
Performance of Batch-based Digital Signatures
�

[Appeared in Proceedings of IEEE MASCOTS 2002]

William C. Cheng
�

bill.cheng@acm.org
Cheng-Fu Chou

�

ccf@csie.ntu.edu.tw
Leana Golubchik

�

leana@cs.usc.edu

Abstract

A Digital Signature is an important type of authentication in
a public-key (or asymmetric) cryptographic system, and it is in
wide use. The performance of an Internet server computing digital
signatures online is limited by the high cost of modular arithmetic.
One simple way to improve the performance of the server is to
reduce the number of computed digital signatures by combining
a set of documents into a batch in a smart way and signing each
batch only once. This reduces the demand on the CPU but requires
extra information to be sent to clients.

In this paper, we investigate performance characteristics of on-
line digital signature batching schemes. We give a semi-Markov
model of a gated batch-based digital signature server and its ap-
proximate solution. We validate the solutions of the analytical
model through both emulation and simulation. Our study shows
that significant computational benefits can be obtained from batch-
ing without significant increases in the amount of additional infor-
mation that needs to be sent to the clients.

1 Introduction

A Digital Signature is an important type of authentica-
tion in a public-key (or asymmetric) cryptographic system,
and it is in wide use [13, 16]. If Alice would like to send
an authenticated (but not encrypted) message M to Bob,
Alice can compute a digital signature from M, denoted by
DS[M], concatenate M with DS[M], denoted by M+DS[M],
and send M+DS[M] to Bob. Bob, with possession of Al-
ice’s public key, can verify the following important security
properties of the message.

�
This work is supported in part by the NSF Digital Government Grant

EIA-0091474.�
TeleGIF, Marina del Rey, California. This work was partly done while

the author was with the Department of Computer Science and UMIACS at
the University of Maryland.�

Department of Computer Science and Information Engineering, Na-
tional Taiwan University. This work was partly done while the author was
with the Department of Computer Science and UMIACS at the University
of Maryland.�

Computer Science Department, IMSC and ISI, University of South-
ern California. This work was partly done while the author was with the
Department of Computer Science and UMIACS at the University of Mary-
land.

� Integrity – that not a single bit in the message has been
altered.

� Authentication – that the message was truly sent by
Alice.

� Nonrepudiation – that Alice cannot deny that she has
sent the message.

Another important property of a digital signature is that it
is not vulnerable to the so-called man-in-the-middle attack,
i.e., no one (other than Alice) can change a single bit of
either M or DS[M] without Bob noticing that the message,
M+DS[M], has been altered.

In a client/server-based application, a server, which of-
fers a set of services, can play the role of Alice and a client
can play the role of Bob. Often, a client would like to obtain
a receipt from the server, describing the service rendered,
and signifying the completion of the prescribed transac-
tion. A digital signature can act as such a receipt due to
the nice security properties listed above. There are many
client/server-based applications where a digital signature is
desirable. For example, in a lottery ticket selling service (or
a concert tickets purchasing priority numbers issuing ser-
vice), a server can timestamp and digitally sign each ticket it
issues; in a pay-per-view stock tip service, a server can gen-
erate the latest report on a stock symbol from its database
and digitally sign the report; in an income tax form col-
lection service, a proposal collection service, a conference
paper collection service, or a bid collection service for con-
tract bidding, a server can generate a timestamp and send
the digitally signed timestamp as proof that a client’s sub-
mission has been received and that the client has made a
deadline [7]. Note that for most of these online applications
(stock tip type service being the exception), the document
being signed is a timestamp or a small collection of num-
bers, i.e., the size of the document is fairly small.

A typical application is illustrated in Figure 1. In Fig-
ure 1(a), a server is shown to provide documents to a large
number of clients spread across the network, such as the
Internet. (This can be generalized to multiple services and
multiple/mirrored servers). Each client 	 sends a request
for a document,
�� , to the server. The server digitally signs
document
 � , to produce DS[
 �] and sends the document to-
gether with the digital signature to client 	 (refer to Figures
1(b) and (c)).

1

(c) reply message
sent to client j

(b) basic service(a) system

Time
Produce
Document Ij

ServerClientj

 Request

 Reply

Compute Digital
Signature for
Document Ij

Ij

DS[Ij]
C2 C3 CN

Clients...

Server

Network

C1

...

Figure 1. Digital Signatures Problem.

The main problem here is that the digital signature pro-
cess is very computationally expensive. Therefore, if the
particular service is very popular, under high loads, the re-
sponse time for a client can be very large. Each of the ap-
plications mentioned above corresponds to a real-life event
which may experience high demands at certain times. For
example, demands for popular concert tickets can be high
when the tickets first go on sale, while submission of in-
come tax forms are often done close to the deadline. It is the
main focus of this paper to model and analyze performance
of approaches used to reduce a client’s response time when
the load on the server is high.

Let us examine the digital signature process more care-
fully to see where is the performance bottleneck. Figure 2
depicts the process of digitally signing and verifying a doc-
ument M [16]. We focus on the left half (signing) in Figure
2. (We will denote the verification procedure, the right half
of Figure 2 by VERIFY[M,DS[M]].) Let us denote the pub-
lic and private keys used for a service � provided by the
server as �������� and �����	�
� . (Please note that we will drop
the � superscript for clarity.) The server applies a one-way
hash (uninvertible) function H to document M to produce
H(M). The size of H(M) is fixed (on the order of 20 bytes,
depending on which digital signature system the server is
required to use). The server then uses � ��	�
�� to digitally sign
H(M), the output of which is referred to as the digital signa-
ture of document M, denoted by DS[M]. Although there are
several existing different digital signature algorithms (e.g.,
RSA, DSA, etc. [13]), the basic signing process is the same.
The differences among these algorithms are abstracted in
the block labeled DS in Figure 2.

