
A Performance Study of Bistro, a Scalable Upload Architecture
�

[ Appeared in ACM SIGMETRICS Performance Evaluation Review, March 2002 ]

William C. Cheng � , Cheng-Fu Chou � , Leana Golubchik � , and Samir Khuller �

Abstract

Hot spots are a major obstacle to achieving scalability in the
Internet. We have observed that the existence of hot spots
in upload applications (whose examples include submission
of income tax forms and conference paper submission) is
largely due to approaching deadlines. The hot spot is exac-
erbated by the long transfer times. To address this problem,
we proposed Bistro, a framework for building scalable wide-
area upload applications, where we employ intermediaries,
termed bistros, for improving the efficiency and scalability
of uploads. Consequently, appropriate assignment of clients
to bistros has a significant effect on the performance of up-
load applications and thus constitutes an important research
problem. Therefore, in this paper we focus on the assign-
ment of clients to bistros problem and present a performance
study which demonstrates the potential performance gains of
the Bistro framework.

1 Introduction

Hot spots are a major obstacle to achieving scalability in the
Internet. At the application layer, hot spots are usually caused
by either (a) high demand for some data or (b) high demand
for a certain service, which is typically the result of a real-
life event involving availability of new data or approaching
deadlines. At the application layer, hot spot problems have
traditionally been dealt with using some combination of (1)
increasing capacity; (2) spreading the load over time, space,
or both; and (3) changing the workload.

We note that the classes of solutions stated above have been
studied mostly in the context of applications using the fol-
lowing types of communication (a) one-to-many (data travels
primarily from a server to multiple clients, e.g., web down-
load, software distribution, and video-on-demand); (b) many-
to-many (data travels between multiple clients, through ei-
ther a centralized or a distributed server, e.g., chat rooms and
video conferencing); and (c) one-to-one (data travels between
two clients, e.g., e-mail and e-talk). However, to the best of
our knowledge there is no existing work, except ours [3, 7],
on making applications using many-to-one communication
scalable and efficient (existing solutions, such as web based
submissions, simply use many independent one-to-one trans-
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fers). This corresponds to an important class of applications,
whose examples include the various upload applications such
as submission of income tax forms, conference paper sub-
mission, proposal submission through the NSF FastLane sys-
tem, homework and project submissions in distance education
[18], voting in digital democracy applications [19], voting in
interactive television [15], and many more.

To address the problem of scalable uploads1, we proposed
Bistro, a framework for building scalable wide-area upload
applications. In the Bistro framework we employ the use of
intermediaries, termed bistros, for improving the efficiency
and scalability of uploads. Consequently, appropriate assign-
ment of clients to bistros has a significant effect on the per-
formance of upload applications and thus constitutes an im-
portant research problem. Therefore, in this paper we focus
on the assignment of clients to bistros problem and present a
performance study which demonstrates the potential perfor-
mance gains of the Bistro framework and gives insight into
the general upload problem.

1.1 Our Framework for Upload Applications
We observe that the existence of hot spots in uploads is largely
due to approaching deadlines. The hot spot is exacerbated by
the long transfer times. We also observe that what is actually
required is an assurance that specific data was submitted be-
fore a specific time, and that the transfer of the data needs to
be done in a timely fashion, but does not have to occur by that
deadline (since the data is often not consumed by the server
right away).

Thus, our approach is to break the upload problem into pieces.
Specifically, we break up our original deadline-driven upload
problem into: (a) a real-time timestamp subproblem, where
we ensure that the data is timestamped and that the data can-
not be subsequently tampered with; (b) a low latency com-
mit subproblem (which is the focus of this paper), where
the data goes “somewhere” and the user is ensured that the
data is safely and securely “on its way” to the server; and
(c) a timely data transfer subproblem, which can be care-
fully planned (and coordinated with other uploads) and must
go to the original destination. (Note that, this is somewhat
analogous to sending a certified letter through a postal ser-
vice.) This means that we have taken a traditionally syn-
chronized client-push solution and replaced it with a non-
synchronized solution that uses some combination of client-
push and server-pull approaches. Consequently, we elimi-
nate the hot spots by spreading most of the demand on the
server over time; this is accomplished by making the actual

1We refer the reader to [3] for a discussion of why uploads require a so-
lution different from downloads.



data transfers “independent” of the deadline.

