Operating Systems - CSCI 402

7.3 Operating System
Issues

ﬁ> General Concerns

_, Representative Systems
ﬁ> Copy on Write and Fork
) Backing Store Issues

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Memory: Traditional OS Issues

) Fetch policy
) Placement policy

_ Replacement policy

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Memory: Traditional OS Issues

) Fetch policy Toxt
Data+BSS

) Placement policy e

_ Replacement policy I
Stack

PCB address
space

as_region as_region as_region as_region as_region
1000-7fff 8000-1afff 1b000-1bfff 200000-41ffffff 7ifd000-7fffffff
rx, shared rw, private rw, prlvate rw, shared rw, private

Y

file
object

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Simple Paging Scheme

_) Fetch policy
= start process off with no pages in primary storage

= bring in pages on demand (and only on demand)
Q this is known as demand paging
& defer processing until you absolutely have to do it
& why? because you may not have to process at all
& demand paging is an instance of Lazy Evaluation, a
powerful idea used in computer science

Copyright © William C. Cheng

Operating Systems - CSCI 402
A Simple Paging Scheme

_) Placement policy
= unlike disk pages, it doesn’t matter here - put the incoming
page (from disk) in the first available physical page
Q page frames are used to keep track of physical pages

_) Replacement policy
= required if there is not enough resource to go around
= e.g., replace the page that has been in primary storage the
longest (FIFO policy, which can be bad)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Demand Paging

0
Text E g
Data+BSS E 0
Heap E 0
0
f 0
0
Stack E g
0
0
0

Page table

ﬁ} In exec (), address space is created and page table is cleared with
all entries having V=0

Copyright © William C. Cheng

Operating Systems - CSCI 402

Demand Paging

/> 0
- Text E g
Data+BSS E 0
Heap E g
f 0
0
Stack E g
0
0
0

Page table

ﬁ} In exec (), address space is created and page table is cleared with
all entries having V=0
= as the first instruction executes

Copyright © William C. Cheng

Operating Systems - CSCI 402

Demand Paging

- "

Text
Data+BSS
Heap

i

Stack

(=2 (=] [=] [=] [=} [=] [=} [«] [«} [«] [«} =} [=]

Page table

ﬁ} In exec (), address space is created and page table is cleared with
all entries having V=0
= as the first instruction executes
Q since V=0, the hardware traps into the kernel

Copyright © William C. Cheng

Operating Systems - CSCI 402

Demand Paging

- "

Text
Data+BSS
Heap

i

Stack

ﬁ} In exec (), address space is created and page table is cleared with
all entries having V=0
= as the first instruction executes
Q since V=0, the hardware traps into the kernel
Q the kernel allocates a physical page and copy the first 4KB
of code into this page (allocate from where?)
& point the corresponding page table entry to this page
& update all necessary data structures

(=2 (=] [=] [=] [=} [=] [=} [«] [«} [«] [«} =} [=]

Page table

Copyright © William C. Cheng

Operating Systems - CSCI 402

Demand Paging

- "

Text
Data+BSS
Heap

i

Stack

1 .

(=2 (=] [=] [=] [=} [=] [=} [«] [} [=] [=} N}

Page table

ﬁ} In exec (), address space is created and page table is cleared with
all entries having V=0
= as the first instruction executes
Q since V=0, the hardware traps into the kernel
Q the kernel allocates a physical page and copy the first 4KB
of code into this page (allocate from where?)
& point the corresponding page table entry to this page
& update all necessary data structures |
QO set V=1 and return from the trap 3 @;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Demand Paging

__/—>1 =
Text E g \\>
Data+BSS E 0
Heap E g
f 0
0
= Stack E g
0
0
0

Page table

ﬁ} In exec (), address space is created and page table is cleared with
all entries having V=0
= as the program access the stack

Copyright © William C. Cheng

Operating Systems - CSCI 402

Demand Paging

_/—>1 -
Text E g \\>
Data+BSS E 0
Heap E 0
0
f 0
0
= Stack E g
0
0
\1 _j
Page table

ﬁ} In exec (), address space is created and page table is cleared with
all entries having V=0
= as the program access the stack
Q similar things happen

Copyright © William C. Cheng

Operating Systems - CSCI 402

Demand Paging

_/—>1 -
Text E g \\»
Data+BSS E 0
Heap E 0
P _E 0
f 0
0
= Stack E g
0
0
\1 _j
Page table

ﬁ} In exec (), address space is created and page table is cleared with
all entries having V=0
= as the program access the stack
Q similar things happen
Q although stack is a little different since it needs a backing
store and need to set up for copy-on-write

Copyright © William C. Cheng

Operating Systems - CSCI 402

Demand Paging

Text

>
= [Data+BSS
Heap \

Stack

S EEEEEEEEE R
|

Page table

ﬁ} In exec (), address space is created and page table is cleared with
all entries having V=0
= as the program access the stack
Q similar things happen
Q although stack is a little different since it needs a backing
store and need to set up for copy-on-write
= accessing the data segment is similar to stack (but different)
Q original (read-only) backing store is the executable file |
&)

Q after copy-on-write, backing store is the swap space
Copyright © William C. Cheng

Operating Systems - CSCI 402

Demand Paging

- Text
=1 [Data+BSS
| Heap

(V.

-] Stack

(=1 (=} (=] (=} [=0 4 [=} [=] [=} =) =} 1

) o

-t

Page table

ﬁ} Remember, there are multiple processes and multiple page
tables that the OS is servicing
= complicated by the fact that page frames can be shared

ﬁ> In kernel 3, you need to make sure that every time when you
return back into user space, all kernel data structures are in a
consistent state

Copyright © William C. Cheng

Operating Systems - CSCI 402

Page Fault

_) Page Fault (accessing a page with V=0)
1) Trap occurs (due to a page fault)
2) Find free physical page
3) Write page out if no free physical page
4) Fetch page
5) Return from trap

_) Issues

= in step (2), where and how do we find such a free physical page?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Page Fault

_) Page Fault (accessing a page with V=0)
1) Trap occurs (due to a page fault)
2) Find free physical page
3) Write page out if no free physical page
4) Fetch page
5) Return from trap

ﬁ> Issues

= in step (2), where and how do we find such a free physical page?

Q the Buddy System is used
& return NULL if no free physical page is available
= in step (3), where and how do we find an in-use physical page to

write out to disk?

