
Bistro: a Framework for Building Scalable Wide-Area Upload
Applications

[Appeared in ACM SIGMETRICS Performance Evaluation Review, September 2000]

[Also Presented at the Workshop on Performance and Architecture of Web Servers (PAWS), June 2000]

Samrat Bhattacharjee William C. Cheng Cheng-Fu Chou Leana Golubchik
Samir Khuller

Department of Computer Science, University of Maryland at College Park�
bobby,william,chengfu,leana,samir � @cs.umd.edu

Abstract
Hot spots are a major obstacle to achieving scalability in the
Internet. At the application layer, hot spots are usually caused
by either (a) high demand for some data or (b) high demand
for a certain service. This high demand for data or services,
is typically the result of a real-life event involving availabil-
ity of new data or approaching deadlines; therefore, relief of
these hot spots may improve quality of life. At the application
layer, hot spot problems have traditionally been dealt with us-
ing some combination of (1) increasing capacity; (2) spread-
ing the load over time, space, or both; and (3) changing the
workload.

We note that the classes of solutions stated above have
been studied mostly in the context of applications using the
following types of communication (a) one-to-many, (b) many-
to-many, and (c) one-to-one. However, to the best of our
knowledge there is no existing work on making applications
using many-to-one communication scalable and efficient (ex-
isting solutions, such as web based submissions, simply use
many independent one-to-one transfers). This corresponds to
an important class of applications, whose examples include
the various upload applications such as submission of income
tax forms, conference paper submission, proposal submission
through the NSF FastLane system, homework and project sub-
missions in distance education, voting in digital democracy
applications, voting in interactive television, and many more.
Consequently, the main focus of this paper is scalable infras-
tructure design for relief of hot spots in wide-area upload ap-
plications.

The main contributions of this paper are as follows. We
state (a) a new problem, specifically, the many-to-one com-
munication, or upload, problem as well as (b) the (currently)
fundamental obstacles to building scalable wide-area upload
applications. We also propose a general framework, which we
term the Bistro system, for a class of solutions to the upload
problem. In addition, we suggest a number of open research
problems, within this framework, throughout the paper.

1 Introduction
Hot spots are a major obstacle to achieving scalability
in the Internet. At the application layer, hot spots are
usually caused by either (a) high demand for some data
or (b) high demand for a certain service. This high de-
mand for data or services, is typically the result of a
real-life event involving availability of new data or ap-
proaching deadlines; therefore, relief of these hot spots

may improve quality of life. At the application layer,
hot spot problems have traditionally been dealt with us-
ing some combination of (1) increasing capacity; (2)
spreading the load over time, space, or both; and (3)
changing the workload. Some examples of these are
data replication (e.g., web caching [6], ftp mirroring),
data replacement (e.g., multi-resolution images, audio,
video), service replication (e.g., DNS lookup, Network
Time Protocol), and server push (e.g., news download,
software distribution).

We note that the classes of solutions stated above
have been studied mostly in the context of applications
using the following types of communication (a) one-to-
many (data travels primarily from a server to multiple
clients, e.g., web download, software distribution, and
video-on-demand); (b) many-to-many (data travels be-
tween multiple clients, through either a centralized or
a distributed server, e.g., chat rooms and video confer-
encing); and (c) one-to-one (data travels between two
clients, e.g., e-mail and e-talk). However, to the best
of our knowledge there is no existing work on making
many-to-one communication scalable and efficient (ex-
isting solutions, such as web based submissions, simply
use many independent one-to-one transfers). This cor-
responds to an important class of applications, whose
examples include the various upload applications such
as submission of income tax forms, conference paper
submission, proposal submission through the NSF Fast-
Lane system, homework and project submissions in dis-
tance education [12], voting in digital democracy appli-
cations [14], voting in interactive television [10], and
many more. Consequently, the main focus of this paper
is scalable infrastructure design for relief of hot spots in
wide-area upload applications. (In the remainder of the
paper we will refer to many-to-one data transfer as “up-
load” and one-to-many data transfer as “download”.)