Given the breakup of the original upload problem into sub-
problems (i.e., timestamp, commit, and data transfer), the
original data transfer is now done using two data transfers (1)
from a client to one or possibly more hosts on the Internet,
termed bistros, and then (2) from one or more bistros to the
server (termed the “destination bistro”). This flow of data is
illustrated in Figure 1(b). Although Figure 1 only depicts a
single upload event, it is understood that the bistros may be
shared by many simultaneous upload activities/applications,
each with different deadlines, characteristics, and require-
ments. Coordination of multiple simultaneous upload appli-
cations is outside the scope of this paper.

Note that, the timestamp has to be produced before the dead-
line; the commit has to be performed with low latency, and
the data transfer from a bistro to the server has to be done in a
timely manner. The exact constraints on all these operations
are a function of the requirements of the particular upload ap-
plication.

Moreover, the client-to-bistro data transfer also produces the
timestamp and the commit, i.e., the data is timestamped so
the server has a guarantee that it cannot be tampered with after
the deadline, and the client receives a commit, i.e., a “receipt”
that guarantees that the data will be delivered to the server and
that its integrity and privacy will be preserved. (We present
one solution to the timestamp problem in [7].)

1.2 Advantages of the Bistro Upload Framework
Given the current state of upload applications, i.e., everyone
uploads directly to the final destination server (refer to Figure
1(a)), a specific upload flow, from some client to the desti-
nation server, can experience the following potential bottle-
necks (or hot spots): (a) poor connectivity of the client, (b)
congestion somewhere between the client and the server, or
(c) overload on the server, or a combination of these bot-
tlenecks. Given these bottlenecks, traditional solutions (or a
combination of these solutions), such as get a bigger server,
buy a bigger pipe, and co-locate the server(s) at the ISP(s),
exhibit shortcomings including the lack of flexibility and lack
of scalability. We note that an important characteristic of the
Bistro framework is the notion of resource sharing. It is fairly
clear that, for instance, buying a bigger cluster for a “one time
event” (which may not be “big enough” for the next simi-
lar event) is not the most desirable or flexible solution to the
upload problem. The ability to share an infrastructure, such
as an infrastructure of proxies or bistros, between a variety
of wide-area applications has clear advantages over the tradi-
tional solutions described above. Some advantages of such an
approach are that: (a) it is more dynamic and therefore more
adaptive to system and network conditions; (b) it provides
for more resource sharing opportunities and thus can result in
a more cost effective solution to wide-area upload problems;
and (c) it does not rely on the existence of a private infrastruc-
ture (such as the co-location approach described above), but
it does not preclude it either.

Our intent for deploying the Bistro platform is not to rely on

adding resources (such as hosts) to the Internet2. Rather, we
envision that people will want to install Bistro on their hosts
on the public Internet and contribute their resources to the
overall Bistro infrastructure because it will improve their per-
formance as well. In turn, the existing bistros will discover
the new installations and integrate them into a Bistro infras-
tructure.

In summary, we believe that the Bistro framework is a more
flexible solution that takes advantage of whatever resources
are available in the system and the Internet to the “best” ex-
tent possible.

1.3 Our Contributions
In this paper we focus on the low latency commit subprob-
lem, which, for the purposes of this work, can be reduced to
(a) assignment of clients to bistros participating in a partic-
ular upload event and possibly (b) placement, i.e., choosing
which bistros should participate in a particular upload event,
if such a choice is possible. Both problems are NP-complete
[3]. Given that the assignment problem is sufficiently diffi-
cult, in this work we, for the most part, focus on a quantitative
study of the assignment problem, and only briefly investigate
potential benefits of better placement in Section 3.4.3. We
illustrate that both have a significant effect on the system’s
performance.