Copyright © William C. Cheng

Example
Page table Page table Page table
Text Text Text
0 0 0
Data 1 - Data 0 Data 1
BSS 0 \ BSS 1 5 BSS 0
0 1 ~ 1 -
? 1 N ? 0 ¢ 0
0 1 N 1
0 1 0
Stack ” | Stack = Stack 5
App1 App2 App3
Physical
PFO PF1
Memory

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Example
Page table Page table Page table Page table
Text Text Text Text
0 0 0 0 ~
Data 1 - Data 0 Data 1 Data 0
BSS 0 \ BSS 1 5 BSS 0 BSS 0
0 1 -~ 1 - 0
f 1 ~ f 0 0 f 0
0 1 ~N 1 \ 0
0 1 0 0
Stack ” | Stack = 5 \ Stack =
App1 App2 App4
?
Physical \1\\
PFO PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9
Memory

) Need a physical page
= all physical pages are in use

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example
Page table Page table Page table Page table
Text Text Text Text
0 0 0 0 ~
Data 1 - Data 0 Data 1 Data 0
BSS 0 \ BSS ! 5 BSS 0 BSS 0
~ ~ 0
f 1 f 0 0 f 0
1 ~ 1 \ 0
0 1 0 0
Stack ” | Stack = 5 \ Stack =
App1 App2 App4
?
Physical \1\\
PFO PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9
Memory

_, Need a physical page

= all physical pages are in use
= pick any physical page
Q well, according to the page replacement policy

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example
Page table Page table Page table Page table
Text Text Text Text
0 0 0 0 ~
Data 1 - Data 0 Data 1 Data 0
BSS 0 \ BSS ! 5 BSS 0 BSS 0
~ ~ 0
f 0 f 0 0 f 0
1 ~ 1 \ 0
0 1 0 0
Stack ” | Stack = 5 \ Stack =
App1 App2 App4
?
Physical \1\\
PFO PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9
Memory

_, Need a physical page
= all physical pages are in use
= pick any physical page

Q kernel keeps track of

=y

where the physical page is copied to

Copyright © William C. Cheng

"swap" this physical page out
into its "backing store
(write to disk if the
page frame is "dirty")

B

Operating Systems - CSCI 402

Example
Page table Page table Page table Page table
Text Text Text Text
0 0 0 0 ~
Data 1 - Data 0 Data 1 Data 0
BSS 0 \ BSS 1 5 BSS 0 BSS 0
0 1 ~ 1 -~ 0
B bR bR P EB
0 1 N 1 \ 0
0 1 0 0
Stack ” | Stack = Stack 5 \ Stack =
App1 App2 App3 App4
?
PhVSicaI (\\
PFO PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9
Memory

) Need a physical page
= all physical pages are in us
= pick any physical page
= a physical page is now free

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example
Page table Page table Page table Pa ble
Text Text Text Text
0 0 0 1
Data 1 - Data 0 Data 1 Data
BSS 0 \ BSS 1 E BSS 0 BSS 0
0 1 ~ 1 -~ 0
B bR bR P EB
0 1 S 1 \ 0 /
0 1 0 0 /
Stack ” | Stack = Stack 5 \ Stack = 7
App1 App2 App3 App4
PFO PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9
Memory

_, Need a physical page
= all physical pages are in use
= pick any physical page
= a physical page is now free |
= fetch page from disk and fix up page table g @

Copyright © William C. Cheng

Operating Systems - CSCI 402

Performance

_) Page Fault (accessing a page with V=0)
1) Trap occurs (due to a page fault)
2) Find free physical page
3) Write page out if no free physical page
4) Fetch page
5) Return from trap

ﬁ} A page fault can result in disk operations and slow down the
application
= do not want to wait for the disk!
= heed to reduce this latency
Q prefetching
Q pageout daemon

Copyright © William C. Cheng

Operating Systems - CSCI 402

Improving the Fetch Policy

Fault here { | - /

Bring these
in as well

<

_) This is prefetching
— accesses to pages is often sequential
— gamble that this is worthwhile (since it takes up more memory)

_, This improves step (4) on previous page
= but it uses up physical memory faster and makes (3) more (i\
/o 7

likely to occur
Copyright © William C. Cheng

25

Operating Systems - CSCI 402

Improving the Replacement Policy

_) When is replacement done?
= doing it "on demand" causes excessive delays
Q so, "on-demand” (or Lazy Evaluation) is not always a good
policy
—= should be performed as a separate, concurrent activity
Q use a thread (i.e., a pageout deamon) to continuously and
aggressively look for free pages

Copyright © William C. Cheng

The "Pageout Daemon”

Pageout
Daemon

In-Use Page Free Page
Frames Frames

ﬁ> Page frames are used to keep track of physical pages

) Can use multiple pageout daemons

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Choosing the Page to Remove - Replacement Policy

) Which pages are replaced?
= FIFO policy is not good
= want to replace those pages least likely to be referenced soon

) If your DVD rack is full and you just bought a new DVD
= which DVD would you remove from the rack to make room for

the new DVD?

) ldealized policies:
= FIFO (First-In-First-Out)
= LFU (Least-Frequently-Used)
= LRU (Least-Recently-Used)

Copyright © William C. Cheng

Page Table

Implementing LRU

-
“

L
“
—‘
Py

-
-

-
-
-
-
-
-
-
-
-
-
3

-
-
-
-
-
-”
-

> >
-” -
- -
- -
" ——
- _ -

-
-
-
-
-
-
-
-
-
-
-

-

_Pagé Table Entry

-
-
-
-
-
-
-
-

Physical Page #

-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

- -
- -
- -
- -
-

-
-
-
-
-
-
-
-
-

ﬁ> To approximate LRU (a very coarse approximation), the
reference bit in the page table entry is used

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Using The Reference Bits

Page table Page table Page table
Text Text Text
0_- 0_- 0_-
Data 1 0 - Data 0 - Data 1 0
BSS 0_- \ BSS 10 o BSS 0_-
0 - 10 -~ 10 -
f 10 S f 0 - f 0 -
0 - 10 N 10
0_- 1.0 0
Stack s | Stack = Stack -
App1 App2 App3
Physical \1\1
PFO PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9
Memory

ﬁ> Why would some pages referenced more often than other?
= code?
= stack?
— depends on the application

Copyright © William C. Cheng

Clock Algorithm - Two-handed

_) Need to give enough
time for thousands
of references before
checking

Copyright © William C. Cheng

Back hand:

A remove page

if (reference bit == 0)

~

DN

Front hand:
reference bit =0

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Clock Algorithm - One-handed

if (reference bit == 0)
remove page

A | else
set reference bit =0

_) Need to give enough
time for thousands
of references before
checking

Copyright © William C. Cheng

Operating Systems - CSCI 402

Clock Algorithm - One-handed

r

for weenix

= pageoutd is only woken
up when out of memory

= okay for a toy OS

if (reference bit == 0)
remove page

A | else

set reference bit =0

_) Need to give enough
time for thousands
of references before
checking

Copyright © William C. Cheng

Operating Systems - CSCI 402

Global vs. Local Allocation
ﬁ} What if a process uses up all the page frames?