1.1 Why Does “Upload” Require New So-
lutions?

We can view hot spots in most download applications
as being due to a demand for popular data objects. We
can view hot spots in most upload applications as be-
ing due to a demand for a popular service, e.g., the in-
come tax submission service, as the actual data being

transfered by the various users is distinct. The two main
characteristics which make upload applications different
from download applications are as follows: (1) in the
case of uploads, the real-life event which causes the hot
spots often imposes a hard deadline on the data trans-
fer service, whereas in the case of downloads, it trans-
lates into a desire for low latency data access1; and (2)
uploads are inherently data writing applications while
downloads are data reading applications. Traditional
solutions aimed at latency reduction for data reading
applications are (a) data replication (using a variety of
techniques such as caching, prefetching, mirroring, etc.)
and (b) data replacement (such as sending a low resolu-
tion version of the data for image, video, audio down-
loads). Clearly, these techniques are not applicable in
uploads.

Additionally, confidentiality of data as well as other
security issues are especially important in write-type ap-
plications (e.g., in uploading tax forms, papers, and pro-
posals). Another important characteristic of uploads is
that, unlike most downloads where data is intended to
be consumed immediately upon receipt, uploaded data
is often stored at the server for some time before its con-
sumption. We will explain how we exploit this charac-
teristic in the next section. We also note that, many-to-
many data transfers can be achieved using either a set
of one-to-many, a set of many-to-one, or both types of
data transfers. To the best of our knowledge, existing
work on many-to-many data transfer applications is fo-
cused on making the one-to-many communication effi-
cient and scalable.

1.2 Our Solution
We observe that the existence of hot spots in uploads is
largely due to approaching deadlines. The hot spot is
exacerbated by the long transfer times. We also observe
that what is actually required is an assurance that spe-
cific data was submitted before a specific time, and that
the transfer of the data needs to be done in a timely fash-
ion, but does not have to occur by that deadline (since
the data is not consumed by the server right away).

Thus, our approach is to break the upload prob-
lem into pieces. Specifically, we break up our origi-
nal deadline-driven upload problem into: (a) a real-time
timestamp subproblem, where we ensure that the data is
timestamped and that the data cannot be subsequently
tampered with; (b) a low latency commit subproblem,
where the data goes “somewhere” and the user is en-
sured that the data is safely and securely “on its way”
to the server; and (c) a timely data transfer subprob-
lem, which can be carefully planned (and coordinated
with other uploads) and must go to the original destina-
tion. (Note that, this is somewhat analogous to sending
a certified letter through a postal service.) This means
that we have taken a traditionally synchronized client-

1Clearly, there are upload applications which do not have hard
deadlines. Although they are not the focus of this paper, our frame-
work can provide a scalable solution to many such applications as
well.

push solution and replaced it with a non-synchronized
solution that uses some combination of client-push and
server-pull approaches. Consequently, we eliminate the
hot spots by spreading most of the demand on the server
over time; this is accomplished by making the actual
data transfers “independent” of the deadline.

1.3 Our Contributions
Our main contributions here are as follows. We:

1. state the problem: to the best of our knowledge this
work is the first effort that considers the many-to-
one communication, or upload, problem and states
the (currently) fundamental obstacles to building
scalable wide-area upload applications;

2. propose a general framework and an architec-
ture for a class of solutions: to construct a gen-
eral architecture for implementing upload appli-
cations, we propose Bistro, an application-layer
framework, which implements a set of primitive
services, such as timestamping, security, commit,
and data transfer;

3. discuss the problem of low latency commit: as
stated above, we break the upload problem into
three pieces, corresponding to (a) a real-time times-
tamp, (b) a low latency commit, and (c) a timely
data transfer — in this paper we discuss the low la-
tency commit problem (refer to [1] for details of a
corresponding quantitative study where we charac-
terize potential performance gains and present cor-
responding insight into the upload problem; this
study is not included here due to lack of space);

4. suggest open problems: the solution to the gen-
eral upload problem is non-trivial and cuts across
a variety of areas, including networking, perfor-
mance evaluation, scheduling, load balancing, se-
curity, fault tolerance, and many more; throughout
the paper we suggest a number of open problems,
within the Bistro framework, which must still be
solved in order to build scalable wide-area upload
applications.

