
0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

7.3 Operating System

Issues

General Concerns

Representative Systems

Copy on Write and Fork

Backing Store Issues

Fetch policy

Placement policy

Replacement policy

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Memory: Traditional OS Issues

Fetch policy

Placement policy

Replacement policy

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Memory: Traditional OS Issues

Text

Data+BSS

Heap

Stack

as_region
1000-7fff

rx, shared

as_region
8000-1afff
rw, private

as_region
1b000-1bfff
rw, private

as_region
200000-41ffffff

rw, shared

as_region
7fffd000-7fffffff

rw, private

file
object

file
object

PCB address
space

anon
object

anon
object

start process off with no pages in primary storage

Fetch policy

bring in pages on demand (and only on demand)

this is known as demand paging

defer processing until you absolutely have to do it

demand paging is an instance of Lazy Evaluation, a

powerful idea used in computer science

why? because you may not have to process at all

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple Paging Scheme

unlike disk pages, it doesn’t matter here - put the incoming

page (from disk) in the first available physical page

Placement policy

required if there is not enough resource to go around

Replacement policy

e.g., replace the page that has been in primary storage the

longest (FIFO policy, which can be bad)

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple Paging Scheme

page frames are used to keep track of physical pages

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Demand Paging

In exec(), address space is created and page table is cleared with

all entries having V=0

Text

Data+BSS

Heap

Stack

Page table

0

0

0

0

0

0

0

0

0

0

0

0

0

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Demand Paging

as the first instruction executes

In exec(), address space is created and page table is cleared with

all entries having V=0

Text

Data+BSS

Heap

Stack

Page table

0

0

0

0

0

0

0

0

0

0

0

0

0

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Demand Paging

as the first instruction executes

since V=0, the hardware traps into the kernel

In exec(), address space is created and page table is cleared with

all entries having V=0

Text

Data+BSS

Heap

Stack

Page table

0

0

0

0

0

0

0

0

0

0

0

0

0

Text

Data+BSS

Heap

Stack

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Demand Paging

as the first instruction executes

since V=0, the hardware traps into the kernel

In exec(), address space is created and page table is cleared with

all entries having V=0

Page table

0

0

0

0

0

0

0

0

0

0

0

0

0

the kernel allocates a physical page and copy the first 4KB

of code into this page (allocate from where?)

point the corresponding page table entry to this page

update all necessary data structures

Disk

the kernel allocates a physical page and copy the first 4KB

of code into this page (allocate from where?)

point the corresponding page table entry to this page

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Demand Paging

as the first instruction executes

since V=0, the hardware traps into the kernel

In exec(), address space is created and page table is cleared with

all entries having V=0

Text

Data+BSS

Heap

Stack

Page table

0

0

0

0

0

0

0

0

0

0

0

0

1

set V=1 and return from the trap

update all necessary data structures

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Demand Paging

as the program access the stack

In exec(), address space is created and page table is cleared with

all entries having V=0

Text

Data+BSS

Heap

Stack

Page table

0

0

0

0

0

0

0

0

0

0

0

0

1

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Demand Paging

similar things happen

In exec(), address space is created and page table is cleared with

all entries having V=0

Text

Data+BSS

Heap

Stack

Page table

1

0

0

0

0

0

0

0

0

0

0

0

1

as the program access the stack

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Demand Paging

similar things happen

In exec(), address space is created and page table is cleared with

all entries having V=0

Text

Data+BSS

Heap

Stack

Page table

1

0

0

0

0

0

0

0

0

0

0

0

1

although stack is a little different since it needs a backing

store and need to set up for copy-on-write

as the program access the stack

although stack is a little different since it needs a backing

store and need to set up for copy-on-write

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Demand Paging

similar things happen

In exec(), address space is created and page table is cleared with

all entries having V=0

Text

Data+BSS

Heap

Stack

Page table

1

0

0

0

0

0

1

0

0

0

0

0

1

as the program access the stack

accessing the data segment is similar to stack (but different)

original (read-only) backing store is the executable file

after copy-on-write, backing store is the swap space

Text

Data+BSS

Heap

Stack

Page table

1

0

0

0

0

0

1

0

0

0

0

0

1

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Demand Paging

Remember, there are multiple processes and multiple page

tables that the OS is servicing

complicated by the fact that page frames can be shared

In kernel 3, you need to make sure that every time when you

return back into user space, all kernel data structures are in a

consistent state

1)

2)

3)

4)

5)

Trap occurs (due to a page fault)

Find free physical page

Write page out if no free physical page

Fetch page

Return from trap

Page Fault (accessing a page with V=0)

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Page Fault

Issues

in step (2), where and how do we find such a free physical page?

1)

2)

3)

4)

5)

Trap occurs (due to a page fault)

Find free physical page

Write page out if no free physical page

Fetch page

Return from trap

Page Fault (accessing a page with V=0)

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Page Fault

Issues

in step (2), where and how do we find such a free physical page?

in step (3), where and how do we find an in-use physical page to

write out to disk?

the Buddy System is used

return NULL if no free physical page is available

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

Text

Data

BSS

Stack

Page table

0

1

0

0

1

0

0

1

App1

Text

Data

BSS

Stack

Page table

0

1

0

0

1

1

0

1

App2

Text

Data

BSS

Stack

Page table

0

1

0

0

1

0

0

1

App3

Physical

Memory
PF0 PF1 PF9PF2 PF3 PF4 PF5 PF6 PF7 PF8

Text

Data

BSS

Stack

Page table

0

1

0

0

1

0

0

1

App1

Text

Data

BSS

Stack

Page table

0

1

0

0

1

1

0

1

App2

Text

Data

BSS

Stack

Page table

0

1

0

0

1

0

0

1

App3

Text

Data

BSS

Stack

Page table

0

0

0

0

0

0

0

0

App4
?