Thus, the main contribution of this paper is that it is the first
performance study of a scalable and efficient solution to the
deadline-driven upload problem. Other contributions of this
work are as follows; we: (a) present a quantitative perfor-
mance study of the commit subproblem; (b) develop an ap-
proximation to a lower bound on the commit subproblem (for
comparison purposes); and (c) give insight into the general
upload problem and characterize potential performance gains
of the Bistro framework.

2 Related Work

In general, work related to wide-area data transfers falls
into multiple categories and requires solutions in areas such
as communication networks, performance evaluation, algo-
rithms for load balancing, scheduling and facility location,
and security. Moreover, relief of hot spots in the Internet
through the use of data and service replication (e.g., proxy
servers) has been studied extensively in the context of down-
load applications, for instance, as in [1, 14, 12, 13]. To the
best of our knowledge none address the problem of making
wide-area upload applications scalable and efficient. We note
that some work exists on efficient design of multipoint-to-
point aggregation mechanisms at the IP layer, e.g., [2]. How-
ever, the solutions suggested there in the context of IP routers
and active networks will not carry over to the upload problem
presented here, i.e., it is not designed to reduce the load at or
near the server, and it requires the use of the active network
framework which is not currently deployed over the public
Internet.

As is evident from Section 1.1 our basic approach involves

2Note that deployment over private networks can also be done but is rel-
atively straightforward from the deployment point of view.
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Figure 1: Depiction of a single upload event with and without Bistro.

partial replication of services (i.e., bistros). Replication is
a relatively traditional solution to scalability problems in
Internet-related services, and hence the problems we consider
in this work, e.g., assignment of clients to servers, arise in
other applications as well. Specifically, there is recent inter-
est in addressing server selection problems for services repli-
cated across wide-area networks which can be distinguished
based on: (1) the selection method applied (static, statistical
or dynamic); and (2) where the method is applied (server-side,
client-side, or router). We note that (a) server-side selection is
more appropriate for a cluster of servers while in our case the
bistros are distributed across the Internet, and (b) selection at
routers requires network-based assistance, while Bistro is an
application level framework. Thus we do not consider either
any further in this paper.

Client-side server selection methods, as in [4, 13, 16, 17],
are more suitable in environments with heterogeneous servers
spread over wide-area networks. Furthermore, client-side se-
lection methods are more scalable. However, the difficulty
then is in trading off load balancing clients across servers vs.
locating a server which is “closer” (or local) to a client. This
tradeoff is important, especially in the context of upload ap-
plications, and is studied here, as described in Section 3.

Static as well as statistical server selection methods are less
useful in environments where network load characteristics
are highly variable, and hence, dynamic methods (e.g., ping-
based) are more useful in these cases [4, 8].

Therefore, in the remainder of this paper, as in [8], we focus
on dynamic client-side selection methods. However, impor-
tant differences here include (1) workload characteristics of
the deadline-driven upload applications we consider as con-
trasted with the workload characteristics of download appli-
cations considered in [8] and (2) the existence of the data
transfer to the final destination step in our Bistro framework.
Specifically, the workload differences, as compared to the
study in [8], include (a) many simultaneous data transfers
where the temporal proximity of the transfers is due to the
approaching deadline (hence the hot spot); and (b) relatively
large file sizes, e.g., as in IRS tax form submissions [11] or
conference paper submissions. The consideration of the data
transfer step also makes the server selection problem for up-
loads different from downloads, i.e., the commit and the data
transfer subproblems (as outlined above) are, in general, not
independent. However, investigation of explicit dependence

between the two steps is subject of future research, i.e., in
this paper we study the “commit” problem in isolation.