2 Related Work
Work related to wide-area data transfers falls into mul-
tiple categories and requires solutions in areas such as
communication networks, performance evaluation, al-
gorithms for load balancing, scheduling and facility lo-
cation, and security. However, to the best of our knowl-
edge none address the problem of making wide-area up-
loads scalable and efficient.

As will become evident in Section 3 our basic ap-
proach (in addition to the breakdown into subproblems)
involves partial replication of services. Replication is
a relatively traditional solution to scalability problems
in Internet-related services, and hence the problems we
consider in this work of assignment of clients to servers,
location of services, and so on (as described in more
detail in Section 3) arise in other applications as well.

(Some of the differences are discussed in Section 4.2.3.)
For instance, in [3], the authors consider dynamic server
selection in the context of web download applications.
Moreover, relief of hot-spots in the Internet through the
use of data and service replication (e.g., proxy servers)
has been studied extensively in the context of download
applications, for instance, as in [7].

In addition, much work has been done on facility
location problems [5, 11] in Operations Research and
Computer Science. Here, the objective is to open a sub-
set of facilities from a given set � , and to then mini-
mize the sum of distances from a given set of customers
to their closest facility. In some formulations the total
number of open facilities is constrained, in other formu-
lations a combined objective of facilities and distance
costs is minimized. This problem is NP-complete and
several good polynomial time approximation algorithms
are available for it. However, these solutions do not di-
rectly address the problem we are interested in – there
are two main differences. The first one is that there is an
underlying network and different clients are competing
for resources in the network. The second main differ-
ence is that we cannot choose a route to the server at
the application layer (we can only choose a server and
the network chooses the route for us, at least in the In-
ternet). This constraint makes it hard to apply network
flow based methods for assignment of clients to servers
[8]. These new constraints lead to very interesting opti-
mization problems, as stated in Section 3.

3 Our Upload Framework
In this section we briefly describe our basic framework
and its advantages as well as some of the related perfor-
mance, security, and deployment issues.

3.1 Basic Framework
As stated in Section 1, our approach is to break the up-
load problem into the following subproblems: (a) times-
tamp, (b) commit, and (c) transfer, and then design and
develop the Bistro architecture which implements solu-
tions to these subproblems using a set of primitive ser-
vices – which primitive services are used to build an up-
load application is a function of that application’s re-
quirements.

Given the breakup into subproblems, the original
data transfer is now done using two data transfers (1)
from a client to one or possibly more hosts on the In-
ternet, which we will refer to as a bistro’s, and then
(2) from one or more bistro’s to the server. This flow
of data is illustrated in Figure 1. Although Figure 1
only depicts a single upload, it is understood that the
bistro’s may be shared by many simultaneous upload ac-
tivities/applications, each with different deadlines, char-
acteristics, and requirements. Coordination of multiple
simultaneous upload applications is an open research
problem.

Note that, the client-to-bistro data transfer also pro-
duces the timestamp and the commit, i.e., the data is
timestamped so the server has a guarantee that it cannot

be tampered with after the deadline, and the client re-
ceives a commit, i.e., a “receipt” that guarantees that the
data will be delivered to the server and that its integrity
and privacy will be preserved.

As already stated in Section 1 the timestamp has to
be produced before the deadline; the commit has to be
performed with low latency, and the data transfer from
a bistro to the server has to be done in a timely manner.
The exact constraints on all these operations are again
a function of the requirements of the particular upload
application.
3.1.1 Advantages of the Bistro Framework
We now outline the potential performance problems and
considerations, given the current state of upload appli-
cations, i.e., everyone uploads directly to the final desti-
nation server (refer to Figure 1(a)), in order to illustrate
the advantages of our proposed framework (as described
above).

In the current state of upload applications, a spe-
cific upload flow, from some client to the destination
server, can experience the following potential bottle-
necks (or hot spots):

1. poor connectivity of the client: some link between
that client and the final destination is the bottleneck
of the upload process (including the link that con-
nects the client to the Internet);

2. overload on the server link: the link that connects
the server to the Internet is overloaded due to too
many simultaneous uploads to that server, and this
link is the bottleneck of the upload process;

3. overload on the server: the server itself is over-
loaded due to too many simultaneous uploads to
that server, and the server is the bottleneck of the
upload process.