Send

H(M)

M

Yes/NoH DS

Kpriv

V

Kpub

H

DS[M]

M M

≈

Figure 2. Digitally Signing and Verifying a
Document M.

Since the creation of a digital signature mainly consists
of the H and the DS blocks, let us examine the relative time

spent in each block. The time to compute a one-way hash
function is linearly proportional to the size of M. The time
spent in the DS block is also linearly proportional to the size
of its input. But since input to the DS block is H(M), whose
size is fixed, the time spent in the DS block is constant. If
the size of M is small, computing DS[M] is typically several
orders of magnitude more expensive than computing H(M).
For example, on a 800 MHz Pentium-III PC running Linux,
digitally signing 20 bytes of data (with a 1024-byte private
key) takes about 4 milliseconds while computing a hash of
20 bytes of data takes about 1 microsecond with OpenSSL
[17].

Hence, under high workloads, there is a need for reduc-
ing a server’s computational requirements which are due to
digital signatures. To this end, we explore performance im-
provements due to the use of batching schemes (described
next). We present an analytical model of a gated batch-
based digital signature server and its approximate solution.
We validate the solution of the analytical model through
both emulation and simulation. Our study shows that, us-
ing standard cryptographic techniques, the server’s perfor-
mance under high loads can be significantly improved. That
is, even under high load (near 100% utilization), the server
can keep up with the demands (without sacrificing security)
while keeping computational and networking overhead at a
minimal.

2 Background on Batching Schemes

To reduce the computational requirements of digital sig-
natures for large numbers of clients we explore the use of a
previously proposed approach [11, 12], in a systems setting.

First, we describe a non-batched system, as in the
scheme used in [2], as a baseline for comparison. This sys-
tem is depicted in Figure 3. (This scheme is commonly
used in Internet servers.) In order to guard against replay

Send Ij+DS[Ij]
to each Clientj
1 ≤ j ≤ B

Ij Ij-1 Ij Ij-1

DS[Ij] DS[Ij-1]

Signing
ServerDocuments

Figure 3. No batching.

attacks [13], we require that each request 	 is accompanied
by a nonce, � � , whose length is comparable to the length
of a hash value, and we also require that, in the response,
the corresponding document
 � includes � � in its header, so
that the client can verify that
 � was indeed intended for it.
(The header in
 � may include additional information such
as a server timestamp.) For each document
 � , the signing
server produces DS[
 �] and sends
���� DS[
��] to the client
which requested
 � in a first-come-first-served fashion. The
digital signature of a document is computed independently
of other documents and signatures. The digital signature
scheme used here is depicted, in general, as shown in the
left half of Figure 2. Clearly, at high loads, a large queue

2

can build up at the signing server since computing digital
signatures is CPU intensive. Note that in this scheme, there
is no wasted network bandwidth, in the sense that a client� � only receives
�� � DS[
 �], i.e., it does not receive infor-
mation that does not belong to it. (The verification proce-
dure is performed by the client and is not described here;
please refer to [16].)

2.1 Simple Batching

A very simple way to batch requests is to use a gated
server, as depicted in Figure 4. We use the term customer
and client request interchangeably. When the server be-
comes free, it closes a gate behind the last customer in
the queue and serves all the customers inside the gate in
a batch. All newly arrived customers queue up behind the
gate. When the server finishes serving the batch, all cus-
tomers inside the gate depart from the server. The process
then repeats. If the server is free when a customer arrives,
it closes the gate behind this customer and serves this cus-
tomer only.

D

DS[D]

Ij-1

Send
D+DS[D]+Ij

to each Clientj
1 ≤ j ≤ B

Requests are
queued behind

the Gate
Batch Signing

Server

IB I2 I1

D=H(I1)+H(I2)+...+H(IB)

D

DS[D]
Gate

Ij

Figure 4. Simple Batching Scheme.

Let � be the number of client requests (or customers)
waiting when the server completes the previous compu-
tation of a digital signature (� is also referred to as the
batch size). Each client � requires document ��� and a dig-
ital signature to verify the security properties related to
��� . One approach to reducing the computational cost of
signing each document independently is to first concate-
nate the � documents corresponding to the � clients wait-
ing in the queue and then sign them all together, i.e., pro-
duce D= ��� + �
	 + ����� + �
 , and DS[D] and send D+DS[D] to
each client. However, client � will be able to see ��� where���� � . To get around this problem, instead of concatenat-
ing the documents, we can concatenate the hashes of the
documents, i.e., produce D=H(� �)+H(�)+ ����� +H(�), and
DS[D] and send D+DS[D]+ � � to client � , for ��������� .
(Note that this D can be considerably smaller than one ob-
tained by concatenating the actual documents.) Then, our
client and server algorithms are:

Server algorithm (refer to Figure 4):
1) let D = H(� �) + H(�) + ����� + H(�);
2) compute DS[D];
3) construct message D+DS[D]+ ��� for each client

��������� .

Client � algorithm (upon receiving DS[D]+D+ � �):
1) VERIFY[D,DS[D]];
2) verify that the nonce, ��� , is in the header of ��� ;

3) compute H(���);
4) verify H(���) can be found in D.