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

Physical

Memory
PF0 PF1 PF9PF2 PF3 PF4 PF5 PF6 PF7 PF8

all physical pages are in use

Need a physical page

all physical pages are in use

Need a physical page

Text

Data

BSS

Stack

Page table

0

1

0

0

1

0

0

1

App1

Text

Data

BSS

Stack

Page table

0

1

0

0

1

1

0

1

App2

Text

Data

BSS

Stack

Page table

0

1

0

0

1

0

0

1

App3

Text

Data

BSS

Stack

Page table

0

0

0

0

0

0

0

0

App4
?

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

Physical

Memory
PF0 PF1 PF9PF2 PF3 PF4 PF5 PF6 PF7 PF8

pick any physical page

well, according to the page replacement policy

"swap" this physical page out

all physical pages are in use

Need a physical page

pick any physical page

Text

Data

BSS

Stack

Page table

0

1

0

0

0

0

0

1

App1

Text

Data

BSS

Stack

Page table

0

1

0

0

1

1

0

1

App2

Text

Data

BSS

Stack

Page table

0

1

0

0

1

0

0

1

App3

Text

Data

BSS

Stack

Page table

0

0

0

0

0

0

0

0

App4
?

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

Physical

Memory
PF0 PF1 PF9PF2 PF4 PF5 PF6 PF7 PF8PF3

kernel keeps track of

where the physical page is copied to

into its "backing store"

(write to disk if the

page frame is "dirty")

Text

Data

BSS

Stack

Page table

0

1

0

0

0

0

0

1

App1

Text

Data

BSS

Stack

Page table

0

1

0

0

1

1

0

1

App2

Text

Data

BSS

Stack

Page table

0

1

0

0

1

0

0

1

App3

Text

Data

BSS

Stack

Page table

0

0

0

0

0

0

0

0

App4
?

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

Physical

Memory
PF0 PF1 PF9PF2 PF4 PF5 PF6 PF7 PF8PF3

a physical page is now free

all physical pages are in use

Need a physical page

pick any physical page

Text

Data

BSS

Stack

Page table

0

1

0

0

0

0

0

1

App1

Text

Data

BSS

Stack

Page table

0

1

0

0

1

1

0

1

App2

Text

Data

BSS

Stack

Page table

0

1

0

0

1

0

0

1

App3

Text

Data

BSS

Stack

Page table

1

0

0

0

0

0

0

0

App4

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

Physical

Memory
PF0 PF1 PF9PF2 PF4 PF5 PF6 PF7 PF8PF3

fetch page from disk and fix up page table

a physical page is now free

all physical pages are in use

Need a physical page

pick any physical page

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Performance

A page fault can result in disk operations and slow down the

application

need to reduce this latency

prefetching

pageout daemon

do not want to wait for the disk!

1)

2)

3)

4)

5)

Trap occurs (due to a page fault)

Find free physical page

Write page out if no free physical page

Fetch page

Return from trap

Page Fault (accessing a page with V=0)

This improves step (4) on previous page

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Improving the Fetch Policy

Fault here

Bring these

in as well

This is prefetching

accesses to pages is often sequential

gamble that this is worthwhile (since it takes up more memory)

but it uses up physical memory faster and makes (3) more

likely to occur

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Improving the Replacement Policy

doing it "on demand" causes excessive delays

When is replacement done?

should be performed as a separate, concurrent activity

use a thread (i.e., a pageout deamon) to continuously and

aggressively look for free pages

so, "on-demand" (or Lazy Evaluation) is not always a good

policy

Can use multiple pageout daemons
0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The "Pageout Daemon"

In-Use Page
Frames

Free Page
Frames

Disk

Pageout
Daemon

Page frames are used to keep track of physical pages

LRU (Least-Recently-Used)

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Choosing the Page to Remove - Replacement Policy

FIFO (First-In-First-Out)

Idealized policies:

LFU (Least-Frequently-Used)

which DVD would you remove from the rack to make room for

the new DVD?

If your DVD rack is full and you just bought a new DVD

FIFO policy is not good

Which pages are replaced?

want to replace those pages least likely to be referenced soon

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Implementing LRU

Physical Page #PortRMV
Page Table

Page Table Entry

To approximate LRU (a very coarse approximation), the

reference bit in the page table entry is used

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Using The Reference Bits

Text

Data

BSS

Stack

Page table

0

1

0

0

1

0

0

1

App1

Text

Data

BSS

Stack

Page table

0

1

0

0

1

1

0

1

App2

Text

Data

BSS

Stack

Page table

0

1

0

0

1

0

0

1

App3

Physical

Memory
PF0 PF1 PF9PF2 PF3 PF4 PF5 PF6 PF7 PF8

-

0

-

0

-

0

-

-

-

-

0

0

-

0

0

-

-

0

-

-

0

-

-

0

code?