Given these bottlenecks, there are several traditional so-
lutions (or a combination of these solutions) that one
could consider:

� get a bigger server: for example, buy a bigger
cluster of workstations to act as the upload server,
which is intended to address problem (3) above;

� buy a bigger pipe: that is improve the server’s con-
nectivity to the Internet, which is intended to ad-
dress problem (2) above;

� co-locate the server(s) at the ISP(s): make arrange-
ments directly with the ISP’s to provide upload ser-
vice at their locations, which is intended to solve
problems (1) and (2) above (as well as problem (3)
if this service is replicated at multiple ISP’s).

These solutions have a number of shortcomings, includ-
ing lack of flexibility and lack of scalability. We note
that an important characteristic of the Bistro framework
is the notion of resource sharing. It is fairly clear that,
for instance, buying a bigger cluster for a “one time
event” (which may not be “big enough” for the next sim-
ilar event) is not the most desirable or flexible solution

bistro’s

Bistro System
Destination bistro

(a) upload without the Bistro System (b) upload with the Bistro System

Server

Clients

...
Clients

...

...

...

Figure 1: Depiction of a single upload with and without Bistro system.

to the upload problem. The ability to share an infras-
tructure, such as an infrastructure of proxies or bistro’s,
between a variety of wide-area applications has clear ad-
vantages, some of which are outlined below.

Consequently, we believe that Bistro, as outlined
in Section 1 and described in more detail above and in
Section 4, is a better solution than the more traditional
solutions described above, for the following reasons:

� it is more dynamic and therefore more adaptive to
system and network conditions;

� it provides for more resource sharing opportunities
and thus can result in a more cost effective solution
to wide-area upload problems; and

� it does not rely on the existence of a private in-
frastructure (such as the co-location approach de-
scribed above), but it does not preclude it either.

In summary, we believe that the Bistro framework is a
more flexible solution that takes advantage of whatever
resources are available in the system and the Internet to
the “best” extent possible.

3.2 Research Issues
In this section we describe a set of problems that need
to be solved in order to design and develop the Bistro
framework proposed above. In this discussion, where
appropriate, we point out open research problems.
3.2.1 Resource Location and Discovery
One important open problem is the location and discov-
ery of existing resources (bistro’s) — that is, given a
dynamic infrastructure of bistro’s, for each instance of
an upload application, an important consideration is the
mechanisms and policies used to discover which bistro’s
are available for this upload. This includes how to dis-
cover newly installed bistro’s and how to estimate their
performance characteristics, both, in terms of host and
network capacities in order to make run-time choices of
which bistro’s to utilize.
3.2.2 Placement and Assignment
Another important open problem is assignment of
clients to bistro’s for an instance of an upload applica-
tion. (We briefly describe this problem here and define
it more formally in Section 4.)

More specifically, this involves design of mecha-
nisms and policies for determining which bistro should
participate in a given upload and which client should
transfer its data to which bistro, i.e., assignment of
clients to bistro’s. In general, as described in more de-
tail in Section 4, it is not desirable to utilize all existing
bistro’s for an instance of an upload application, even
though this might provide the quickest way of moving
data from the users to the bistro’s (for instance, due to
the overhead caused by managing all the bistro’s and the
overhead of performing bistro-to-server transfer.)

In general, a distributed facility location type
scheme will be required for deciding which bistro
should participate in each upload as well as for assign-
ment of clients to bistro’s. This is a difficult problem
as it also involves prediction of performance of a fu-
ture data transfer (e.g., response time or throughput) be-
tween a specific client-bistro pair based on current net-
work conditions. Our results to date (given in Section 4
and in [1]) indicate that such predictions are non-trivial
and result in difficult research problems.
3.2.3 Security
Adding intermediaries (i.e., bistro’s) in the data trans-
fer has obvious security implications: clearly, it should
not be possible for bistro’s to corrupt the data in tran-
sit in any way. In general, the set of security properties
desirable for an upload service is as follows:

� Integrity: The data cannot be changed in transit by
any principal.