This is referred to as the Simple Batching scheme. It
can give a significant CPU speed improvement since it only
computes � digital signature for each batch as oppose to
doing � digital signature computations in the non-batched
scheme. However, this requires larger message sizes. The
total overhead on the system, as far as message sizes are
concerned, is � times the size of D (since sizeof(DS[D])
equals sizeof(DS[� �])). The size of D is just � times the
size of a hash. Therefore, the message size overhead is � 	 �!�"$#&%�')(+*-,/.0!1,32 .

2.2 Tree-based Batching

Motivated by the potential need to save network band-
width (not just CPU speed) and hence reduce message sizes,
we employ a tree-based batching scheme [11] which builds
a tree of hashes, where leaves of the tree are hashes of doc-
uments. Only the root of the tree, which is denoted by 4 ,
needs to be digitally signed. The value of an internal node
of the tree is computed by concatenating the values of its
children and then applying the hash function. The security
properties of the tree-based batching scheme are the same
as those of the non-batched scheme [12]. For this scheme,
we also use a gated server which operates similarly to the
Simple Batching scheme depicted in Figure 4. The main
difference is in the content of the out-going messages. Let576 ��8 9 �;: 9 	<: ����� : 9>=<? denote a list of nodes along the path
from a leaf node that corresponds to document @ to the
root node, excluding the root node, and let , denote the
depth of the leaf node (given that the root is at depth A).
Let B 6 �C8 D ��: D): ����� : DE=;? denote a list of nodes, where D&F
is the sibling of the corresponding node 9GF in

5+6
. (B 6 is

called the authentication path in [11].) The client and server
algorithms are modified as follows.

Server algorithm:
1) build a complete binary tree with leaf nodes H(���),

H(�), ����� , H(�); the value of an internal node H
with children I and J is simply H = H(I + J);

2) compute DS[R] (where R is the root of the tree);
3) construct message R+DS[R]+ BLK-M + ��� for each client

�N�O�P��� .

Client � algorithm (upon receiving R+DS[R]+ B K M + � �):
1) VERIFY[R, DS[R]];
2) verify that the nonce, � � , is in the header of � � ;
3) let BQKRM �S8 D ��: D): ����� : DE=)? ; compute H(���) and run the

following simple algorithm:
�UT H(���);
for (i=1 to h) do �NT H(�WV D F);

verify that � � 4 .

Compared with the Simple Batching scheme, the Tree-
based Batching scheme computes only one digital signa-
ture, but it computes twice as many hashes. Compared with

3

the non-batched scheme, the total overhead on the network
for the Tree-based Batching scheme, as far as message sizes
are concerned, is B times the size of a hash times the height
of the complete binary tree. Therefore, the message size
overhead is ���������
	�������������
��������� �!���"� .

In general, an m-ary tree can be used instead of a bi-
nary tree to reduce the number of additional hashed needed.
However, the message size overhead is then �#�$�&%('*)+�,��-����.���/�0�1�2�����������3�4�5���"� . It can easily be shown that the
above expression is monotonically increasing for %768)
(by taking the derivative of the expression with respect to%), and therefore, is minimized when %:9<; .

3 Performance Evaluation

Above batch-based digital signing schemes are moti-
vated by the need to improve Internet servers’ performance,
especially under high workloads. Hence, there is a need
for evaluation of the resulting performance characteristics.
Moreover, there are tradeoffs to be considered in the design
of batch-based schemes, such as the tradeoff between com-
putational improvements and increases in messages sizes
(and hence network bandwidth needs). These tradeoffs also
motivate the need for performance evaluation studies. Thus,
in what follows, we propose the use of analytical mod-
els for performance evaluation of batch-based digital sign-
ing schemes. We construct such models for both batching
schemes and validate them against emulation and simula-
tion. In this validation, we consider documents of various
sizes. Such models are a useful tool in capacity planning
and system sizing as well as in studying design tradeoffs.

3.1 Analysis

We begin with the analysis of the digital signature gated
server with batching schemes described in Sections 2.1 and
2.2.

The following analysis is carried out under the assump-
tion that the digital signature is computed using a private
key type operation (such as in RSA and DSA), and that the
one way function is computed through a typical hash func-
tion such as SHA1 or MD5. Hence, the digital signature
computation is significantly more costly than the hash func-
tion computation, given the same size document. For in-
stance, the OpenSSL benchmark [17] results in more than=

orders of magnitude difference between digital signature
computation and hash function computation for a 20 byte
message.

3.1.1 System Model

We first consider the case where the size of the document
is small. By small, we mean that the time it takes to hash
a document is less than 10% of the time it takes to digitally
sign a 20-byte string (or a 16-byte string if MD5 is used).

A different (but simpler) model can be used for larger doc-
uments, which is described later.

Given the above assumption, we model the service time
for computation of a digital signature of a batch of � cus-
tomers as being deterministic and independent of the batch
size (i.e., most of the time is spent in computing the digital
signature so we ignore the fact that the hash function com-
putation time is a function of the batch size). That is, we
can think of the server as an M/D/1 queue with batching,
i.e., where the arrival process is Poisson with rate > and the
service time is deterministic and equal to)@?�A .