Lastly, much work has been done on facility location prob-
lems, e.g., [5], where the objective is to open a subset of fa-
cilities from a given set � , and to then minimize the sum of
distances from a given set of customers to their closest facil-
ity, subject to a variety of constraints. This problem is NP-
complete and several good polynomial time approximation
algorithms are available for it. However, these solutions do
not directly address the problem we are interested in, where
the main differences are (1) there is an underlying network
and different clients are competing for resources in the net-
work; and (2) we cannot choose a route to the server at the
application layer (we can only choose a server and the net-
work chooses the route for us, at least in the Internet), which
makes it hard to apply network flow based methods for as-
signment of clients to servers. These new constraints lead to
very interesting optimization problems, as stated in [3].

3 A Performance Study of “Commit”

In this section we focus on possible solutions to the “commit”
problem, and the corresponding performance characteristics.

3.1 Extreme Cases
We first describe the following extreme cases of the Bistro
framework (in order to illustrate the range of performance
considerations):

1. the final destination of the data transfer is the only
bistro (this is essentially the current state of things); or

2. “all” hosts are bistros, i.e., each client serves as its
own bistro, with essentially zero transfer time — it is
not clear whether this is “practical”, but regardless, the
commit problem is trivial in that case, and hence we do
not consider this extreme any further here;

3. each “organization” with an upload client has its own
“local” bistro, where granularity of organization is the
same as for news (NNTP) servers, DNS servers, and
so on. This local bistro can be behind organizational
firewalls and may not be accessible from the outside
world. In this case, a submission still has to travel to
(be pushed) outside of the organization into the pub-
lic Internet so that the data transfer part of the upload
process can take over (i.e., the data transfer to the final



destination, in the Bistro framework, is a server-pull).
Therefore, the commit problem still exists. As far as a
user is concerned, the submission is completed as soon
as the transfer to a local bistro is complete. However,
the Bistro system will only consider the “commit” step
to be completed when the submitted data has traveled to
a public bistro3. Thus, in this case, the “commit” step
is broken down into two steps, where the first step is
almost as trivial as the one in extreme case 2 above. In
the performance study below, we only consider public
bistros.

3.2 The Middle Ground
It is often difficult to deploy a server infrastructure over the
public Internet. In order for the Bistro system to succeed,
we must demonstrate that a system with a limited number of
bistros can provide benefits to the users of this system. In this
section, we provide quantitative evidence, through a simula-
tion study, that even a system with a limited number of bistros
can provide such benefits.

We note that, in the Bistro framework there are potentially
two basic problems within the “commit” step:

1. assignment problem: this is the situation where the lo-
cations of bistros are fixed, and the difficulty is in as-
signing clients to the bistros, i.e., deciding which client
should upload to which bistro; and

2. placement (plus assignment) problem: this is the sit-
uation where the locations of bistros are flexible, and
hence the difficulty is in both, deciding where to place
the bistros (i.e., which nodes to choose to act as bistros
for a particular upload event) and how to assign clients
to them.

In [3] we defined and characterized these problems more
formally (and determined that both are NP-complete). The
assignment problem alone is hard under general network
topologies; of course, the addition of flexible placement of
bistros makes the problem more difficult. Thus, in the remain-
der of the paper we consider heuristic algorithms and focus on
the assignment problem, for the most part. We do, however,
investigate the potential benefits of better placement in Sec-
tion 3.4.3. To this end, we briefly motivate the need to con-
sider placement, i.e., the situation where given � potential
bistro sites, we only consider, for a particular upload event,
the use of � of those bistros, where ����� . This motiva-
tion is as follows: (1) as our performance evaluation results
indicate below, � does not have to be very large to obtain
much of the benefits of the Bistro architecture; (2) if we take
the the data transfer from the bistros to the final destination
into consideration, then intuitively coordination of transfers
from a large set of bistros is not necessarily better than from
a smaller set; and (3) our long-term goal is to allow multiple
simultaneous upload applications to use the same Bistro in-
frastructure, in which case, due to contention, it may be ben-

3If the Bistro system is successfully deployed, we expect bistro installa-
tions to be as common as news and mail server installations.

eficial to allow each application to use a subset of available
bistros.

