The deviation score is then compared against a threshold to detect anomalies.

Data Set Change in Mean Change in Var Change in Shape Short Constant False Positive
SensorScope 6 1/7 0/0 2/10 205/206 1/1 26
SensorScope 8 1/6 0/0 2/10 243/243 1/2 24
SensorScope 9 1/6 2/2 3/12 65/65 13/23 42
SensorScope 10 1/5 0/0 3/12 46/46 0/2 47
SensorScope 11 1/7 0/0 2/10 122/122 1/1 29
SensorScope 12 1/7 0/0 3/13 80/84 9/13 22

Total 6/38 2/2 15/67 761/766 25/42 190

Table 8: Wavelet based method: SensorScope

We ran the wavelet based anomaly detection method describedabove on the same set of data
that we used for evaluating the PCA based method. The resultsare summarized in Table 8. While
the wavelet based method detects more anomalies as comparedto PCA, it does not perform as
well as our hybrid approach at detecting long duration anomalies. In particular, it fails to detect
most of theChange in MeanandChange in Shapeanomalies. In our evaluation, this method also
incurred a large number of false positives. One possible reason for the wavelet based method
not being very effective on the SensorScope dataset could be that it looks for anomalies in the
medium and high frequency components of a time series, whereas the long duration anomalies
fall into the low frequency component. The top plot in Figure5(b) shows aChange in Mean
anomaly in SensorScope 11 time series that is captured by thelow frequency component shown
in the bottom plot. Hence, it is difficult for previously proposed wavelet based methods that



/ Performance Evaluation 00 (2010) 1–24 23

Data Set Change in Mean Change in Var Change in Shape Short Constant
SensorScope 6 2/7 0/0 4/10 56/206 1/1
SensorScope 8 3/6 0/0 5/10 54/243 1/2
SensorScope 9 3/6 1/2 5/12 20/65 5/23
SensorScope 10 2/5 0/0 5/12 16/46 1/2
SensorScope 11 3/7 0/0 6/10 49/122 1/1
SensorScope 12 3/7 0/0 5/13 36/84 3/13

Total 16/38 1/2 30/67 243/766 12/42

Table 9: Cluster based method: SensorScope

mine for anomalies only in the medium and high frequency components [3, 2, 4] to detect such
anomalies. These approaches can possibly be extended usingheuristic(s) that mine for anomalies
in the low frequency component. We do not pursue this (or other improvements to the wavelets
based approach) further as, like in the case of PCA, the main goal of our wavelet based evaluation
of sensor data was to demonstrate that a straightforward application of a wavelet-based technique
designed for network anomaly detection is not very effective on sensor data. Of course, we do
not claim that wavelet based techniques cannot be made to work on sensor data, but as noted,
that is not the goal of our work here.

Comparison with clustering based method. We compare our hybrid approach with the clus-
tering based method in [7], which first groups the vector of readings from several sensors into
clusters of fixed-width. After this, the average inter-cluster distance between a cluster and itsK
nearest neighboring clusters is used to determine the abnormal clusters6. We ran this method on
SensorScope time series 6, 8, 9, 10, 11 and 12. The inputs to the clustering method are vectors of
readings with the same time stamp from the 6 time series. We found that the performance of this
method depends strongly on the cluster widthw, as also noted in [7]. We tried a large number of
w values (from 0.03 to 8) and used the best results found to compare with our method.

This method can only identify which data vectors contain anomalies, but cannot identify
anomalous readings within a data vector. We determine the number of detections and false
negatives as in the PCA-based method; so, it is not possible to report false positives for individual
time series. This method did incorrectly flag 18 data vectorsas anomalous; the actual number of
false positives is between 18 and 108.We give detailed results in Table 9 and note that the cluster
based method performs poorly in detecting long term anomalies such asChange in mean, Change
in shape, andConstant. Intuitively, this is because this method is designed to detect outliers and
does not exploit temporal correlations within the time series. We can also see that the method has
a lot of false negatives in detectingShort spikes. This makes sense as a spike is determined by
the corresponding data point’s relative position to the previous and next point, but in the cluster
based method all data points are considered as a whole and this temporal relationship is lost.

7. Conclusions

We proposed anonlineanomaly detection approach for sensor systems measurements. Our
approach utilized piecewise linear models of time series, which are succinct, representative, and
robust, and therefore enabled us to (a) compute such models in near real-time, (b) create models
without prior knowledge about anomaly types that sensor data might contain, and (c) compare

6An SVM-based method [8] comparison is omitted as it assumes that few measurements are anomalous; thus it is
unlikely to detect long duration anomalies such as theConstantanomaly in Figure 4.
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and communicate different time series efficiently. Our extensive evaluation study, using real
sensor systems deployments data, illustrated that our approach is accurate, robust, and efficient.
Future work includes study of (1) dynamic setting of parameters (e.g., the linearization period
and the size of the initial reference model), (2) feedback mechanisms between the local and ag-
gregation steps of our approach, and (3) other techniques that are useful in our hybrid approach.
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