Why would some pages referenced more often than other?

stack?

depends on the application

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Clock Algorithm - Two-handed

Back hand:
if (reference bit == 0)
 remove page

Front hand:
reference bit = 0

Need to give enough

time for thousands

of references before

checking

0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Clock Algorithm - One-handed

Need to give enough

time for thousands

of references before

checking

if (reference bit == 0)
 remove page
else
 set reference bit = 0

0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Clock Algorithm - One-handed

Need to give enough

time for thousands

of references before

checking

if (reference bit == 0)
 remove page
else
 set reference bit = 0

for weenix

pageoutd is only woken

up when out of memory

okay for a toy OS

0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Global vs. Local Allocation

all processes compete for page frames from a single pool

Global allocation

each process has its own private pool of page frames

Local allocation

Windows does this

processes do not have to compete for the same pool of

page frames

What if a process uses up all the page frames?

problem:

memory-hungry processes will get all the memory

possibility of thrashing

goal is to minimize the possibility of thrashing

Process A references another page, causing a page fault

0123

35

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thrashing

process A has a page in frame 1

Consider a system that has exactly two page frames:

process B has a page in frame 2

Process B faults immediately; the page in frame 1 is given to B

Process A resumes execution and faults again; the page in frame 1

is given back to A

...

neither processes makes progress

the page in frame 2 is removed from B and given to A

1

2

Process A references another page, causing a page fault

0123

36

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thrashing

process A has a page in frame 1

Consider a system that has exactly two page frames:

process B has a page in frame 2

Process B faults immediately; the page in frame 1 is given to B

Process A resumes execution and faults again; the page in frame 1

is given back to A

...

need 3 physical page frames,

but only 2 are available

Although this is a contrived example,

it highlights the basic problem

throughput

load

knee cliffneither processes makes progress

the page in frame 2 is removed from B and given to A

1

2

0123

37

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The Working-Set Principle

WS(P,T) is the set of pages used by process P over time

period T

The set of pages being used by a program (the working set) is

relatively small and changes slowly with time

if space isn’t available, then P should not run and should

be swapped out

Over time period T, P should be given |WS(P,T)| page frames

although it may be difficult to implement exactly

To deal with thrashing, the idea of Working-Set can be used

then thrashing cannot occur

If the sum of the working-set of all processes is less than the

total amount of available physical memory

using Local Allocation is a way to reduce the chance of

thrashing

0123

38

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

7.3 Operating System

Issues

General Concerns

Representative Systems

Copy on Write and Fork

Backing Store Issues

4GB
0123

39

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Linux Intel x86 VM Layout

kernel

user

0

3GB

0123

40

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Real Memory

kernel

user

Virtual Memory Real Memory

0123

41

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Allocation

virtual allocation

User

real allocation

virtual allocation

OS kernel

real allocation

fork

pthread_create

exec

brk

mmap

(not done)

fork, etc.

some kernel data structures

page faults

some kernel data structures

e.g., page tables

pretty much any time when you

allocate from a slab allocator

pretty much any time when you

allocate from the buddy system

3GB

0

0123

42

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example: 1GB Of Real Memory

kernel

user

Virtual Memory Real Memory

1GB

0

4GB

conceptually, can setup page

table so that physical address =

kernel vaddr - 0xc0000000

If you only have 1GB of physical

memory

not done this way in real

systems

OS can read any physical

memory location easily

When allocating page frames

for user space memory pages

these pages are mapped from

both user and kernel spaces

3GB

0

0123

43

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example: 1GB Of Real Memory

kernel

user

Virtual Memory Real Memory

1GB

0

4GB

OS can read any user space

memory location directly

(assuming it’s "mapped")

Page Table

Physical Memory

Page Table

Page Table

Page Table

Physical Memory

Page Table

Page Table

does not look like this but look like this:

Multiple processes - page tables

0123

44

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example: 1GB Of Real Memory

What a user thread becomes the kernel thread, it’s still in the

same process, therefore, should use the same page table

page table
+

vmmap

OS

User

OS

User

1GB

0123

45

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example: 1GB Of Real Memory

1GB of Real MemoryApp1 App2

1GB

page table
+

vmmap

OS code and OS data stay exactly where they were

When you switch from one process to another

bottom 1/4 of page tables of all processes are mapped identically

OS text

for kernel-only processes, only the bottom 1/4 of the page

tables are mapped (i.e., top 3/4 always have V=0)

by using the vmmap (virtual memory map) data structure

How to setup top 3/4 page table for a user process?

vmmap is only needed to manage user portion of the

address space

page table
+

vmmap

OS

User

OS

User

1GB

0123

46

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example: 1GB Of Real Memory

1GB of Real MemoryApp1 App2

1GB

page table
+

vmmap
OS text

Every physical address that’s allocated to a user process can have

two virtual addresses

one for the kernel and one for a user process

which virtual address should the kernel use?

be careful with user virtual address

can always use the kernel virtual address

if V bit in PTE is 0, cannot use such user virtual address in

the kernel

page table
+

vmmap

page table
+

vmmap

OS

User

OS

User
OS text

1GB

0123

47

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example: 1GB Of Real Memory

1GB of Real MemoryApp1 App2

1GB

you are still the same thread from same process

When you trap into the kernel

you use the same page table

in x86, there’s a user/kernel bit in each PTE (page table entry)

top 3/4 of the PTEs set the bit to U(ser)=1

bottom 1/4 of the PTEs set the bit to 0 (Superviser)

the kernel part of every page table are mapped identically

if you have 1GB or less physical memory, once this

part is mapped, they will never change

page table
+

vmmap

page table
+

vmmap

OS

User

OS

User
OS text

1GB

0123

48

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example: 1GB Of Real Memory

1GB of Real MemoryApp1 App2

1GB

kernel text, data, and bss starts at virtual address 0xc0000000

HW: read pt_init() in "kernel/mm/pagetable.c" of weenix

then comes kernel’s page directory table (4KB+4KB)

then comes kernel’s page tables (4KB each)

understand how the first page table is setup for the kernel

understand that the kernel, just like user processes, can

only use virtual addresses!