� Privacy: For some transfers, it may be necessary
to ensure that the data is encrypted and cannot be
interpreted by intermediaries on the transfer path.

� Authentication and non-repudiation: Since the des-
tination now receives data from nodes that are not
the source of the data, it may be necessary to au-
thenticate the source of the data. The mechanisms
employed to authenticate the data should also be
able to discriminate “replays” by malicious bistro’s
and provide non-repudiatable transfer.

All of these properties are, in fact, desirable for any data
transfer and many cryptographic techniques have been

developed for implementing these properties [9, 13].
Usually, these techniques assume a powerful adversary
capable of intercepting and changing messages in tran-
sit. This model is immediately applicable to the Bistro
framework, with malicious bistro’s being the adver-
saries. Thus, we can use existing cryptographic tech-
niques to implement all these security properties for
Bistro transfers. The details of our initial security proto-
col can be found in [4].

3.3 Deployment Issues
Our intent for deploying the Bistro platform is not to
rely on adding resources (such as hosts) to the Inter-
net2. Rather, we envision that people will want to in-
stall Bistro on their hosts on the public Internet and con-
tribute their resources to the overall Bistro infrastructure
because it will improve their performance as well. In
turn, the existing bistro’s will discover the new instal-
lations and integrate them into a Bistro infrastructure.
Thus, our architecture will take advantage of existing
resources and utilize them to their full potential for each
upload application.

We first plan to deploy Bistro at academic sites
since the resulting performance improvements of our
applications, such as paper and proposal submissions,
may greatly improve the quality of life for the re-
searchers at these institutions, as the deadlines ap-
proach.

4 “Commit” Problem
As already stated in Section 1, our basic approach is to
break up the upload problem into: (a) a real-time times-
tamp subproblem, (b) a low latency commit subprob-
lem, and (c) a timely data transfer subproblem. Further-
more, in Section 3, we stated that (a) and (c) are outside
the scope of this paper. In the remainder of this section
we focus on the commit problem.

4.1 Extreme Cases
Before discussing our solution, we describe some ex-
treme cases of the framework outlined in Section 3, in
order to illustrate the range of performance considera-
tions. These extreme cases are as follows:

1. the final destination of the data transfer is the only
bistro (this is essentially the current state of things);
or

2. “all” hosts are bistro’s, by this we mean that each
client serves as its own bistro, with essentially zero
transfer time — it is not clear whether this is “prac-
tical”, but regardless, the commit problem is triv-
ial in that case (although the timestamp and data
transfer problems are not trivial but are outside the
scope of this paper), and hence we do not consider
this extreme any further here;

3. each “organization” with an upload client has its
own “local” bistro, where granularity of organiza-

2Note that deployment over private networks can also be done but
is relatively straightforward from the deployment point of view.

tion is the same as for news (NNTP) servers, DNS
servers, and so on. This local bistro can be behind
organizational firewalls and may not be accessible
from the outside world. In this case, a submission
still has to travel to (be pushed) outside of the or-
ganization into the public Internet so that the data
transfer part of the upload process can take over.
Therefore, the commit problem still exists. As far
as a user is concerned, the submission is completed
as soon as the local bistro issues a receipt (i.e.,
commit) for the submission. However, the Bistro
system will only consider the commit to be com-
pleted when the submitted data has traveled to a
public bistro3. Thus, in this case, the commit is
broken down into two steps, where the first step is
almost as trivial as the one in extreme case 2 above.

4.2 The Middle Ground
It is often difficult to deploy a server infrastructure over
the public Internet. In order for the Bistro system to suc-
ceed, we must demonstrate that a system with a limited
number of bistro’s can provide benefits to the users of
this system. In [1] we provide evidence, through a sim-
ulation study, that even a system with a limited number
of bistro’s can provide such benefits (we omit this study
here due to lack of space). In the remainder of this sec-
tion we discuss the hardness of the commit step.