3.3 Assignment Policies
Given that the assignment problem is NP-complete, we first
consider the following simple heuristic policies for the assign-
ment problem given a fixed set of � bistros (some of these
policies have been considered in some form in previous works
in the context of download applications):

1. random: each client is assigned to a random bistro for
the upload;

2. ping5-mean (or simply ping-m): each client pings each
bistro five times [4], and chooses the bistro with the
minimum average ping time for the upload;

3. ping5-var (or simply ping-v): each client pings each
bistro five times, and chooses the bistro with the mini-
mum variance in ping time for the upload.

In addition to these simple heuristic policies we also propose
the following new policy, termed pingk-3std (or simply ping-
3std). This policy is motivated by trying to reach an appropri-
ate compromise between simply finding the “best” respond-
ing bistro (with respect to a particular client) and load balanc-
ing the clients between the bistros, i.e., we are trying to avoid
a situation where many clients simultaneously choose to up-
load to the same bistro and hence “interfere” with each other
and experience bad performance even though the probes “pre-
dicted” good performance. The need for this compromise will
become more evident as we present the quantitative results of
our study below.

The pingk-3std policy works as follows. Each client pings
each bistro � times,

���	��
�
������� �������� � �

� ��������������� �� "! �$#  %'&�&�( )$*
where ��� is chosen to be large enough such that �,+-

and � is the number of bistros from which a client is choos-
ing, i.e., we use 
 pings as our baseline [4]. The motivation
for varying the number of pings according to the number of
bistros and the file size is that we use the pings not only to
probe the performance from a client to a bistro, but also, in
some sense, to “signal” the other clients which may be up-
loading their data at the same time. The intuition here is that
the lower � is, i.e., the fewer the number of bistros from
which client . is choosing, the higher is the probability that
client . will upload to a particular bistro � (

%0/ � / � ) and
hence the higher is the probability that other clients interested
in bistro � will experience “interference” from client . on
bistro � . Consequently, client . “signals” its interest in bistro� with higher “intensity”, i.e., it uses more probes thereby in-
creasing the probability that these probes will “interfere” with
probes of other clients interested in bistro � and thus the mu-
tual conflict will be “detected” with higher probability. Like-
wise, the larger the file size the higher is the probability of
such “interference” between clients on bistro � , which simi-
larly motivates the increase in number of probes based on file
size.



The remainder of the policy proceeds as follows. For a par-
ticular client, we compute ��� , the average response time of
the � probing packets for each bistro � , as well as ������� and
��	�
� , the average response time and its standard deviation, re-
spectively, over all � bistros. If there is no loss of probing
packets, the client then uploads its data to the bistro with the
minimum ��� . Otherwise, the client separates the bistros into
two sets, based on ��� ’s. The “near-by” set � includes each
bistro � , where � � / ����������� ����	�
� . The “remote” set �
contains the remaining bistros. If � is not empty, we choose
one bistro from that set at random. Otherwise, we choose one
bistro from set � at random.

In other words, we use packet loss to “guess” whether or not
the part of the network of interest to us is congested. If not,
we choose the “best” responding bistro. Otherwise, we only
choose the “best” responding bistro if it is significantly bet-
ter than the others (i.e., we look for particularly good out-
liers). When no outliers are detected, we opt for load balanc-
ing (hence the random approach). The intuition here is that
when the part of the network of interest to us is under low to
moderate congestion, then load balancing is not as important
and we opt for the “best” responding bistro we can find with-
out regard for other clients. In contrast, under higher levels
of congestion (indicated by packet loss) we only opt for the
“best” responding bistro if it presents significant potential for
improvement; otherwise, we give preference to load balanc-
ing.

Of course, in some sense these policies are fairly “basic” and
one could construct numerous hybrids and variations of these
policies by combining them in a number of different ways.
However, we will limit our performance study to these vari-
ants in order to illustrate our points.

3.4 Performance Study
We now illustrate performance characteristics of the assign-
ment policies as well as the upload problem in general. (We
also briefly consider potential benefits of better placement in
Section 3.4.3.)