We approximate this model with the semi-Markov pro-
cess, �CB , depicted in Figure 5. The state of �DB is de-

1/T 1/T 1/T 1/T1/T

λ λ λ λ λ λ

µ

0,0 0,s 1,s 2,s 3,s 4,s 5,s

Figure 5. Semi-Markov Process Model of
Server.

scribed by ��FE 	!� , where � indicates the number of customers
waiting in the queue and 	 indicates whether the server
is busy or idle, with 	G9IH indicating that it is idle and
	J9K� indicating that it is busy. Lastly L is the mean
residual service time, and it is equal to)�?5�3;@AM� (refer to
[8]). (That is, if we let r.v. X represent the digital signa-
ture plus hash function computation time, and we let r.v. Y
represent the corresponding residual computation time, thenNPO QSR 9 NPO T 	 R ?�; NUO T�R

.)
Let VXW be the mean holding time in state ��H"EFH�� , V@Y be

the mean holding time in state ��H"EF��� , and V 	 be the mean
holding time in state ��FEZ��� , for �D6[H . Then,

VXW\9
][^
W`_ > ��acb2dfe _ 9

)
>

V+Y`9
]hgi
W _ >4� acb�d e _ �

)
A
] ^
gi > � ajb2d e _ 9

)
> �k)�'�lcYX�

V 	 9
]nm
W _ > � ajb2d e _ �oL

] ^
m > � acb2d e _ 9

)
> �p)�'ql 	 �

where l Y 9r� aMs�b�tFu@v and l 	 9:� aMswb+t 	 u@v 9r� acb m . Then,
we can solve this model by constructing the correspond-
ing Discrete-Time Markov Chain (or DTMC), B , as illus-
trated in Figure 6, as follows. Let xy9{z2| W Ek| Y Ek| 	 E2}�}�}-~ be
the steady state distribution for B , where |�W corresponds
to state ��H"EFH�� , | Y corresponds to state �H"EZ��� , and |
 cor-
responds to state �&��'#)�EF��� for ���r; . Then we have the
following set of equations:

� ^
-� W |
 9)
| W�9 |cYfljY
|cY79 | W � �<^

�� 	 |
 l 	

4

p2 p2 p2 p2p2p1

1-p2 1-p2 1-p2 1-p21 1-p1

0,0 0,s 1,s 2,s 3,s 4,s 5,s

Figure 6. DTMC corresponding to �CB .

|
 9 |jY��p)�'$ljY��X�k)�'�l 	 �
 a 	�� � � ;
which gives us

| W\9 l 	 l Y
ljYfl 	 ��l 	 �)�'�lcY

| Y 9 l 	
ljYfl 	 ��l 	 �)�'�lcY

|
 9 l 	 �k)�'�l Y ���p)�'ql 	 �
 a 	
ljY�l 	 � l 	 �)�'�lcY

� � � ;
Let x�� 9hz2|��W Ek|��Y Ek|��	 E�}2}�}-~ be the steady state distribution
for �DB . Then,

| �W 9 | W V W
| W V W � | Y V Y � �<^	 |
 V 	

| �Y 9 |jYZV�Y
| W2V�W � |cYZV+Y � � ^	 |
 V 	

| �
 9 |
 V 	
| W V W � | Y V Y � �<^	 |
 V 	

� � � ;
which gives

| �W 9 l Y l 	
)�'qljY � ljY�l 	 }

Finally, we compute the mean waiting time of the M/D/1
queue with batching as:� 9(�k)�' Prob[system is empty] ����L
where Prob[system is empty] is the probability of an arrival
finding the M/D/1 batching system empty and L<9{)@?5��;�AM�
is the mean residual service time of the M/D/1 batching sys-
tem. We approximate Prob[system is empty] by |��W , which
is obtained by solving the semi-Markov processed given in
Figure 5. Then, the corresponding mean response time is
approximated as:

L 9)
A � � 9)

A �)
;@A �k)�'1| �W �

9)
A �)

;@A
�)�'*� a
	i
)�'*� a 	i �n� a�� 	 i��

3.1.2 Model Parameters

What remains is to derive the model parameters as a func-
tion of the digital signature and hash function operations.
Specifically, we need to derive the service time for a batch

of size � . Let the digital signature computation for a fixed
size (around 20 bytes) string take _���� units of time. Let the
computation of a hash function for a similar size document
(i.e., similar to the size of the output of a hash function) take

_ �� time units. And, let the computation of a hash function
for an “average” size document sent in the reply message
in our system take _ � units of time, i.e., we simplify the
following derivation by assuming that the documents being
sent by our system are of reasonably comparable size and
thus the hash function computation of an average size docu-
ment is representative of the time it takes to compute a hash
function on some document
�� . We further simplify the pa-
rameter derivation by assuming an average size batch and
approximating it as >j?�A (i.e., ��� >�?@A). Given that the
digital signature computation is significantly more costly,
the above simplifications are reasonable. Referring back to
Figure 2, _���� is the time spent in the DS block, _ � is the time
spent in the H block for an average-sized message M, and

_ �� is the time spent in the H block if M has the size of a hash
(i.e., around 20 bytes).

We further approximate the time it takes to compute a
hash function of a document of size � ��� by � times the
time it takes to compute a hash function of a document of
size � . (This is a reasonable assumption given currently
used hash functions and the results from the OpenSSL
benchmark [17].)