Although weenix only has 256MB of physical memory

In weenix, when an application call read() with buffer address

0x12345678, how can the kernel write to this buffer?

should use kernel virtual address since it’s always safe to use

how to convert 0x12345678 to kernel virtual address?

use the vmmap data structure

page table
+

vmmap

page table
+

vmmap

OS

User

OS

User
OS text

1GB

0123

49

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example: 1GB Of Real Memory

1GB of Real MemoryApp1 App2

1GB

find memory segment it belongs (a memory segment

consists of a bunch of page frames, find right page frame)

page frame has the base kernel virtual address (i.e.,

page-aligned)

1GB

0

0123

50

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Lots of Real Memory

kernel

user

Virtual Memory Real Memory

896MB

0

896MB

kmap

1GB

0

0123

51

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Lots of Real Memory

kernel

user

Virtual Memory Real Memory

896MB

0

896MB

kmap

the kernal can change what

the kmap region maps to

so it can access any

region in physical memory

(where user page frames

sit)

0x38000000+

0123

52

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Mem_map and Zones

DMA zone: locations < 2
 24

many DMA devices can only handle

24-bit address

Linux divides physical memory into 3 zones

Normal zone: locations ≥ 2
 24

 and < 2
 30

 - 2
 27

HighMem zone: locations ≥ 2
 30

 - 2
 27

OS data structures must reside in this

range

user pages may be in this range

strictly for user pages

0x01000000 to 0x37ffffff

0x00000000 to 0x00ffffff

1GB

0
Real Memory

896MB

0123

53

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Mem_map and Zones

Zone
Normal

mem_map
page frames

Zone
HighMem

Zone
DMA

0123

54

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Page Lists

Zone
Normal

Free
Pages

Active
Pages

Zone
HighMem

Zone
DMA

Inactive
Pages

0123

55

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Page Lists

free list

contain physical pages that have not been allocated

Each zone’s page frames are divided into three lists

buddy system to maintain

inactive

picked out by clock algorithm as not recently used

active

picked out by clock algorithm as recently used

dirty/modified

marked as "busy" and is unmapped from all processes

(i.e., set V=0 in PTE) that share this page

when you lookup a page frame in the page fault handler, if

the page frame is "busy", you must wait until the disk

operation is finished

when data transfer is completed, must wake up all threads

waiting for this page frame to become "un-busy"

0123

56

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Simple User Address Space

bss & dynamic

data

text

stack

0123

57

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Address-Space Representation
(Somewhat Simplified)

vm_area_struct
1000-7fff
x, shared

vm_area_struct
8000-1afff
rw, private

vm_area_struct
1b000-1bfff
rw, private

vm_area_struct
7fffd000-7fffffff

rw, private

struct
file

task_struct

mm_struct

vm_area_struct is what we used to call as_region

areas, regions, memory segments are the same thing

anon
object

anon
object

a memory segment is

made out of pages

file/anonymous object

manages page frames

0123

58

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Adding a Mapped File

bss & dynamic

data

text

stack

mapped file

0123

59

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Address-Space Representation: More Areas

vm_area_struct
1000-7fff
x, shared

vm_area_struct
8000-1afff
rw, private

vm_area_struct
1b000-1bfff
rw, private

vm_area_struct
7fffd000-7fffffff

rw, private

struct
file

task_struct

mm_struct

vm_area_struct
200000-41ffffff

rw, private

struct
file

anon
object

anon
object

0123

60

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Adding More Stuff

bss & dynamic

data

text

stack 1

mapped file 1

stack 2

stack 3

mapped file 2

mapped file 3

mapped file 117

0123

61

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Address-Space Representation: Reality

task_struct

mm_struct

200000-201fff

1b000-1bfff

1000-7fff 8000-1afff

202000-203fff

204000-204fff 7fffd000-7fffffff

208000-210fff

0123

62

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Linux Page Management

two-handed clock algorithm

Replacement

applied to zones in sequence

essentially global in scope

0123

63

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Page Scanning

Zone
Normal

Free
Pages

Active
Pages

Zone
HighMem

Zone
DMA

Inactive
Pages

keeps track of page frames and backing store

0123

64

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Important Linux VM Data Structures Summary

virtual memory map (which represents the user address space)

maps virtual memory segments

For each process, PCB contains

hardware page tables

Globally, free, active, and inactive page list are maintained

keeps track of page frames and backing store

virtual memory map (which represents the user address space)

For each process, PCB contains

Globally, free, active, and inactive page list are maintained

maps virtual memory segments

hardware page tables

0123

65

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Important Linux VM Data Structures Summary

Example usage 1: What happens when a page fault occurs?

keeps track of page frames and backing store

virtual memory map (which represents the user address space)

For each process, PCB contains

Globally, free, active, and inactive page list are maintained

maps virtual memory segments

hardware page tables

Example usage 1: What happens when a page fault occurs?

0123

66

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Important Linux VM Data Structures Summary

1) page fault came from the hardware if V=0 for a page

2) traps into the kernel, the kernel:

2a) gets a free page frame

2b) looks at the virtual memory map and copy the page from

disk into this free page frame

2c) adjust hardware page table to point to this page

frame

keeps track of page frames and backing store

virtual memory map (which represents the user address space)

can get complicated because a page frame may be shared

by multiple user processes

For each process, PCB contains

Globally, free, active, and inactive page list are maintained

maps virtual memory segments

hardware page tables

Example usage 1: What happens when a page fault occurs?

0123

67

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Important Linux VM Data Structures Summary

1) page fault came from the hardware if V=0 for a page

2) traps into the kernel, the kernel:

2a) gets a free page frame

2b) looks at the virtual memory map and copy the page from

disk into this free page frame

2c) adjust hardware page table to point to this page

frame

keeps track of page frames and backing store

virtual memory map (which represents the user address space)

For each process, PCB contains

Globally, free, active, and inactive page list are maintained

maps virtual memory segments

hardware page tables

Example usage 2: What happens when pageout daemon wants to

free up a modified/dirty page?