3.4.1 Simulation Set-up & Performance Metrics:
We first describe our simulation setup4. We use ns2 [9] for all
simulation results reported below. We note that ns2 does not
provide detailed simulation of hosts/servers, and hence the
following performance study is of bottlenecks in the network
(i.e., not on the server) only. In conjunction with ns2, we use
the GT-ITM topology generator [10] to generate a transit-stub
type graph for our network topology. Specifically, we use the
GT-ITM topology generator to create a transit-stub graph with% 
�� nodes. The number of transit domains is � , where each
transit domain has, on the average, � transit nodes with there
being an edge between each pair of nodes with probability of&�� �

. Each node in a transit domain has � stub domains con-
nected to it; there are no additional transit-stub edges and no
additional stub-stub edges. Every stub domain has, on the av-
erage,

�
nodes with there being an edge between every pair of

nodes with probability of
&�� � . The capacity of a “transit node

to transit node” edge is
%

Mbit/s. The capacity for a “transit

4Most results presented here are obtained with ��� ��!#"%$ confidence in-
tervals; all results are within ��"&�'!#"%$ confidence intervals.

node to stub node” edge or a “stub node to stub node” edge
is ��
 � Kbits/s. Note that, the the size of our model is moti-
vated by what is practical to simulate with ns2 in a reasonable
amount of time.

Furthermore, except for the results in Section 3.4.4, there is a
total of ( � simultaneously uploading clients in each simula-
tion, each one with a file size which is uniformly distributed
between

%'&�&
KBytes and � MBytes5. In all simulations, ex-

cept for Section 3.4.4, all clients begin their uploads essen-
tially at the same time, i.e, the interarrival time of upload re-
quests is zero. Hence, if we were to coordinate the upload of
all clients to a single server and make it sequential, then the
total transfer time of all clients should be on the order of � &�&�&
seconds and the average transfer time (i.e., from begining of
a particular client’s transfer to its end) should be on the or-
der of � � seconds. As we will illustrate below, the simulation
results indicate that the total transfer time for simultaneous
transfer of all clients to a single server is on the order of � &�&�&
seconds. However, the average transfer time is over � &�&�&
seconds which clearly indicates the “interference” between
clients; this is due to TCP fairly sharing the bottleneck link
between all clients. This “interference” is what users actually
observe in the current state of upload applications around the
deadline time (e.g., submission of papers around the confer-
ence deadline as well as submission of NSF proposals through
FastLane around the proposal deadline).

Although, in a real system there will be some non-zero inter-
arrival time between client upload requests, we first consider
simultaneous uploads in order to isolate the effects of assign-
ment policies described above. In Section 3.4.4 we include
interarrival time characteristics and observe the resulting ef-
fects on the average response time.

In addition to the upload traffic, we generate two types of
background traffic in our simulations, “low” and “high”. In
both cases the background traffic consists of ftp’s between
pairs of stub domain nodes, where each ftp corresponds to
file transfer of an infinite size. The “low” background traffic
is generated by randomly choosing � &*) of stub domain nodes
to participate in the infinite ftp’s. The “high” background traf-
fic is generated by randomly choosing + &,) of stub domain
nodes to participate in infinite ftp’s.

Lastly, the performance metrics used in the remainder of the
paper are (a) mean response (transfer) time over all clients
participating in the upload and (b) in the case of all clients up-
loading simultaneously, total (or maximum) response (trans-
fer) time, i.e., the time needed to complete the data transfer
of all clients (which in the case of simultaneous uploads also
corresponds to the transfer time of the “slowest” client since
they all begin the transfer at approximately the same time).
We believe that these metrics reflect the quality-of-service
characteristics that would be of interest to users of upload ap-
plications. That is, not only is the average transfer time of
interest but also is the maximum transfer time since it reflects
the worst case behavior. All performance results include over-

5These are reasonable file sizes for upload applications; e.g., a basic US
IRS tax form 1040 is on the order of !#"�" KBytes [11] and a typical paper
submitted to a typical conference is on the order of ! to � Mbytes.



heads, e.g., those due to dynamic probing.