ﬁ> Global allocation
= all processes compete for page frames from a single pool
— problem:
Q memory-hungry processes will get all the memory
Q possibility of thrashing

) Local allocation
— each process has its own private pool of page frames
—= Windows does this
Q processes do not have to compete for the same pool of
page frames
Q goal is to minimize the possibility of thrashing

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thrashing

ﬁ} Consider a system that has exactly two page frames:
= process A has a page in frame 1
— process B has a page in frame 2 2

ﬁ> Process A references another page, causing a page fault
= the page in frame 2 is removed from B and given to A

ﬁ> Process B faults immediately; the page in frame 1 is given to B

ﬁ> Process A resumes execution and faults again; the page in frame 1
Is given back to A

>

= neither processes makes progress

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thrashing

ﬁ} Consider a system that has exactly two page frames:
= process A has a page in frame 1
— process B has a page in frame 2 2

ﬁ> Process A references another page, causing a page fault
= the page in frame 2 is removed from B and given to A

ﬁ> Process B faults immediately; the page in frame 1 is given to B

ﬁ> Process A resumes execution and faults again; the page in frame 1
Is given back to A

|:> throughput
amn A

= neither processes makes progress knee cliff

) Although this is a contrived example,
it highlights the basic problem
= need 3 physical page frames, , ;
but only 2 ilabl |
ut only 2 are available 3

Copyright © William C. Cheng

Operating Systems - CSCI 402

The Working-Set Principle

) To deal with thrashing, the idea of Working-Set can be used
= although it may be difficult to implement exactly

ﬁ} The set of pages being used by a program (the working set) is
relatively small and changes slowly with time

= WS(P,T) is the set of pages used by process P over time
period T

G> Over time period 7, P should be given /WS(P,T)/ page frames

= [f space isn’t available, then P should not run and should
be swapped out

ﬁ> If the sum of the working-set of all processes is less than the
total amount of available physical memory
= then thrashing cannot occur

= using Local Allocation is a way to reduce the chance of
thrashing

Copyright © William C. Cheng

Operating Systems - CSCI 402

7.3 Operating System
Issues

ﬁ> General Concerns

_) Representative Systems
ﬁ> Copy on Write and Fork
) Backing Store Issues

Copyright © William C. Cheng

Operating Systems - CSCI 402

Linux Intel x86 VM Layout

Copyright © William C. Cheng

Operating Systems - CSCI 402

Real Memory

Virtual Memory Real Memory

r B r

user +

kernel

Copyright © William C. Cheng

Operating Systems - CSCI 402

Memory Allocation

ﬁ} User ﬁ} OS kernel

= virtual allocation = virtual allocation
Q fork Q fork, etc.
Q pthread_create Q some kernel data structures
Q exec Q pretty much any time when you
Q brk allocate from a slab allocator
Q mmap = real allocation
= real allocation Q page faults
Q (not done) Q some kernel data structures

< e.g., page tables
Q pretty much any time when you
allocate from the buddy system

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example: 1GB Of Real Memory

Virtual Memory Real Memory

r r

1GB

user +

ﬁ} If you only have 1GB of physical
memory
= conhceptually, can setup page
table so that physical address =
- 3GB - kernel vaddr - 0xc0000000
Q not done this way in real
kernel - systems
= OS can read any physical

memory location easily
&

- 4GB -

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example: 1GB Of Real Memory

Virtual Memory Real Memory

r r

1GB

user +

_> When allocating page frames
for user space memory pages
= these pages are mapped from
both user and kernel spaces
> 3GB - = OS can read any user space
memory location directly
kernel - " (assuming it’s "mapped")

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example: 1GB Of Real Memory

ﬁ> What a user thread becomes the kernel thread, it’s still in the
same process, therefore, should use the same page table

ﬁ> Multiple processes - page tables

— does not look like this = but look like this:
Physical Memory Physical Memory
Page Table Page Table
Page Table Page Table
Page Table Page Table

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example: 1GB Of Real Memory

App1) 1GB of Real Memory \ App2
page table< | page table
User | ymdap > User
OS text vminap
. 7
0S } { 0S
1GB 1GB

ﬁ} When you switch from one process to another
= OS code and OS data stay exactly where they were
= bottom 1/4 of page tables of all processes are mapped identically
Q for kernel-only processes, only the bottom 1/4 of the page
tables are mapped (i.e., top 3/4 always have V=0)

ﬁ} How to setup top 3/4 page table for a user process?
= by using the vmmap (virtual memory map) data structure

Q vmmap is only needed to manage user portion of the 3
‘=’
address space 45

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example: 1GB Of Real Memory

App1) 1GB of Real Memory i App2
page table) | page table
User | ymdap > User
OS text vminap
. ~
OS } { OS
1GB 1GB

ﬁ} Every physical address that’'s allocated to a user process can have
two virtual addresses
= ohne for the kernel and one for a user process
= which virtual address should the kernel use?
Q be careful with user virtual address
& 1f V bitin PTE is 0, cannot use such user virtual address in
the kernel

Q can always use the kernel virtual address @\

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example: 1GB Of Real Memory

App1) 1GB of Real Memory \ App2
page table< | page table
User | ymdap > User
OS text vminap
. 7
0S } { 0S
1GB 1GB

> When you trap into the kernel
= you are still the same thread from same process

= you use the same page table
Q 1In x86, there’s a user/kernel bit in each PTE (page table entry)
<& top 3/4 of the PTEs set the bit to U(ser)=1
<& bottom 1/4 of the PTEs set the bit to 0 (Superviser)
Q the kernel part of every page table are mapped identically
& if you have 1GB or less physical memory, once this |
part is mapped, they will never change AN/

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example: 1GB Of Real Memory

App1) 1GB of Real Memory \ App2
page table< | page table
User | ymdap > User
OS text vminap
. 7
0S } { 0S
1GB 1GB

I:> HW: read pt_init () In "kernel/mm/pagetable.c" of weenix
kernel text, data, and bss starts at virtual address 0xc0000000
then comes kernel’s page directory table (AKB+4KB)

then comes kernel’s page tables (4KB each)

understand how the first page table is setup for the kernel
understand that the kernel, just like user processes, can

only use virtual addresses!