0123

68

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Important Linux VM Data Structures Summary

keeps track of page frames and backing store

virtual memory map (which represents the user address space)

find the corresponding backing store, write back the page

content to disk (mark the page frame "busy" while writing)

For each process, PCB contains

Globally, free, active, and inactive page list are maintained

maps virtual memory segments

hardware page tables

Example usage 2: What happens when pageout daemon wants to

free up a modified/dirty page?

0123

69

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Important Linux VM Data Structures Summary

1) find from which processes/address spaces the page frame

belongs to

2)

3)

unmap this page from the corresponding pagetables

4) free the page frame if no process is waiting to use it

read pframe_remove_from_pts() in weenix

0123

70

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Windows x86 Layout

kernel

user

kernel

user

Two choices

4GB

0

3GB

4GB

0

2GB

0123

71

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Windows Paging Strategy Highlights

lower bound on page frames

All processes guaranteed a "working set"

Competition for additional page frames

one-handed clock algorithm

"Balance-set" manager thread maintains working sets

then working set

Swapper thread swaps out idle processes (inactive for 15 seconds)

very different from Linux

Some of kernel memory is paged

first kernel stacks

page faults are possible

makes more physical memory available

you can get "cannot start a process because there is not

enough memory" message

must "lock down" page frames for page fault handler

0123

72

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Windows Page-Frame States

Modified Standby Free Zeroed

Transition

Active

(waiting

for data

from disk)

0123

73

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

7.3 Operating System

Issues

General Concerns

Representative Systems

Copy on Write and Fork

Backing Store Issues

0123

74

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Unix and Virtual Memory:
The fork()/exec() Problem

fork() actually makes a copy of the parent’s address space

for the child

Naive implementation:

child executes a few instructions (setting up file descriptors,

etc.)

child calls exec()

result: a lot of time wasted copying the address space, though

very little of the copy is actually used

0123

75

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

vfork()

the parent is suspended until the child returns it

Don’t make a copy of the address space for the child; instead,

give the address space to the child

as part of the exec, the address space is handed back to the

parent

The child executes a few instructions, then does an exec

very efficient

Advantages

child must not intentionally or accidentically modify the address

space

Disadvantages

works only if child does an exec

0123

76

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Better fork()

if either party attempts to modify a page, the modifying

process gets a copy of just that page

Parent and child share the pages comprising their address

spaces

usually faster than the original fork()

Advantages

slower than vfork()

Disadvantages

semantically equivalent to the original fork()

try to put things off as long as possible if you don’t have to do

them now

Principle of Lazy Evaluation at work

if it needs to be done now, you don’t really have a choice

if you wait long enough, it might turn out that you don’t have

to do them at all

a process gets a private copy of a page after a thread in the

process performs a write to that page for the first time

0123

77

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Copy on Write and fork()

copy-on-write must work with fork()

To implement the "better" fork(), we need to use copy-on-write

what are the complications?

during page fault, if a virtual memory segment is R/W and

privately mapped, then we need to perform copy-on-write

set every PTE to R/O for pages that correspond to memory

segments that needs copy-on-write (i.e., privately mapped)

make a copy of that page, set corresponding PTE to R/W

and change its physical page number to point to the copy

0123

78

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping - Copy on Write Occurs after fork()

Pages

Parent and child process share pages, all marked read-only at first

Parent Pagetable

page x

page y

page z

z

y

x Child Pagetable

R/O

R/O

R/O

page x

page y

page z

R/O

R/O

R/O

to initalize the child’s page table, just use memcpy() to copy

the entire page table from the parent

Parent and child process share pages, all marked read-only at first

0123

79

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping - Copy on Write Occurs after fork()

copy on write: when one of the processes tries to modify

the data, a copy of the page is created and used

Data = 17;

Pages

Parent Pagetable

z

y

x Child Pagetable

0Data

page x

page y

page z

R/O

R/O

R/O

page x

page y

page z

R/O

R/O

R/O

this is another reason for a page fault

Parent and child process share pages, all marked read-only at first

0123

80

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping - Copy on Write Occurs after fork()

copy on write: when one of the processes tries to modify

the data, a copy of the page is created and used

Data = 17;

Pages

Parent Pagetable

z

y

x Child Pagetable

0Data

17Data

page x

page y

page z

R/O

R/O

R/W

page x

page y

page z

R/O

R/O

R/O

z

this is another reason for a page fault

0123

81

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Share-Mapped Files

Data = 17;

For shared mapping, changes are writting into the shared page

Pages

Parent Pagetable

y

x Child Pagetable

17Data

page x

page y

page z

R/W

R/W

R/W

page x

page y

page z

R/W

R/W

R/W

z

please note that the information about whether a page is

shared or private is not inside the page table

it is kept in a kernel data structure (vm_area_struct)

0123

82

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping - Copy on Write before fork()

For private mapping, copy on write

Pages

Parent Pagetable

z

y

x

page x

page y

page z

R/O

R/O

R/O

0123

83

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping - Copy on Write before fork()

For private mapping, copy on write

Data = 17;

Pages

Parent Pagetable

z

y

x

0Data

page x

page y

page z

R/O

R/O

R/O

0123

84

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping - Copy on Write before fork()

For private mapping, copy on write

Data = 17;

Pages

Parent Pagetable

z

y

x

0Data

17Data

page x

page y

page z

R/O

R/O

R/W

z

0123

85

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Private-Mapped File Changes

should child process’ page be marked "modified"?