Then, in the case of the Simple Batching scheme, the
time required to compute D is ��>j?�AM� _ � . To digitally sign D,
the time spent in the H block of Figure 2 is approximately��>j?�AM� _ �� (by the above assumption) and the time spent in the
DS block of Figure 2 is _ ��� . Therefore, the time to compute
D+DS[D] is:

)
A 9 _���� � >

A _ � � >
A _ �� 9 _����)�' > � _ � � _ �� � (1)

Similarly, in the case of the binary Tree-based Batching
scheme, we have:

)
A 9 _ ��� � >

A _ � �[;"� >A ')+� _ �� 9 _���� ' ; _ ��)�' > � _ � �[; _ �� � (2)

It can easily be shown that the stability regions for the
schemes described above are:

>�� ���� ��
)�?S� _���� � _ � � for non-batched

)�?S� _ � � _ �� � for Simple Batching

)�?S� _ � �[; _ �� � for Tree-based Batching

(3)

We note that, in the case of the m-ary Tree-based Batch-
ing scheme, we have:

)
A 9 _ ��� � >

A _ � � >
A % _ ��"! �$#&%('�) s�b�tFu@v
�� Y)

%
+*
9 _���� � >

A _ � � � >A ')+� %
% '[) _ ��

9 _ ��� ' � .. a Y � _ ��)�' > O _ � � � .. a Y � _ �� R
5

In the above equation, although a higher value of % will
reduce)�?�A , it only reduces)�?@A by a very small amount
because _ ��� is several orders of magnitude larger than _ �� .Based on the discussion presented at the end of Section 2.2,
the message size overhead increases as % increases. There-
fore, it is not worthwhile to use a value of % 6 ; .

3.2 Validation of Analytical Models

In this section we validate our analysis by comparing
the analytical results obtained above with those obtained
through emulation as well as simulation.

Specifically, we perform the emulation by executing the
digital signature schemes described in Section 2 using the
OpenSSL [17] implementation on an 800 MHz Pentium-III
PC running Linux. This is an emulation since we still use a
Poisson arrival stream with rate > as our customer requests
workload. The simulation of these schemes is performed
under the same conditions as emulation, using CSIM [15],
except that the service times used in the simulation are com-
puted using the OpenSSL benchmark. We note that we val-
idate through simulation, in a subset of cases, in addition
to emulation, since in the emulation environment we can-
not guarantee that no other workload would be running on
the emulation machine at the time of emulation experiments
(more details are given below). All emulation and simula-
tion results are reported with ����������� confidence intervals.

We compute the parameters of the analytical models us-
ing equations given in Section 3.1.2, where _ ��� and _ � are
set to the values produced by the benchmark provided with
OpenSSL [17] and executed on the same machine as the
emulation.

The comparison of analytical and emulation results are
given in Figure 7, for mean response time, and Figure 8, for
mean batch size. Figures 7(a)-(d) depict the results corre-
sponding to the Simple Batching scheme, Figures 7(e)-(h)
depict the results corresponding to the (binary) Tree-based
Batching scheme, Figures 8(a)-(d) validate our approxima-
tion of an average batch size as >�?@A for the Simple Batching
scheme, and Figures 8(e)-(h) validate our approximation of
an average batch size as >j?�A for the (binary) Tree-based
Batching scheme (refer to Section 3.1.2).

For relatively small document sizes (20 bytes, 1KB,
and 10K), mean response times predicted by our analytical
model are fairly close to that of emulation for both batch-
ing schemes, especially for small arrival rates. Although at
higher arrival rates the errors can be larger, they are no more
than 10% for both batching schemes. For document size of
100KB, the assumption that hashing time is not a function
of batch size (or rather just using the approximate mean
batch size to approximate the hashing time) is no longer
a good approximation, and the model performs worse, as
shown in Figures 7(d) and 7(h). (For even larger document
sizes, please see discussion below.) We also note a problem
with emulation experiments. The emulation is running on
a machine where the background load fluctuates. As em-
ulation times get longer (i.e., for larger document sizes),

additional background load interference with the emulation
experiments is more significant. Therefore, in Figures 7(d)
and 7(h), we also added simulation results obtained using
the same parameters used for the emulations. We show that
the error is reduced. However, the assumption that hash-
ing time is not a function of batch size still accounts for the
larger errors.

Validation results for mean batch size, given in Figure 8,
show that the error of our approximation of mean batch size
by >j?�A is fairly small for both batching schemes. The error
characteristics for larger document sizes are similar to the
validation results for mean response time.

For even larger document sizes (e.g., 1MB), the time it
takes to perform hash calculations begins to dominate the
time it takes to perform digital signatures. The compari-
son of analytical and emulation results are given in Figure
9 for mean batch size and mean response time. Clearly, the
approximation that the batch size is >�?@A is a poor one, as
demonstrated in Figures 9(a)-(b). Nevertheless, the mean
response time prediction is shown to be less sensitive to the
batch size estimation, as shown in Figures 9(d)-(e). We also
note that since the mean batch size for large document sizes
(such as 1MB) is fairly close to) even under relatively high
arrival rates (as is evident from Figures 9(a)-(b)). Hence, a
simple M/D/1 model without batching can be used in these
cases (its mean response time is given in Eq.(4) below).
This is validated in Figures 9(d)-(e) where the M/D/1 model
results in very small errors as compared to simulation.

Since we also would like to make comparisons with
the original non-batched digital signature scheme, i.e., one
which signs each requested document independently (refer
to Section 2), we also model it as an M/D/1 queue, but with-
out batching, whose mean response time is given by (refer
to [8]):

L 9)
A �)

A
� bu;"�p)�' bu � � (4)

The parameters of this model can be computed as in Section
3.1.2, i.e.,)�?@A$9 _ ��� � _ � . And, the validation of this model
through our emulation is illustrated in Figure 10 as well as
Figure 9(c) for the 1MB document size.