[

U 0 0 [

ﬁ> Although weenix only has 256MB of physical memory .

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example: 1GB Of Real Memory

App1) 1GB of Real Memory i App2
page table) | page table
User | ymdap > User
OS text vminap
. ~
OS } { OS
1GB 1GB

ﬁ} In weenix, when an application call read () with buffer address
0x12345678, how can the kernel write to this buffer?
= should use kernel virtual address since it’s always safe to use
= how to convert 0x12345678 to kernel virtual address?
Q use the vmmap data structure
& find memory segment it belongs (a memory segment
consists of a bunch of page frames, find right page frame)

& page frame has the base kernel virtual address (i.e., |
S

page-aligned)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Lots of Real Memory

Virtual Memory Real Memory

r 0 r ?

4 | 896MB

|y

user +

kernel

Copyright © William C. Cheng

Operating Systems - CSCI 402

Lots of Real Memory

Virtual Memory Real Memory

r 0 r ?

4 | 896MB

v

1GB

user +

{

()
the kernal can change what
the kmap region maps to
= SO it can access any

> j region in physical memory

(where user page frames
sit)

kernel

Copyright © William C. Cheng

Operating Systems - CSCI 402

Mem_map and Zones

) Linux divides physical memory into 3 zones

Real Memory

= DMA zone: locations < 2 ?
Q 0x00000000 to OxXO0ffffff 208MB
Q many DMA devices can only handle *

24-bit address
= Normal zone: locations > 2°* and < 27 -
Q 0x01000000 to Ox37£f££f£fff
Q OS data structures must reside in this
range
Q user pages may be in this range
= HighMem zone: locations > 230277
Q 0x38000000+
Q strictly for user pages

227 1GB

Copyright © William C. Cheng

Operating Systems - CSCI 402

Mem_map and Zones

Zone
DMA) q
> f»
f
—
Zone) >
Normal
|
- .
Zone) -
HighMem :
mem_map page frames

Copyright © William C. Cheng

Operating Systems - CSCI 402

Page Lists

/f\ T~

/f\ T~

Zone
Normal

Higﬁm/f\ E \‘

Inactive Active
Pages Pages

Free
Pages

Copyright © William C. Cheng

Operating Systems - CSCI 402

Page Lists

ﬁ} Each zone’s page frames are divided into three lists
= free list
Q contain physical pages that have not been allocated
Q buddy system to maintain
= active
Q picked out by clock algorithm as recently used
= jnactive
Q picked out by clock algorithm as not recently used
Q dirty/modified
& marked as "busy” and is unmapped from all processes
(i.e., set V=0 in PTE) that share this page
& when you lookup a page frame in the page fault handler, if
the page frame is "busy’, you must wait until the disk
operation is finished
& when data transfer is completed, must wake up all threads

waiting for this page frame to become ""un-busy” @\
553

Copyright © William C. Cheng

Operating Systems - CSCI 402

Simple User Address Space

text

data

bss & dynamic

l

Copyright © William C. Cheng

Operating Systems - CSCI 402

Address-Space Representation

(Somewhat Simplified)

= a memory segment is

task struct made out of pages
B = file/anonymous object
manages page frames

\\ N

vm_area_struct vm_area_struct vm_area_struct vm_area_struct
1000-7fff 8000-1afff 1b000-1bfff 7tffd000-7fffffff
X, shared rw, private rw, private J rw, private
anon anon
object object

= wvm_area_struct is what we used to call as_region

|
Q areas, regions, memory segments are the same thing 573 |.’
Copyright © William C. Cheng

Operating Systems - CSCI 402

Adding a Mapped File

text

data

bss & dynamic

l

mapped file

!

stack

Copyright © William C. Cheng

Operating Systems - CSCI 402

Address-Space Representation: More Areas

task_struct @

vm_area_struct vm_area_struct vm_area_struct vm_area_struct vm_area_struct
1000-7fff 8000-1afff 1b000-1bfff 200000-41ffffff 7tffd000-7fffffff
X, shared rw, private rw, private rw, private rw, private

Copyright © William C. Cheng

Operating Systems - CSCI 402

Adding More Stuff

text

data

bss & dynamic

l

mapped file 117

mapped file 3

mapped file 2

mapped file 1
stack 3
stack 2

|
stack 1 : @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Address-Space Representation: Reality

f[200000-201ff
1b000-1bfff]\ 202000-203fff

[1000-7fff 8000-1afff [204000-204fff [7fffd000-7fffffff]

[208000-210fff]

Copyright © William C. Cheng

Linux Page Management

_) Replacement
—= (wo-handed clock algorithm

= applied to zones in sequence
= essentially global in scope

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Page Scanning

5

Zone
DMA

Zone
Normal

5

Y
N
N

5

Zone
HighMem e e

Inactive
Pages Pages

Free
Pages

Copyright © William C. Cheng

Operating Systems - CSCI 402

Important Linux VM Data Structures Summary

) For each process, PCB contains
= virtual memory map (which represents the user address space)
Q maps virtual memory segments
Q keeps track of page frames and backing store
= hardware page tables

ﬁ} Globally, free, active, and inactive page list are maintained

Copyright © William C. Cheng

Operating Systems - CSCI 402

Important Linux VM Data Structures Summary

) For each process, PCB contains
= virtual memory map (which represents the user address space)
Q maps virtual memory segments
Q keeps track of page frames and backing store
= hardware page tables

ﬁ} Globally, free, active, and inactive page list are maintained

ﬁ> Example usage 1: What happens when a page fault occurs?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Important Linux VM Data Structures Summary

) For each process, PCB contains
= virtual memory map (which represents the user address space)
Q maps virtual memory segments
Q keeps track of page frames and backing store
= hardware page tables

ﬁ} Globally, free, active, and inactive page list are maintained

ﬁ> Example usage 1: What happens when a page fault occurs?
1) page fault came from the hardware if V=0 for a page
2) traps into the kernel, the kernel:
2a) gets a free page frame
2b) looks at the virtual memory map and copy the page from
disk into this free page frame
2c) adjust hardware page table to point to this page
frame