Complication: what if the page is modified before fork()?

some of child’s pages are initialized from files and some

are initialized from the parent’s address space

Data = 17;

Pages

Parent Pagetable

z

y

x Child Pagetable

0Data

17Data

page x

page y

page z

R/O

R/O

R/W

page x

page y

page z

R/O

R/O

?
 ?

 ?

z

memcpy() the parent’s page table is wrong: what if the parent

modify the page further?

Complication: what if the page is modified before fork()?

child should not see these changes

Data = 17;

Pages

Parent Pagetable

z

y

x Child Pagetable

0Data

17Data

page x

page y

page z

R/O

R/O

R/W

page x

page y

page z

R/O

R/O

R/W

z

0123

86

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Private-Mapped File Changes

0123

87

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Private-Mapped File Changes

this is also wrong

Data = 17;

Pages

Parent Pagetable

z

y

x Child Pagetable

0Data

17Data

page x

page y

page z

R/O

R/O

R/W

page x

page y

page z

R/O

R/O

R/O

z

Complication: what if the page is modified before fork()?

child process should see 17 in Data on page z

Pages

Parent Pagetable

z

y

x Child Pagetable

0Data

17Data

page x

page y

page z

R/O

R/O

R/O

page x

page y

page z

R/O

R/O

R/O

z

Complication: what if the page is modified before fork()?

0123

88

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Private-Mapped File Changes

Data = 17;

this seems to be the correct solution

i.e., copy PTEs from parent and reset for copy-on-write

on all private pages (in all private mapping)

Pages

Parent Pagetable

z

y

x Child Pagetable

0Data

17Data

page x

page y

page z

R/O

R/O

R/O

page x

page y

page z

R/O

R/O

R/O

z

Complication: what if the page is modified before fork()?

0123

89

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Private-Mapped File Changes

Data = 17;

but what if the parent or the child calls fork()again?

afterwards, another process calls fork() again, etc.?

cannot use PTEs to keep track (example later)

0123

90

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Copy-on-write & Fork

if a page is "managed by a shadow

object" (or "referenced in a shadow

object"), it has been modified

Shadow Objects

A page in a memory map, into which an

object was mapped private (e.g., data

region), has an associated shadow object

otherwise, the page is managed by

the original object (file or a

"zero/anonymous" object)

keep track of pages that were originally

copy-on-write but have been modified

Process A

Private-mapped
file object

Shadow
object

x y z

vm_area_struct
8000-1afff
rw, private

indirection

x, y, z on the right are pages / page frames

Shadow object tells you where to copy from

when you need to perform copy-on-write

mmobj

0123

91

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Address-Space Representation

Remember this?

vm_area_struct
1000-7fff
x, shared

vm_area_struct
8000-1afff
rw, private

vm_area_struct
1b000-1bfff
rw, private

vm_area_struct
7fffd000-7fffffff

rw, private

struct
file

vm_area_struct
200000-41ffffff

rw, private

struct
file

anon anon

0123

92

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Address-Space Representation

Remember this?

vm_area_struct
1000-7fff
x, shared

vm_area_struct
8000-1afff
rw, private

vm_area_struct
1b000-1bfff
rw, private

vm_area_struct
7fffd000-7fffffff

rw, private

struct
file

vm_area_struct
200000-41ffffff

rw, private

struct
file

anon anon

now we have to start with (mmobj is used in weenix):

mmobj

struct
filemmobj

vm_area_struct
200000-41ffffff

rw, private

vmarea_t
1000-7fff
x, shared

vmarea_t
8000-1afff
rw, private

vmarea_t
1b000-1bfff
rw, private

vmarea_t
7fffd000-7fffffff

rw, private

anon anon

struct
file

0123

93

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Share Mapping (1)

Process A has
shared-mapped a file
into its address space

Process A

File object

shared

x y z

in weenix

instead of pointing to a

File object, it’s pointing

to an mmobj inside a

vnode inside a File

object

mmobj is used to manage

page frames

0123

94

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Share Mapping (2)

Process A has
shared-mapped a file
into its address space

Process A

Share-mapped
file object

Process B

A forks, creating B.

shared shared

x y z

Process B also has
the same shared mapping

0123

95

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (1)

Process A

Private-mapped
file object

Shadow object

x y z

cow

0123

96

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (1)

Process A

Private-mapped
file object

Shadow object

x y z

Pages

A’s Pagetable

z

y

x

page x

page y

page z

R/O

R/O

R/O

cow

0123

97

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (1)

A modifies page x.

Process A

Private-mapped
file object

Shadow object

x y z

Pages

A’s Pagetable

z

y

x

page x

page y

page z

R/O

R/O

R/O

cow

x

0123

98

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (1)

A modifies page x.

Process A

Private-mapped
file object

Shadow object

x y z

Pages

A’s Pagetable

z

y

x

page x

page y

page z

R/W

R/O

R/O

cow

0123

99

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (1)

A modifies page x.

Process A

Private-mapped
file object

Shadow object

x y z

x

x

Pages

A’s Pagetable

z

y

x

page x

page y

page z

R/W

R/O

R/O

cow

0123

100

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (1)

A modifies page x.

Process A

Private-mapped
file object

Shadow object

x y z

xA forks, creating B.

x

Pages

A’s Pagetable

z

y

x

page x

page y

page z

R/W

R/O

R/O

cow

x

A’s Pagetable

z

y

x

page x

page y

page z

R/W

R/O

R/O

0123

101

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (2)

A modifies page x.

Process A

x y z

A forks, creating B.

Process B

x

Child Pagetable

page x

page y

page z

R/W

R/O

R/Ocow cow

but this is not right

need to reset for

copy-on-write

how?

x

A’s Pagetable

z

y

x

page x

page y

page z

R/O

R/O

R/O

0123

102

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (2)

A modifies page x.