3.4.2 Performance Results & Discussion: In Figures
2 and 3 we illustrate the performance gains obtained from
the Bistro architecture, using the policies in Section 3.3 for
assignment of clients to bistros, as a function of the num-
ber of bistros. Figures 2(a,b) and 3(a,b) correspond to “low”
background traffic and Figures 2(c,d) and 3(c,d) correspond to
“high” background traffic. In these figures we fix the place-
ment policy, and consider the effects of the assignment policy
only. The placement policy is fixed at “random” placement in
Figure 3, i.e., we emulate the situation where we do not have
control over the placement of bistros. It is fixed at “heuris-
tic” placement in Figure 2. (Note: we describe our heuristic
placement and assignment policy as well as the motivation for
using it below. For now, we focus our attention on the perfor-
mance of the assignment policies, and investigate the poten-
tial benefits of better placement policies in Section 3.4.3.)

Figure 2 is intended to illustrate the basic performance gains
that can be obtained from the Bistro framework even with
simple assignment policies (these gains are mainly due to par-
allelism). Figure 3 is intended to illustrate the gains we are
able to obtain with a better assignment policy (namely ping-
3std) which adapts to a variety of workload conditions (as
detailed below).

In all cases depicted in Figures 2 and 3, as we increase the
number of bistros, we first observe a nearly linear gain in
performance6. As expected, further increases in the number
bistros result in diminishing gains in performance. We note
that, not surprisingly the performance gains depicted in these
figures are mostly due to parallelism, as we are experiment-
ing with an essentially symmetric network topology, i.e., no
client or bistro is connected through an extremely low capac-
ity link. Also note that, due to this symmetry the expected
time to complete the data transfer to the destination bistro
(after the “commit” step is complete) is expected to be same
regardless of the assignment policy used in the “commit” step.
Future work includes investigation of effects of bistro place-
ment policies on system performance (both in the case of the
“commit” step and the data transfer to the destination bistro
step) in the context of low connectivity hosts (i.e., we expect
that proper placement will result in performance gains not
only due to parallelism but also due to provision of services
in “better” places on the network or of bringing of services
“closer” to the clients).

Furthermore, we observe that under light background loads,
ping-v does better than ping-m. We conjecture that under
light background loads, both ping-m and ping-v are fairly
good at detecting the “best” responding bistro; however, nei-
ther aims at load balancing, and consequently may direct too
many clients to the same bistro. However, ping-v is less ac-
curate than ping-m at detecting the “best” responding server
and hence exhibits better load balancing characteristics, but
only as a “side-effect”. Under heavy background loads ping-v
and ping-m perform about the same. Under both background
loads the random assignment policy appears to result in more

6Note that, the first point on the X-axis of these figures corresponds to �
bistros. The results for ! bistro are given in the legends of the figures.

“steady” or “predictable” performance, which is not surpris-
ing as random-based policies tend to be more “robust” and
less sensitive to the dynamics of the network.

It should also be clear from Figure 3 that our new ping-3std
policy is able to “adapt” to both high and low background
loads, i.e., that it tends to do better than other policies under
high background loads and does almost as well as ping-v un-
der low background loads, i.e., it improves significantly on
ping-m’s performance in the light background load case.

3.4.3 How Well Are These Policies Doing?: We now
motivate the need for our heuristic placement and assignment
policy mentioned above. Given the performance results in
Section 3.4.2, it is clear that benefits can be obtained from the
general Bistro framework; these are of course benefits due to
simple parallelism. However, one remaining reasonable ques-
tion would be “how well are we doing with these policies?”
— that is, ideally we would like to construct a lower bound
on the mean and total response time metrics, in order to il-
lustrate the “goodness” or “badness” of the simple random-
based and ping-based policies and to study the potential per-
formance gains that may or may not be obtained with more
sophisticated algorithms. That is, “should we look for more
sophisticated policies in the hopes of obtaining better perfor-
mance?”.