Copyright © William C. Cheng

Operating Systems - CSCI 402

Important Linux VM Data Structures Summary

) For each process, PCB contains
= virtual memory map (which represents the user address space)
Q maps virtual memory segments
Q keeps track of page frames and backing store
= hardware page tables

ﬁ} Globally, free, active, and inactive page list are maintained

ﬁ> Example usage 1: What happens when a page fault occurs?
1) page fault came from the hardware if V=0 for a page
2) traps into the kernel, the kernel:
2a) gets a free page frame
2b) looks at the virtual memory map and copy the page from
disk into this free page frame
2c) adjust hardware page table to point to this page

frame
= can get complicated because a page frame may be shared
by multiple user processes 673

Copyright © William C. Cheng

Operating Systems - CSCI 402

Important Linux VM Data Structures Summary

) For each process, PCB contains
= virtual memory map (which represents the user address space)
Q maps virtual memory segments
Q keeps track of page frames and backing store
= hardware page tables

ﬁ} Globally, free, active, and inactive page list are maintained

ﬁ> Example usage 2: What happens when pageout daemon wants to
free up a modified/dirty page?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Important Linux VM Data Structures Summary

) For each process, PCB contains
= virtual memory map (which represents the user address space)
Q maps virtual memory segments
Q keeps track of page frames and backing store
= hardware page tables

ﬁ} Globally, free, active, and inactive page list are maintained

ﬁ> Example usage 2: What happens when pageout daemon wants to
free up a modified/dirty page?

1) find from which processes/address spaces the page frame
belongs to

2) unmap this page from the corresponding pagetables
& read pframe_remove_from_pts () iN weenix

3) find the corresponding backing store, write back the page
content to disk (mark the page frame "busy" while writing)

4) free the page frame if no process is waiting to use it |

Copyright © William C. Cheng

Operating Systems - CSCI 402

Windows x86 Layout

ﬁ> Two choices

user

user

g 2GB

kernel - 3GB

kernel <

.

Copyright © William C. Cheng

Operating Systems - CSCI 402

Windows Paging Strategy Highlights

) All processes guaranteed a "working set"
—= |ower bound on page frames
= you can get "cannot start a process because there is not
enough memory" message

> Competition for additional page frames

ﬁ> "Balance-set” manager thread maintains working sets
—= ohe-handed clock algorithm

ﬁ> Swapper thread swaps out idle processes (inactive for 15 seconds)
= first kernel stacks
= then working set
= very different from Linux

ﬁ> Some of kernel memory is paged
= page faults are possible
QO makes more physical memory available |
QO must "lock down" page frames for page fault handler . @;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Windows Page-Frame States

(waiting
for data
from disk)

e
Jei

Modlfled @

Copyright © William C. Cheng

Operating Systems - CSCI 402

7.3 Operating System
Issues

ﬁ> General Concerns

_, Representative Systems
ﬁ> Copy on Write and Fork
) Backing Store Issues

Copyright © William C. Cheng

Operating Systems - CSCI 402

Unix and Virtual Memory:
The fork () /exec () Problem

ﬁ} Naive implementation:

—= fork () actually makes a copy of the parent’s address space

for the child

= child executes a few instructions (setting up file descriptors,
etc.)
child calls exec ()
result: a lot of time wasted copying the address space, though
very little of the copy is actually used

[

[

Copyright © William C. Cheng

Operating Systems - CSCI 402

vEfork ()

ﬁ} Don’t make a copy of the address space for the child; instead,
give the address space to the child
= the parent is suspended until the child returns it

ﬁ> The child executes a few instructions, then does an exec
— as part of the exec, the address space is handed back to the
parent

_) Advantages
= very efficient

) Disadvantages
= works only if child does an exec
= child must not intentionally or accidentically modify the address
space

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Better fork ()

ﬁ} Parent and child share the pages comprising their address
spaces
= if either party attempts to modify a page, the modifying
process gets a copy of just that page

ﬁ> Principle of Lazy Evaluation at work
= try to put things off as long as possible if you don’t have to do
them now
Q If it needs to be done now, you don’t really have a choice
= if you wait long enough, it might turn out that you don’t have
to do them at all

) Advantages
— semantically equivalent to the original fork ()
= usually faster than the original fork ()

_, Disadvantages
= slower than vfork () gy

Copyright © William C. Cheng

Operating Systems - CSCI 402

Copy on Write and fork ()

ﬁ} To implement the "better"” fork (), we need to use copy-on-write
= a process gets a private copy of a page after a thread in the
process performs a write to that page for the first time
Q set every PTE to R/O for pages that correspond to memory
segments that needs copy-on-write (i.e., privately mapped)
Q during page fault, if a virtual memory segment is R/W and
privately mapped, then we need to perform copy-on-write
<& make a copy of that page, set corresponding PTE to R/W
and change its physical page number to point to the copy
= copy-on-write must work with fork ()
Q what are the complications?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping - Copy on Write Occurs after fork ()

Parent Pagetable X Child Pagetable
y
page x__R/O //"z D pagex RO |
pagey RO -] [pagey RO |
page z__R/O ’/ > pagez_R/O
Pages

ﬁ> Parent and child process share pages, all marked read-only at first
= to initalize the child’s page table, just use memcpy () to copy

the entire page table from the parent |
&

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping - Copy on Write Occurs after fork ()

Parent Pagetable X Child Pagetable
y
page x__R/O //" z D pagex RO |
pagey RO 1] [>pagey RO |
page z__R/O ’/ > pagez_R/O
Data[0]
Pages
Data = 17;

ﬁ> Parent and child process share pages, all marked read-only at first
= copy on write: when one of the processes tries to modify

the data, a copy of the page is created and used |
Q this is another reason for a page fault 7934

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping - Copy on Write Occurs after fork ()

Parent Pagetable X Child Pagetable

y
page x__R/O //" z D pagex RO |
pagey RO -] [>pagey RO |
pagez_ R/W S*/ > pagez_R/O

Data[0]
Pages
Zz
Data = 17;
Data

ﬁ> Parent and child process share pages, all marked read-only at first
= copy on write: when one of the processes tries to modify

the data, a copy of the page is created and used |
Q this is another reason for a page fault 8034