Process A

x y z

A forks, creating B.

Process B

x

Child Pagetable

page x

page y

page z

R/O

R/O

R/Ocow cow

reset for copy-on-write

add an empty shadow

object since nothing has

been modified, yet (i.e.,

it’s been "reset")

change PTEs for privately

mapped segments to R/O

x

A’s Pagetable

z

y

x

page x

page y

page z

R/O

R/O

R/O

0123

103

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (2)

A modifies page x.

Process A

x y z

A forks, creating B.

Process B

x

Child Pagetable

page x

page y

page z

R/O

R/O

R/Ocow cow

weenix does it in two steps

it does not change these

PTEs to R/O

instead, it unmaps the

entire user space

page table (i.e., sets V=0

for all user space PTEs)

set PTE to R/O on the next

page fault if reading

wat if the next page fault

is for writing?

0123

104

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (2)

A modifies page x.

Process A

x y z

A forks, creating B.

Process B

x

cowcow

0123

105

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (2)

A modifies page x.

Process A

x y z

A forks, creating B.

A modifies page z.

B modifies page y.

Process B

x

to find a page to copy from

start with the process’

memory map and follow

the chain of shadow

objects

if not in a shadow object,

will find it in the mapped

file or "zero/anonymous"

object

cowcow

0123

106

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (2)

A modifies page x.

Process A

x y z

A forks, creating B.

A modifies page z.

B modifies page y.

Process B

x

yz to find a page to copy to

must be managed by the

first shadow object (after

you have performed

"copy")

cowcow

0123

107

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (2)

A modifies page x.

Process A

x y z

A forks, creating B.

A modifies page z.

B modifies page y.

Process B

x

yz

B forks, creating C.

cowcow

0123

108

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (3)

A modifies page x.

Process A

x y z

A forks, creating B.

A modifies page z.

B modifies page y.

Process B

x

y

z

B forks, creating C.

Process C

cowcow cow

0123

109

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (3)

A modifies page x.

Process A

x y z

A forks, creating B.

A modifies page z.

B modifies page y.

Process B

x

y

z

B forks, creating C.

A modifies page x.

B modifies page x.

C modifies page z.

Process C

cowcow cow

0123

110

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (3)

A modifies page x.

Process A

x y z

A forks, creating B.

A modifies page z.

B modifies page y.

Process B

x

y

z

B forks, creating C.

A modifies page x.

B modifies page x.

C modifies page z.

Process C

x z

x

cowcow cow

0123

111

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (3)

A modifies page x.

Process A

x y z

A forks, creating B.

A modifies page z.

B modifies page y.

Process B

x

y

z

B forks, creating C.

A modifies page x.

B modifies page x.

C modifies page z.

Process C

x z

This is known as "bottom

object" in weenix

it does NOT have to be

associated with a file

can be associated with

zero/anonymous memory

polymorphism used

x

cowcow cow

a slightly

different example

0123

112

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (4)

Process A

x z

Process B

x

z

Process C

x z

for this bottom object

x and z are "resident"

and y is not

the bottom object knows

how to "get" y

what does shadow object

do if write to page y?y

for the bottom

object, not all

page have to be

resident

in weenix, pages in

a shadow object

are, by definition,

"resident"

x

cowcow cow

"copy" arguments from one process to another

Local RPC

assume arguments are page-aligned and page-sized

map pages into both caller and callee, copy-on-write

0123

113

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Copy

works in most cases, except when the page corresponds

to a shared memory-mapped file

in this case, the sender does not have a shadow object!

0123

114

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Share and Private Mapping

Process A

Share-mapped
file object

x y z

Process B

0123

115

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Share and Private Mapping

A virtual copies x,
y, and z into B.

Process A

Share-mapped
file object

x y z

Process B

Shadow object

0123

116

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Share and Private Mapping

A virtual copies x,
y, and z into B.
B modifies y.

Process A

Share-mapped
file object

x y z

Process B

Shadow object
y

0123

117

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Share and Private Mapping

A virtual copies x,
y, and z into B.
B modifies y.
A modifies x.

Process A

Share-mapped
file object

x y z

Process B

Shadow object
x

y

0123

118

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Share and Private Mapping

A virtual copies x,
y, and z into B.
B modifies y.
A modifies x.

Process A

Share-mapped
file object

x’ y z

Process B

Shadow object
x

y

0123

119

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Shadow Objects Summary

because we want to implement copy-on-write together with
fork()

organize a tree of shadow objects using an inverted tree

data structure

Why go through all this trouble?

where the root is the bottom object

what is the "idea" of Shadow Objects?

To manage this mess, weenix uses the idea of Shadow Objects

the rule for finding page frame / physical page that contains

the global variable in question for a particular process

traversing shadow object pointers on the inverted tree

when and how to perform copy-on-write

a variable (such as Data a few slides back) can exist in many

different physical pages simultaneously

each contains a different version of this variable

you have to implement what’s described on these slides in

kernel 3

mmobj

struct
filemmobj

vm_area_struct
200000-41ffffff

rw, private

vmarea_t
1000-7fff

rx, shared

vmarea_t
8000-1afff
rw, private

vmarea_t
1b000-1bfff
rw, private

vmarea_t
7fffd000-7fffffff

rw, private

anon anon

struct
file

0123

120

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Management Objects in weenix