In addition to using a Poisson arrival processes, we
have performed emulation and simulation studies where re-
quest inter-arrival times are distributed according to uni-
form or normal distributions. These emulations and sim-
ulations show that the results are fairly insensitive to the
arrival process distribution (at least for the distributions we
tried). That is, the difference in mean response time and
mean batch size between the results obtained using a Pois-
son process and other processes is comparable to the dif-
ference between the analytical model results and the emu-
lation/simulation results using a Poisson process. For in-
stance, for smaller document sizes the difference tends to
be around 5%, with differences getting somewhat larger for
larger document sizes. However, we note that in all such
experiments, the largest observed difference is under 15%.

6

m
ea

n
re

sp
on

se
 ti

m
e

x
10

-3
 s

ec
m

ea
n

re
sp

on
se

 ti
m

e
x

10
-3

 s
ec

m
ea

n
re

sp
on

se
 ti

m
e

x
10

-3
 s

ec
m

ea
n

re
sp

on
se

 ti
m

e
x

10
-3

 s
ec

m
ea

n
re

sp
on

se
 ti

m
e

x
10

-3
 s

ec
m

ea
n

re
sp

on
se

 ti
m

e
x

10
-3

 s
ec

m
ea

n
re

sp
on

se
 ti

m
e

x
10

-3
 s

ec

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

(c)

4

5

6

7

8

0 20 40 60 80 100

(a)

4.0

4.5

5.0

5.5

6.0

6.5

0.0 0.5 1.0 1.5 2.0 2.5

(b)

5

10

15

20

25

30

35

40

0.0 0.1 0.2 0.3 0.4 0.5

(d)

m
ea

n
re

sp
on

se
 ti

m
e

x
10

-3
 s

ec

Document size: 1K

1,000 requests / sec

Document size: 10K

1,000 requests / sec

Document size: 20 bytes

1,000 requests / sec

1,000 requests / sec

Document size: 100K

1,000 requests / sec

Document size: 10K

(g)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Document size: 1K

1,000 requests / sec

Document size: 20 bytes

1,000 requests / sec

1,000 requests / sec

Document size: 100K

4

5

6

7

8

0 10 20 30 40 50

(e)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

0.0 0.5 1.0 1.5 2.0 2.5

(f)

5

10

15

20

25

30

35

40

0.0 0.1 0.2 0.3 0.4 0.5

(h)

Simple Batching Simple Batching

Simple Batching Simple Batching

Tree-based Batching Tree-based Batching

Tree-based Batching Tree-based Batching

emulation
analytic

emulation
analytic
simulation

emulation
analytic

emulation
analytic

emulation
analytic

emulation
analytic
simulation

emulation
analytic

emulation
analytic

Figure 7. Mean Response Time Validation of
the Analytic Model against Emulation for Sim-
ple and Tree-based Batching Schemes.

In summary, as can be seen in all these figures, analyt-
ical results match emulation results closely for document
sizes ��)2H � . These sizes suffice for applications, such as
the ones mentioned in [2], which require secure timestamps
and which motivated our work. Given the goodness of our
analytical results, below we use analytical models to evalu-
ate performance of the batching digital signature schemes.

3.3 Performance Evaluation Study

In all analytical results presented here we used _���� 9H"} H�H��) seconds, as measured by the OpenSSL benchmark.
Based on Eq. (3), a non-batched system becomes unstable
when the arrival rate exceeds)@?@H4} H�H��4)09#;���� requests/sec
for small documents (� 10KB). Figures 10(a)-(d) and 9(c)
show that the response time curve has a convex shape for
such a system. Comparing that with Figures 7(a)-(c) and
7(e)-(g), the response time of a batched system behaves
nicely even at very high loads for small documents. Note

2

4

6

8

10

0.0 0.5 1.0 1.5 2.0 2.5

Document size: 1K

1,000 requests / sec(b)

av
g

ba
tc

h
si

ze

Simple Batching

1,000 requests / sec

Document size: 10K
1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1.0 1.2

(c)

av
g

ba
tc

h
si

ze

Simple Batching

1,000 requests / sec

Document size: 100K2

4

6

8

10

0.0 0.1 0.2 0.3 0.4 0.5

(d)

av
g

ba
tc

h
si

ze

Simple Batching

Tree-based Batching

1,000 requests / sec

Document size: 10K

(g)

av
g

ba
tc

h
si

ze

1

2

3

4

5

6

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Tree-based Batching

1,000 requests / sec

Document size: 100K2

4

6

8

10

0.0 0.1 0.2 0.3 0.4 0.5

(h)

av
g

ba
tc

h
si

ze

0

50

100

150

200

250

0 10 20 30 40 50

1,000 requests / sec

Document size: 20 bytes

(a)

av
g

ba
tc

h
si

ze

Simple Batching

0

50

100

150

200

250

0 10 20 30 40 50

Tree-based Batching

1,000 requests / sec

Document size: 20 bytes

(e)

av
g

ba
tc

h
si

ze
2

4

6

8

10

0.0 0.5 1.0 1.5 2.0 2.5

Tree-based Batching
Document size: 1K

1,000 requests / sec(f)

av
g

ba
tc

h
si

ze

emulation
analytic

emulation
analytic

emulation
analytic

emulation
analytic

emulation
analytic

emulation
analytic

emulation
analytic

emulation
analytic

Figure 8. Mean Batch Size Validation of the
Analytic Model against Emulation for Simple
and Tree-based Batching Schemes.

that the arrival rates in Figure 10 are given in units of 1/sec
while the arrival rates in Figure 7 are given in units of
1000/sec. Also note that the stability conditions, for the
batched and the non-batched schemes, given in Eq. (3), also
illustrate a similar comparison as Figures 7 and 10. That is,
the stability of the non-batched system is a function of _ ���while the stability of the batch-based systems is not.