Copyright © William C. Cheng

Operating Systems - CSCI 402

Share-Mapped Files

Parent Pagetable X Child Pagetable
y
page x__R/W / = P D pagex RW_|
pagey RW -] [pagey RW |
pagez R/W ’/ > pagez R/W
Data [17]
Pages
Data = 17;

ﬁ> For shared mapping, changes are writting into the shared page
= please note that the information about whether a page is
shared or private is not inside the page table

I
Q itis kept in a kernel data structure (vin_area_struct) 313 ..’
Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping - Copy on Write before fork ()

Parent Pagetable X

pagex R/O / /" z

pagey RO 7 /

pagez_R/O]

Pages

) For private mapping, copy on write

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping - Copy on Write before fork ()

Parent Pagetable X

pagex R/O / /" z

pagey RO 7
page z R;O ’/
Data[0]
Pages
Data = 17;

) For private mapping, copy on write

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping - Copy on Write before fork ()

Parent Pagetable X

pagex R/O / /" z

age RO
gl
Data[0 |
Pages
Data = 17;
Data

) For private mapping, copy on write

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Private-Mapped File Changes

Parent Pagetable X Child Pagetable

y
page x__R/O //" z) D pagex RO |
pagey RO -] 7 [pagey RO |
pagez_R/W S*/ \Zgagez ?

Data [0 | /
?
Pages
z
Data = 17;
Data

ﬁ> Complication: what if the page is modified before fork () ?
= should child process’ page be marked "modified"?
Q some of child’s pages are initialized from files and some (\
0 —

are initialized from the parent’s address space Y/

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Private-Mapped File Changes

Parent Pagetable X Child Pagetable

y
page x__R/O //" z D pagex RO |
pagey RO -] [pagey RO |
pagez_R/W S*/ /Ppagez R/W

Data[0]
Pages
z
Data = 17;
Data

ﬁ> Complication: what if the page is modified before fork () ?
—= memcpy () the parent’s page table is wrong: what if the parent
modify the page further? |
Q child should not see these changes y @;

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Private-Mapped File Changes

Parent Pagetable X Child Pagetable

y
page x__R/O //" z D pagex RO |
pagey RO -] [>pagey RO |
pagez_ R/W S*/ > pagez_R/O

Data[0]
Pages
z
Data = 17;
Data

ﬁ> Complication: what if the page is modified before fork () ?
= this is also wrong
Q child process should see 17 in Data on page z

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Private-Mapped File Changes

Parent Pagetable X Child Pagetable

y
page x__R/O //" z D pagex RO |
pagey RO -] [pagey RO |
pagez_R/O S*/ /Pagez R/O

Data[0]
Pages
z
Data = 17;
Data

ﬁ> Complication: what if the page is modified before fork () ?
= this seems to be the correct solution
Q i.e., copy PTEs from parent and reset for copy-on-write
on all private pages (in all private mapping) 333
Copyright © William C. Cheng

Operating Systems - CSCI 402

A Private-Mapped File Changes

Parent Pagetable X Child Pagetable

y
page x__R/O //" z D pagex RO |
pagey RO -] [pagey RO |
pagez_R/O S*/ /Pagez R/O

Data[0]
Pages
z
Data = 17;
Data

ﬁ> Complication: what if the page is modified before fork () ?
= but what if the parent or the child calls fork () again?
Q afterwards, another process calls fork () again, etc.?
g
Q cannot use PTEs to keep track (example later) vy

Copyright © William C. Cheng

Operating Systems - CSCI 402

Copy-on-write & Fork

_) Shadow Objects
= indirection

— keep track of pages that were originally
*[vm_area_struct]‘

Process A

copy-on-write but have been modified 8000-1afff
_ _ _ rw, private
_) A page in a memory map, into which an FTob

object was mapped private (e.g., data

region), has an associated shadow object Y
= |f a page is "managed by a shadow Shadow
object” (or "referenced in a shadow object

object"), it has been modified
= otherwise, the page is managed by
the original object (file or a
"zero/anonymous" object) x| ly| [z
= X, Y, z on the right are pages / page frames

Private-mapped
ﬁ} Shadow object tells you where to copy from file object
when you need to perform copy-on-write 4

90

Copyright © William C. Cheng

Operating Systems - CSCI 402

Address-Space Representation
_, Remember this?

vm_area_struct vm_area_struct vm_area_struct vm_area_struct vm_area_struct
1000-7fff 8000-1afff 1b000-1bfff 200000-41fffff 7£1fd000-7Fffff
X, shared rw, private rw, prlvate rw, private rw, prlvate

Copyright © William C. Cheng

Operating Systems - CSCI 402

Address-Space Representation
_, Remember this?

vm_area_struct vm_area_struct vm_area_struct vm_area_struct vm_area_struct
1000-7fff 8000-1afff 1b000-1bfff 200000-41 ffffff 7fffd000-7fffffff
X, shared rw, private rw, prlvate rw, private rw, private

anon anon

= now we have to start with (mmob 3 Is used In weenix):

vmarea_t vmarea_t vmarea_t vm_area_struct vmarea_t
1000-7fff 8000-1afff 1b000-1bfff 200000-41ffffff 7tifd000-7fffff

X, shared rw, private rw, private rw, private rw, private

5
file Y
S_tI'UCt
mmobj anon file

mmobj

Copyright © William C. Cheng

Operating Systems - CSCI 402

Share Mapping (1)

Process A

r

@ in weenix
shared = instead of pointing to a
File object, it’s pointing

Process A has to an mmobj inside a
vnode inside a File

shared-mapped a file object

into its address space = mmobj is used to manage
page frames

X |_y_| Z File object

Copyright © William C. Cheng

Operating Systems - CSCI 402

Share Mapping (2)

Process A

Process B

Process A has

shared-mapped a file
into its address space

A forks, creating B.