In weenix, an mmobj is used to manage page frames

types of mmobj in kernel assignments are:

there’s one that lives inside a vnode (vn->vn_mmobj)

a shadow object is an mmobj

an anonymous object (meaning not associated with a file and

not a shadow object) is an mmobj

a vmarea is supported by one of these 3 mmobjs

mmobj

struct
filemmobj

vm_area_struct
200000-41ffffff

rw, private

vmarea_t
1000-7fff

rx, shared

vmarea_t
8000-1afff
rw, private

vmarea_t
1b000-1bfff
rw, private

vmarea_t
7fffd000-7fffffff

rw, private

anon anon

struct
file

0123

121

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Management Objects in weenix

In weenix, an mmobj is used to manage page frames

types of mmobj in kernel assignments are:

there’s one that lives inside a vnode (vn->vn_mmobj)

a shadow object is an mmobj

an anonymous object (meaning not associated with a file and

not a shadow object) is an mmobj

a vmarea is supported by one of these 3 mmobjs

ok to have a shadow object here since it won’t get used

since it’s read-only (i.e., no copy-on-write is possible)

Bottom object b

Shadow object s

Process A

x y z

z

cow

0123

122

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Management Objects in weenix

In weenix, an mmobj is used to manage page frames

a page frame is uniquely

identified by an mmobj and

a pagenum

notation:
(mmobj, pagenum)

where does pagenum

come from?

think of a file as

an array of pages

then pagenum is

the array index

into the file

notation:
(mmobj, pagenum)

Process A

Bottom object b

Shadow object s

0 1 2

z

cow

0123

123

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Management Objects in weenix

In weenix, an mmobj is used to manage page frames

a page frame is uniquely

identified by an mmobj and

a pagenum

(b,0)

(b,1)
(b,2)

pagenum is then a

page index in that file

if you map part of a file

(say a page) into your

address space, you need

to remember which page

sometimes, you know

the exact name of a

page frame

need to search

sometimes, you only

know pagenum (e.g.,

"where is page z?")

use hash table to lookup

notation:
(mmobj, pagenum)

Process A

Bottom object b

Shadow object s

0 1 2

2

cow

0123

124

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Management Objects in weenix

In weenix, an mmobj is used to manage page frames

a page frame is uniquely

identified by an mmobj and

a pagenum

(s,2)

(b,0)

(b,1)
(b,2)

hash table used for lookup

read kernel 3 FAQ

0123

125

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

7.3 Operating System

Issues

General Concerns

Representative Systems

Copy on Write and Fork

Backing Store Issues

0123

126

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The Backing Store

File System

Disk

??Page Frames

mmobj

struct
file

mmobj

vm_area_struct
200000-41ffffff

rw, shared

vmarea_t
1000-7fff

rx, shared

vmarea_t
8000-1afff
rw, private

vmarea_t
1b000-1bfff
rw, private

vmarea_t
7fffd000-7fffffff

rw, private

anon anon

struct
file

0123

127

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Backing Up Pages (1)

pages come from the file, but, since they are never modified,

they never need to be written back

Read-only mapping of a file (e.g. text)

pages come from the file, modified pages are written back to

the file

Read-write shared mapping of a file (e.g. via mmap() system call)

weenix supports this type of "backing store"

0123

128

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Backing Up Pages (2)

pages come from the file, but modified pages, associated

with shadow objects, must be backed up in swap space

Read-write private mapping of a file (e.g. the data section as

well as memory mapped private by the mmap() system call)

pages are created as zero fill on demand; they must be

backed up in swap space

Anonymous memory (e.g. bss, stack, and shared memory), also

privately mapped

weenix does not support this type of backing store

need to prevent the pageout daemon to free up these pages

accidentically

simply move them out of the pageout daemon’s way using
pframe_pin()

modified pages of these, associated with shadow objects,

must be backed up in swap space

0123

129

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Swap Space

radically-conservative approach: Eager Evaluation (or

pre-allocation)

Swap space management possibilities

radically-liberal approach: Lazy Evaluation

backing-store space is allocated when virtual memory is

allocated

page outs always succeed

disadvantage: might need to have much more backing store

than needed

backing-store space is allocated only when needed

disadvantage: page outs could fail because of no space and

process gets killed at a seemingly random time

advantage: can get by with minimal backing-store space

0123

130

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Swap Space

by default, done with eager evaluation in Windows and

most Unix/Linux systems

For things like malloc() and allocation of address space for

privately-mapped files

Space management possibilities

mixed approach: e.g., reserve stack space for a thread in

Windows

the address space for the thread stack is first "reserved"

when part of this address space is used, it’s "committed"

(backing store is actually allocated)

both systems provide means for lazy evaluation as well

no backing store actually created, but space is reserved so

no other thread can use the reserved space

0123

131

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Space Allocation in Linux

Total memory = primary + swap space

three possibilities

System-wide parameter: overcommit_memory

don’t worry about over-committing

mmap has MAP_NORESERVE flag

maybe (default)

always

never

0123

132

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Space Allocation in Windows

allocation of virtual memory

Space reservation

reservation of physical resources

Space commitment

no over-commitment

MapViewOfFile (sort of like mmap)

creator specifies both reservation and commitment for stack

pages

Thread creation

paging space + physical memory

0123

133

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Summary

App

Process
Management

Virtual Memory
Management

File System

User

OS

App

file systems uses threads managed by the process subsystem

The subsystems are inter-related

file systems uses buffer cache (managed by the memory

subsystem)

memory subsystem uses threads to do background work

process subsystem keeps track of data structures related

to files and virtual memory on behalf of processes

0123

134

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Summary

App

Process
Management

Virtual Memory
Management

File System

User

OS

App

think of everything that happens in these subsystems when

you type "ls" into a console

To make sure you understand the big picuture

although we are already using page tables in earlier

assignments (see pt_init())

Kernel 3 is where everything comes together