In our framework (as described in Section 3), there
are two basic problems within the commit step that we
must consider, which are:

1. assignment problem: this is the situation where the
locations of bistro’s are fixed, and the difficulty is
in assigning clients to the bistro’s, i.e., deciding
which client should upload to which bistro; and

2. placement or selection (plus assignment) problem:
this is the situation where the locations of bistro’s
are flexible, and hence the difficulty is in both, de-
ciding where to place the bistro’s (i.e., which nodes
to choose to act as bistro’s) and how to assign
clients to them (note that the placement of bistro’s
and assignment of clients to them are not indepen-
dent problems); from here on, we refer to this as
the placement problem.

Below, we define and characterize the assignment and
placement problems more formally. However, first we
motivate the need to consider the placement problem,
i.e., the problem where not all potential bistro sites are
used. That is, given � potential bistro sites, we only
consider placement of bistro’s at ����� of those sites.
This motivation is as follows: (1) as our performance
evaluation results in [1] indicate, � does not have to be
very large to obtain most of the benefits of the Bistro
architecture, (2) if we take the last step of the upload
into consideration, i.e., the timely data transfer to the
final destination, then intuitively coordination of trans-
fers from a large set of bistro’s is not necessarily better

3If the Bistro system is successfully deployed, we expect bistro
installations to be as common as news and mail server installations.

than from a smaller set, and (3) our long-term goal is to
allow multiple simultaneous upload applications to use
the same Bistro infrastructure, in which case, due to con-
tention, it may be beneficial to allow each application to
use a subset of available bistro’s.

Lastly, we note that even the assignment problem
alone is hard under general network topologies, as we
describe more formally next, and hence requires the use
of heuristics. Of course, the addition of the placement
problem makes the construction of heuristics even more
difficult.
4.2.1 The Assignment Problem
We can define the bistro assignment problem more for-
mally as follows. Given:

� a graph ���������
	�� with a capacity function de-
fined on the edges,

� a subset � of vertices containing the bistro’s,
� a subset � of vertices containing clients, and
� a path ����������� from client � to bistro � for each �����

pair
our goal is to choose one path for each client (i.e., to de-
cide for each client to which bistro it is assigned). Note
that, we assume that given a client/bistro pair there is
only a single valid path on which a data transfer will
take from the client to the bistro. The motivation for
this assumption is that our interests are in data transfers
over the Internet, and given the current state of the Inter-
net (i.e., IP), in most cases there is a single fixed route
between each pair of hosts (i.e., routes do not change
other than due to failures).

Once we fix the choice of paths from the clients
to the bistro’s we can define several objective functions.
Assume that the data rate for client � is ��� . Of course,
if �������
��� ����� is the chosen path for each � (i.e., client �
is assigned to bistro at location ��� ���) then we have the
requirement that for each edge � , the data rates on the
chosen paths using edge � do not exceed �!�"� . Then,
potential objective functions include:

maximize

#%$'&)(� �*�"+ (1)

maximize ,.- � � �0/ (2)

Max-Min Fair Solution (3)

e.g., given fixed file sizes, Equation (1) corresponds to
minimizing the maximum response time (i.e., the re-
sponse time of the “slowest” client), Equation (2) cor-
responds to maximizing the throughput, and Equation
(3) is intended for addressing of fairness criteria, if such
are desired (however, we do not give further details of
this objective function here as this is not the focus of this
paper).

All three objectives yield interesting classes of
problems, unfortunately all three are NP-complete by

a reduction from Satisfiability (refer to [1] for details of
the proof).
4.2.2 The Placement Problem
The statement of the placement problem is simple —
choose the location of the bistro’s to obtain the best so-
lution to the assignment problem stated above. (We can
also show that this problem is NP-complete[1].)
4.2.3 Discussion
We note that the issues of service replica placement and
selection have been studied in the networking literature,
in the context of download applications. Nevertheless,
we believe that these problems warrant a study in the
context of upload applications as well, at least within
the framework presented in this paper. The reason being
that the commit and the data transfer sub-problems (as
outlined above) are not independent.