Process B also has
the same shared mapping

Share-mapped
file object

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping (1)

Process A
cow
Shadow object
Private-mapped
X |_y_| < file object

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping (1)

A’s Pagetable X

pagey RO 1]
pagez_R/O ~

page x__R/O é L1
/
/
/

Copyright © William C. Cheng

Process A

cow

Shadow object

Private-mapped
file object

Operating Systems - CSCI 402

Private Mapping (1)

A’s Pagetable X
y
page x__R/O / adE
pagey R/O ’//
— Process A
//
/ / cow
! i/ Pages
ge | [
A modlfle§ page x.
\ \\ \\
NN :
NN Shadow object
\\\\ N e
\\\\ \\
\\\ \\\

Private-mapped
X |_y_| < file object

Copyright © William C. Cheng

Operating Systems - CSCI 402

x Private Mapping (1)

A’s Pagetablg X
y
page x _R/W) ’z
pagey R/O ’//
R Process A
//
/ / cow
! i/ Pages
cpr | [
A mod|f|e§ page X.
\ \\ \\
NN :
NN Shadow object
\\\\\\\

Private-mapped
X |_y_| < file object

Copyright © William C. Cheng

Operating Systems - CSCI 402

x Private Mapping (1)

A’s Pagetabl

11
X
7

\
page x _R/W) /" z \

pagey R/O ’/ \

> \
R— \Process A
\

/ /

! i/ Pages
po | :

A mod|f|e§ Aag\e X.

Shadow object

Private-mapped
file object

Copyright © William C. Cheng

Operating Systems - CSCI 402

x Private Mapping (1)

A’s Pagetabl

11
X
7

\
page x _R/W) /" z \

pagey R/O ’/ \\

pagez_R/O ~

‘Process A

I/ /
, ! / Pages

A mOdIerS Aage X.

A forks, créqt)’ng\B

AN
AN AN
SN

Shadow object

Private-mapped
file object

Copyright © William C. Cheng

Operating Systems - CSCI 402

ivate Mapping (2)

A’s Pagetablg X Child Pagetable
y

pagex RW Y| = ad P i‘ page x RW |

pagey RO 1] ~N— I pagey RO |

pagez R/O ’/ pagez R/O

-
but this is not right
= need to reset for

copy-on-write
—= how?

A mod|f|e§ daqe X.
A forks, cr\%a’t\lng

B.
\

Copyright © William C. Cheng

A’s Pagetabl

A%

page x__R/O
pagey RO 7]
pagez_R/O]

Copyright © William C. Cheng

Operating Systems - CSCI 402

ivate Mapping (2)

Child Pagetable

\

Cpagex R/O |
~N—_ \‘ pagey RO |
pagez_R/O

-

reset for copy-on-write

= change PTEs for privately
mapped segments to R/O

= add an empty shadow
object since nothing has
been modified, yet (i.e.,
it’s been "reset")

Operating Systems - CSCI 402

ivate Mapping (2)

A’s Pagetablp X \ Child Pagetable
y

pagex RO Y| B ad W\~ pagex RO _|
pagey R/O ’/ ~N— \‘ pagey R/O |
pagez R/O -] cow pagez R/O

//

/ / 4

’ / weenix does it in two steps

= it does not change these
PTEs to R/O

= instead, it unmaps the
entire user space

A mod|f|e§ daqe X.
A forks, cr\ga‘ung B.
\

\\ \\\ AN page table (i.e., sets V=0
ARG for all user space PTEs)
AN = set PTE to R/O on the next

page fault if reading
O wat if the next page fault
is for writing?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping (2)

Process A Process B

A modifies page x.

A forks, creating B.

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping (2)

Process A Process B
4)
. g to find a page to copy from
A modifies page X. = start with the process’
. memory map and follow
A forks_’ _creatlng B. the chain of shadow
A modifies page z. objects
B modifies page y. % = if not in a shadow object,
will find it in the mapped
file or "zero/anonymous"
Y object

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping (2)

Process A

A modifies page x.

A forks, creating B.
A modifies page z.
B modifies pagey.

Copyright © William C. Cheng

Process B

]

4)
to find a page to copy to
= must be managed by the
first shadow object (after
you have performed

llcopyl!)

Operating Systems - CSCI 402

Private Mapping (2)

Process A Process B

A modifies page Xx. ° @

A forks, creating B.
A modifies page z.
B modifies pagey.

B forks, creating C.

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping (3)

Process A Process B Process C

A modifies page Xx. Q

A forks, creating B.
A modifies page z.
B modifies pagey.

B forks, creating C.

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping (3)

Process A Process B Process C

>{Loow }>

A modifies page x.

A forks, creating B.
A modifies page z.
B modifies pagey.

B forks, creating C.

A modifies page x. y
B modifies page x. X .
C modifies page z. Y

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping (3)

Process A Process B Process C

A modifies page x. ° @
A forks, creating B.

A modifies page z.
B modifies pagey.

X
B forks, creating C.

A modifies page x. y

B modifies page x. X .
C modifies page z. Y

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping (3)

Process A Process B Process C

>{Loow }>

A modifies page x.

A forks, creating B.
A modifies page z.

()

. g This is known as "bottom

B modifi :
odifies page y X object” in weenix
] = it does NOT have to be

B forks_,_creatlng C. associated with a file
A modifies page x. Y = can be associated with
B modifies page x. zero/anonymous memory
C modifies page z. X| LYl [£ = polymorphism used

. /

Copyright © William C. Cheng

Private Mapping (4)

Process A

Operating Systems - CSCI 402

Process B Process C

= a slightly

different example

Q for the bottom
object, not all
page have to be
resident

Q In weenix, pages in
a shadow object
are, by definition,
"resident”

Copyright © William C. Cheng

-

for this bottom object

= X and z are "resident"
and y is not

= the bottom object knows
how to "get" y

= what does shadow object
do if write to page y?

)
12

Operating Systems - CSCI 402

Virtual Copy

) Local RPC
= "copy" arguments from one process to another

—= assume arguments are page-alighed and page-sized
= map pages into both caller and callee, copy-on-write
Q works in most cases, except when the page corresponds

to a shared memory-mapped file
% in this case, the sender does not have a shadow object!

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Share and Private Mapping

Process A

Copyright © William C. Cheng

Process B

Share-mapped
file object

Share and Private Mapping

Process A

A virtual copies X,

y, and z into B.

Copyright © William C. Cheng

Operating Systems - CSCI 402

Process B

Share-mapped
file object

Shadow object

Share and Private Mapping

Process A

A virtual copies X,
y, and z into B.
B modifies y.

Copyright © William C. Cheng

Operating Systems - CSCI 402

Process B

Share-mapped
file object

Shadow object

Share and Private Mapping

Process A

A virtual copies X,
y, and z into B.

B modifies y.

A modifies x.

Copyright © William C. Cheng

Operating Systems - CSCI 402

Process B

Share-mapped
file object

Shadow object

Share and Private Mapping

Process A

A virtual copies X,
y, and z into B.