For medium size documents (i.e., 100KB), as shown in
Figures 7(d) and 7(h), the advantages of batching start to
diminish. For large documents (i.e., 1MB), as shown in
Figures 9(c)-(e), batching does not improve performance
(perhaps only slightly in some cases). However, it does not
reduce performance either.

Let us now look at batch sizes. For large documents,
all systems start to perform poorly at small arrival rates.
Since arrival rates are small, there is very little opportu-
nity to batch, and therefore, average batch sizes are small,
as shown in Figures 9(a)-(b). For small documents, Fig-
ures 8(a)-(c) and 8(e)-(g) show that the average batch size

7

m
ea

n
re

sp
on

se
 ti

m
e

x
10

-3
 s

ec

m
ea

n
re

sp
on

se
 ti

m
e

x
10

-3
 s

ec

1.00

1.05

1.10

1.15

1.20

1.25

1.30

5 10 15 20 25

arrival rate (1/sec)(a)

av
g

ba
tc

h
si

ze

Document size: 1M
Simple Batching

Simple Batching
Document size: 1M

25

30

35

40

45

50

55

5 10 15 20 25

arrival rate (1/sec)(d)

m
ea

n
re

sp
on

se
 ti

m
e

x
10

-3
 s

ec

Tree-based Batching
Document size: 1M

25

30

35

40

45

50

55

5 10 15 20 25

arrival rate (1/sec)(e)

arrival rate (1/sec)(c)

25

30

35

40

45

50

55

5 10 15 20 25

No Batching
Document size: 1M

arrival rate (1/sec)(b)

av
g

ba
tc

h
si

ze

Document size: 1M
Tree-based Batching

1.00

1.05

1.10

1.15

1.20

1.25

1.30

5 10 15 20 25

emulation
analytic
analytic M/D/1
simulation

emulation
analytic
M/D/1
simulation

emulation
analytic

emulation
analytic

emulation
analytic
simulation

Figure 9. Validation of the Analytic Model
against Emulation for Large Documents.

increases almost linearly with the arrival rate. This is due
to the fact that the service time is almost constant in these
systems. This supports our earlier observations about the
performance of the various schemes.

Lastly, Figure 11 compares the network overhead of the
batching schemes with the non-batched scheme. The verti-
cal axis in each graph is the total number of bytes sent to the
clients normalized by the total number of bytes sent to the
clients if no batching is used. It is clear from these graphs
that the Tree-based Batching scheme results in considerably
less network overhead as compared with the Simple Batch-
ing scheme. For a given batch size � , the difference in
computation time between the Tree-based Batching scheme
and the Simple Batching scheme is simply ��� '<)�� � _ �� ,(refer to Eqs. (1) and (2)), where _ �� is typically on the order
of a few microseconds. It should be clear that Tree-based
Batching has considerable advantages but costs very little.

4 Related Work

We are mainly concerned with systems and performance
issues in producing digital signatures under high loads in
the context of trusted servers. By that we mean that we
explore performance improvements through the use of pre-
viously proposed batching schemes for a gated server under
standard cryptographic techniques, i.e., those in [13, 16] us-
ing readily available software (e.g., OpenSSL [17]). There
has been some work in the cryptography literature on batch

m
ea

n
re

sp
on

se
 ti

m
e

x
10

-3
 s

ec

m
ea

n
re

sp
on

se
 ti

m
e

x
10

-3
 s

ec

m
ea

n
re

sp
on

se
 ti

m
e

x
10

-3
 s

ec

4.0

4.5

5.0

5.5

6.0

0 20 40 60 80 100 120

arrival rate (1/sec)(a)

m
ea

n
re

sp
on

se
 ti

m
e

x
10

-3
 s

ec

4.0

4.5

5.0

5.5

6.0

6.5

0 20 40 60 80 100 120

arrival rate (1/sec)(b)

4.5

5.0

5.5

6.0

6.5

0 20 40 60 80 100 120

arrival rate (1/sec)(c)

6

8

10

12

14

0 20 40 60 80 100 120

arrival rate (1/sec)(d)

Document size: 1K

Document size: 10K

Document size: 20 bytes

Document size: 100K

emulation
analytic

emulation
analytic

emulation
analytic

emulation
analytic

Figure 10. Mean Response Time Validation of
a Simple Analytic Model against Emulation for
the No Batching Case.

decryption and batch verification schemes, in the context
of public-key cryptographic systems, e.g., [1, 5, 14]. Most
of these proposals require modifications to cryptographic
algorithms. Regarding batch signing, Merkle first intro-
duced the idea of authentication trees in [11] (although it
was developed for an alternate, non-public-key-based, cryp-
tographic system). This is what we used in Section 2.2. In
[12], Pavlovski and Boyd showed that the tree-based batch-
ing scheme introduced in [11] has security characteristics
identical to a scheme without batching, and that a binary
tree structure has minimum residue.

In [6], Gennaro et al. studied the case where a single re-
ceiver is to receive a stream of blocks online and each block
needs to be authenticated. They mentioned that hashes of
all blocks can be put in a table and the table can be digi-
tally signed and sent to the receiver. The Simple Batching
scheme presented in Section 2.1 is similar, but in our case,
each block is sent to a different receiver.