5 Conclusions
In this paper we stated (a) a new problem, i.e., the many-
to-one communication, or upload, problem as well as
(b) the (currently) fundamental obstacles to building
scalable wide-area upload applications. We have also
proposed a general framework, which we termed the
Bistro system, for a class of upload problems, where
the basics of the framework are to divide the problem
into three subproblems (a) timestamp, (b) commit, and
(c) data transfer. Moreover, we have suggested a num-
ber of open research problems, within this framework,
throughout the paper.

Our long term goal is to accomplish scalability in
Internet-based upload applications through the use of
the Bistro framework over a wide range of applications
and problem sizes. We believe that the Bistro framework
is extensible to other Internet-based applications which
have a many-to-one data transfer component, such as e-
commerce, online auctions, Internet-based storage, and
many more. Since the scalability of many-to-one data
transfer has not been addressed yet, solving the many-
to-one problem will improve the scalability of all these
applications.

In general, we believe that there is a need for a scal-
able infrastructure that will enable Internet-based Com-
puting, where wide-area storage and computational re-
sources are utilized in general large-scale computations.
The Bistro architecture is designed to manage storage
resources available in the Internet. By viewing wide-
area data transfer as a primitive computation, (i.e., a
copy), we envision extensions to the Bistro architecture
that can also take advantage of computational resources
available in the Internet (such as done in [2]) by appro-
priately augmenting the set of primitive services. By
designing, implementing, and deploying Bistro, we will
gain knowledge and experience that are fundamental to
making Internet-based Computing a reality.

References
[1] S. Bhattacharjee, W. C. Cheng, C.-F. Chou, L. Gol-

ubchik, and S. Khuller. Bistro: a platform

for building scalable wide-area upload applica-
tions. Technical Report CS-TR-4141, University
of Maryland, 2000.

[2] S. Bowyer and D. Werthimer. Astronomical and
biochemical origins and the search for life in the
universe. Proc. of the Fifth Intl. Conf. on Bioas-
tronomy, 1997.

[3] R. L. Carter and M. E. Crovella. Dynamic server
selection using bandwidth probing in wide-area
networks. IEEE INFOCOM, 1997.

[4] W. C. Cheng, C.-F. Chou, L. Golubchik, and
S. Khuller. A secure and scalable wide-area up-
load service architecture. Manuscript, 2000.

[5] S. Guha and S. Khuller. Greedy strikes back: Im-
proved facility location algorithms. In Proceed-
ings of the Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 649–657, January
1998.

[6] D. Karger, E. Lehman, T. Leighton, M. Levine,
D. Lewin, and R. Panigrahy. Consistent hashing
and random trees: Distributed caching protocols
for relieving hot spots on the World Wide Web.
In Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing, pages 654–
663, 1997.

[7] D. Karger, E. Lehman, T. Leighton, M. Levine,
D. Lewin, and R. Panigrahy. Relieving hot spots
on the world wide web. STOC, 1997.

[8] J. Kleinberg, Y. Rabani, and E. Tardos. Fairness
in routing and load balancing. In Proceedings of
the 40th Foundations of Computer Science Con-
ference, pages 568–578, October 17-19 1999.

[9] RSA Laboratories. Public Key Cryptography Stan-
dard #1: RSA Encryption Standard Version 1.5.
RSA Data Security, Inc., Redwood City, CA,
USA, November 1993.

[10] L. Press. The Internet and interactive television.
Communications of the ACM, 36(12):19–23, 1993.

[11] D. Shmoys, E. Tardos, and K. Aardal. Approx-
imation algorithms for facility location problems.
In Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing, pages 265–
274, May 1997.

[12] P. Thomas, L. Carswell, M. Petre, B. Poniatowska,
B. Price, and J. Emms. Distance education over
the Internet. Proceedings of the conference on in-
tegrating technology into computer science educa-
tion, pages 147–149, 1996.

[13] United States Department of Commerce. Data En-
cryption Standard, Jan. 1988.

[14] R. T. Watson, S. Akselsen, B. Evjemo, and
N. Aarsaether. Teledemocracy in local govern-
ment. Communications of the ACM, 42(12):58–63,
1999.