Motivated by this question, we developed an “unrealistic”
heuristic policy which serves as an estimate of a lower bound
in the remainder of this performance study. (We resort to the
use of an unrealistic heuristic since an actual lower bound is
difficult to characterize in such a complex system.) The policy
is unrealistic in the sense that it assumes complete knowledge
of the network topology as well as the background traffic. It
is a heuristic since, as we noted above, even the assignment
problem alone is NP-complete. This heuristic policy uses
minimization of the maximum (total) response (transfer) time
as its objective. It computes a “good” estimate of an initial (a)
placement of bistros and (b) client to bistros assignment, fol-
lowed by a local search, used to improve on this initial assign-
ment. The actual details of the heuristic are fairly complex,
and hence we omit them due to lack of space (they can be
found in [6]). We believe that, for our purposes, this heuris-
tic policy is a reasonable replacement for a true lower bound,
since it uses information that would not be typically available
to a “real” policy at run time, such as complete knowledge
of the network topology, the background traffic, and so on;
hence, it is expected to almost always do better than a “real-
istic” policy.

As is clear from Figure 4, the unrealistic heuristic policy per-
forms significantly better than the random- and ping-based
policies, indicating that there is potentially room for improv-
ing on these simple policies. However, this the topic of future
work, as we do not actually know where the real lower bound
is.

Moreover, we attempt to isolate the significance of the heuris-
tic placement vs. the significance of the heuristic assignment.
To this end, we consider the results in Figures 2 and 3, where
we hold the placement policy fixed (at the heuristic placement
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Figure 2: Comparison of schemes under low and high background loads with fixed placement.

in Figure 2 and at random placement in Figure 3). We con-
jecture that better placement policies can have a significant
effect on performance, since the difference between random
and heuristic placement, for a given assignment policy, can be
almost a factor of � � 
 (refer to Figures 2 and 3).

3.4.4 Effects of Interarrival Times: We now study
the effects of non-zero interarrival times on the mean response
time experienced by the same ( � clients as in the previous
sections. Figure 5 depicts these results for the cases of

�
and% �

bistros available for uploading; in each case, the bistros
are placed randomly. As can be seen from Figure 5, some of
the policies that performed well under zero inter-arrival times,
such as the random policy, do not perform as well (relatively
speaking) under higher interarrival times. This is of course
due to the fact that random policies are good at load balanc-
ing; however, with higher interarrival times (i.e., lower loads)
load balancing is less important. For the same reason ping-m
tends to perform better at higher interarrival times, i.e., it is
good at finding the “best” responding bistro, and its difficulty
with respect to load balancing (as explained above) is of less
importance under these workloads.

However, it should be clear from Figure 5 that our new ping-
3std policy is able to “adapt” to a variety of workloads, i.e.,
it tends to “mimic” (a) policies that are good at load balanc-
ing under shorter inter-arrival times, and (b) policies that are
good at finding “best” responding bistros under longer inter-
arrivals times. That is, it is robust under a variety of workload
conditions.

4 Conclusions

In this paper we presented a performance study of our solu-
tion to the “commit” problem for upload applications within
the Bistro framework; this involved assignment of clients to
the bistros and to a lesser extent placement of bistros. We
demonstrated the potential performance gains of Bistro. We
believe that the above mentioned assignment problem, studied
in this paper in the context of upload applications, is different
from previous works on similar problems (often referred to as
server selection problems), where one important difference is
largely due to the workload properties induced by approach-
ing deadlines, which are characteristic of many upload appli-
cations.

In summary, we would like impress upon the reader that even
simple solutions to the placement and assignment problems
produce significant performance gains through the use of our
Bistro framework, i.e., due to parallelism. Hence, we believe
that further studies of this framework and solution to the other
open problems stated in [3] are a fruitful area of future re-
search.

Acknowledgements: we would like to thank Bobby Bhat-
tacharjee for helping us with the simulation setup and for nu-
merous useful discussions.
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Figure 4: Comparison under low and high background loads where each scheme uses its own placement and assignment policies.
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Figure 5: Comparison of schemes with varying interrival times under low and high background loads with fixed placement.