Since the slowness of digital signatures mainly stems
from the high cost of modular arithmetic, an alternative ap-
proach is the so-called one-time signatures used in secret-
key (or symmetric) cryptographic systems, e.g., [3, 9, 10].
Although one-time signatures are very fast to compute, this
approach requires a large number of keys to be generated,
managed, and distributed (since a signature can only be
used once). Therefore, they are not widely used in practice.
Another approach of mixing private-key digital signatures
and one-time signatures also exists [4]. It has some of the
same drawbacks as one-time signatures.

In all the work mentioned above, some have given com-
plexity analysis of batching schemes, but, to the best of our
knowledge, none have considered performance modeling
and analysis of an online system using batch-based digi-
tal signatures. Given the applications in Section 1, there is
a need for significant performance improvement of digital

8

1.5

2.0

2.5

0.0 0.1 0.2 0.3 0.4 0.5
1,000 requests / sec(d)

ne
tw

or
k

ov
er

he
ad

 f
ac

to
r

Document size: 100K

1.2

1.4

1.6

1.8

2.0

2.2

0.0 0.5 1.0
1,000 requests / sec(c)

ne
tw

or
k

ov
er

he
ad

 f
ac

to
r

Document size: 10K

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5
1,000 requests / sec(b)

ne
tw

or
k

ov
er

he
ad

 f
ac

to
r

Document size: 1K

1,000 requests / sec(a)

ne
tw

or
k

ov
er

he
ad

 f
ac

to
r

Document size: 20 bytes

0

10

20

30

40

0 10 20 30 40 50

simple batching
tree-based batching

simple batching
tree-based batching

simple batching
tree-based batching

simple batching
tree-based batching

Figure 11. Normalized Network Overhead of
Batching Schemes.

signatures under high loads in a system setting. This leads
to a need for analytical models and performance evaluation
techniques which can facilitate capacity planning and sys-
tem sizing of such systems. Hence, performance modeling
and evaluation of online systems using batch-based digital
signatures is the focus and the contribution of this paper.

5 Conclusions

We developed an analytical model for online batch-
based digital signature schemes for Internet servers, vali-
dated this model against emulations and simulations, and
used it to compare performance of the batching schemes
against a non-batched system. Using this model, we have
shown that significant computational benefits can be ob-
tained from batching schemes without significant increases
in the amount of additional information that needs to be sent
to the clients.

We have also established stability conditions for the
batching schemes. From the stability conditions, it is fairly
easy to see that as the document sizes grow, the performance
of the gated server will be limited by hash functions calcu-
lations, and the benefit of batching will diminish. However,
for applications such as the ones mentioned in [2] which re-
quire secure timestamps, batch signing with gated service
can relieve the CPU bottleneck at the server.

References

[1] M. Bellare, J. Garay, and T. Rabin. Fast batch verifica-
tion for modular exponentiation and digital signatures.
Advances in Cryptology – Eurocrypt 98 Proceedings,
Volume 1403 of Lecture Notes in Computer Science,
Springer Verlag, 1998.

[2] W. C. Cheng, C.-F. Chou, L. Golubchik, and
S. Khuller. A secure and scalable wide-area upload
service. In Proceedings of the 2nd International Con-
ference on Internet Computing, Volume 2, pages 733–
739, June 2001.

[3] W. Diffie and M. E. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory,
IT-22(6):644–654, 1976.

[4] S. Even, O. Goldreich, and S. Micali. On-line/off-line
digital signatures. In G. Brassard, editor, Proceed-
ings of CRYPTO’89, pages 263–277. Springer-Verlag,
1990.

[5] A. Fiat. Batch RSA. pages 175–185, August, 1989.

[6] R. Gennaro and P. Rohatgi. How to sign digital
streams. In Proceedings of CRYPTO’97, pages 180–
197, Santa Barbara, CA, August 1997.

[7] L. Golubchik. Scalable data collection for Internet-
based Digital Government applications. To appear
in Advances in Digital Government: Systems, Human
Factors, and Policy.

[8] L. Kleinrock. Queueing Systems, Volume I. Wiley-
Interscience, 1975.

[9] L. Lamport. Constructing digital signatures from a
one-way function. Technical Report CSL-98, SRI In-
ternational, October 1979.

[10] R. C. Merkle. A digital signature based on a con-
ventional encryption function. In C. Pomerance,
editor, Proceedings of CRYPTO’87, pages 369–378.
Springer-Verlag, 1988.

[11] R. C. Merkle. A certified digital signature. In G. Bras-
sard, editor, Proceedings of CRYPTO’89, pages 218–
238. Springer-Verlag, 1989.

[12] C. Pavlovski and C. Boyd. Efficient batch signa-
ture generation using tree structures. In Interna-
tional Workshop on Cryptographic Techniques and E-
Commerce (CrypTEC’99), pages 70–77, City Univer-
sity of Hong Kong Press, 1999.

[13] B. Schneier. Applied Cryptography, Second Edition.
Wiley, 1996.

[14] H. Shacham and D. Boneh. Improving SSL handshake
performance via batching. RSA 2001, Volume 2020 of
Lecture Notes in Computer Science, Springer Verlag,
pages 28–43, 2001.

[15] Mesquite Software. CSIM18. www.mesquite.com.

[16] W. Stallings. Cryptography and Network Security:
Principles and Practice, 2nd Edition. Prentice Hall,
1999.

[17] E. A. Young. OpenSSL: The Open Source Toolkit for
SSL/TLS. www.openssl.org.

9