B modifies y.

A modifies x.

Copyright © William C. Cheng

Operating Systems - CSCI 402

Process B

Share-mapped
file object

Shadow object

Operating Systems - CSCI 402

Shadow Objects Summary

—> Why go through all this trouble?
= because we want to implement copy-on-write together with
fork ()
Q a variable (such as Data a few slides back) can exist in many
different physical pages simultaneously
<& each contains a different version of this variable

ﬁ} To manage this mess, weenix uses the idea of Shadow Objects
= what is the "idea" of Shadow Objects?
Q organize a tree of shadow objects using an inverted tree
data structure
<& where the root is the bottom object
Q the rule for finding page frame / physical page that contains
the global variable in question for a particular process
& traversing shadow object pointers on the inverted tree
Q when and how to perform copy-on-write
= you have to implement what’s described on these slides in 3

kernel 3 119
Copyright © William C. Cheng

Operating Systems - CSCI 402

Memory Management Objects in weenix

_) Inweenix, an mmobjis used to manage page frames
= types of mmobj in kernel assignments are:
Q there’s one that lives inside a vnode (vn—>vn_mmob3j)
Q a shadow object is an mmobj
Q an anonymous object (meaning not associated with a file and
not a shadow object) is an mmobj
—= a vmarea IS supported by one of these 3 mmobjs

vmarea_t vmarea_t vmarea_t vim_area_struct vmarea_t
1000-7fff 8000-1afff 1b000-1bfff 200000-41 ffffff 7ffd000-7ffFfff
rx, shared rw, private rw, private rw, private rw, private

struct
file

struct
mmobj anon file anon

mmobj

Copyright © William C. Cheng

Operating Systems - CSCI 402

Memory Management Objects in weenix

_) Inweenix, an mmobjis used to manage page frames
= types of mmobj in kernel assignments are:
Q there’s one that lives inside a vnode (vn—>vn_mmob3j)
Q a shadow object is an mmobj
Q an anonymous object (meaning not associated with a file and
not a shadow object) is an mmobj
—= a vmarea IS supported by one of these 3 mmobjs

vmarea_t vmarea_t vmarea_t vim_area_struct vmarea_t
1000-7fff 8000-1afff 1b000-1bfff 200000-41 ffffff 7ffd000-7ffFfff
rx, shared rw, private rw, private rw, private rw, private

truct
file

struct
mmobj anon file anon

mmobj

ok to have a shadow object here since it won’t get used A @!’}_
since it’s read-only (i.e., no copy-on-write is possible) &
Copyright © William C. Cheng

Operating Systems - CSCI 402

Memory Management Objects in weenix

_) Inweenix, an mmobjis used to manage page frames

— a page frame is uniquely
identified by an mmobj and
d pagenum
Q notation:
(mmobj, pagenum)

Copyright © William C. Cheng

Process A

cow

-

where does pagenum

come from?

= think of a file as
an array of pages

= then pagenum is
the array index

into the file

Shadow object s

Bottom object b

&

12

Operating Systems - CSCI 402

Memory Management Objects in weenix

_) Inweenix, an mmobjis used to manage page frames

= a page frame is uniquely
identified by an mmobj and
d pagenum

Shadow object s

Bottom object b

Q notation: FIRERE
(mmobj, pagenum) C)cow
Q if you map part of a file
(say a page) into your
address space, you need
to remember which page
& pagenumis then a
page index in that file
(b,0) T (0] (1] |2
(b,1) T T
(b, 2)

Copyright © William C. Cheng

Memory Management Objects in weenix

_) Inweenix, an mmobjis used to manage page frames

Operating Systems - CSCI 402

= a page frame is uniquely
identified by an mmobj and
d pagenum
Q notation:
(mmobj, pagenum)

Process A

>{Loow }>

Q hash table used for lookup
Q read kernel 3 FAQ

—= sometimes, you know (s, 2
the exact nhame of a
page frame
Q use hash table to lookup

— sometimes, you only

)
Q Shadow object s

know e.g.,
pagenum (€.¢ (b, 0) -

_>

"where is page z?")

Bottom object b

Q hneed to search

cow
Of |1] (2
T

(b, 1)

|

(b, 2)

Copyright © William C. Cheng

&

124

Operating Systems - CSCI 402

7.3 Operating System
Issues

ﬁ> General Concerns

_, Representative Systems
ﬁ> Copy on Write and Fork
_) Backing Store Issues

Copyright © William C. Cheng

Page Frames

Copyright © William C. Cheng

The Backing Store

Operating Systems - CSCI 402

 T—
| S— 1 —
[1
1 B
RN Y —
r] '!_l

File System

Disk

??

Operating Systems - CSCI 402

Backing Up Pages (1)

_) Read-only mapping of a file (e.g. text)
= pages come from the file, but, since they are never modified,
they never need to be written back

ﬁ> Read-write shared mapping of a file (e.g. via mmap () system call)
= pages come from the file, modified pages are written back to
the file

vmarea_t vmarea_t vmarea_t vm_area_struct vmarea_t
1000-7fff 8000-1afff 1b000-1bfff 200000-41 ffffff 71ffd000-7ffffff
rx, shared rw, private rw, private rw, shared rw, private

struct struct
file file Y

mmobj anon mmobj anon

) weenix supports this type of "backing store"

Copyright © William C. Cheng

Operating Systems - CSCI 402

Backing Up Pages (2)

) Read-write private mapping of a file (e.g. the data section as

well as memory mapped private by the mmap () system call)

— pages come from the file, but modified pages, associated
with shadow objects, must be backed up in swap space

ﬁ> Anonymous memory (e.g. bss, stack, and shared memory), also
privately mapped

— pages are created as zero fill on demand; they must be
backed up in swap space
Q modified pages of these, associated with shadow objects,
must be backed up in swap space

ﬁ} weenix does not support this type of backing store
—= need to prevent the pageout daemon to free up these pages
accidentically

Q simply move them out of the pageout daemon’s way using
pframe_pin ()

Copyright © William C. Cheng

Operating Systems - CSCI 402

Swap Space

ﬁ} Swap space management possibilities
= radically-conservative approach: Eager Evaluation (or
pre-allocation)
Q backing-store space is allocated when virtual memory is
allocated
Q page outs always succeed
Q disadvantage: might need to have much more backing store
than needed
= radically-liberal approach: Lazy Evaluation
Q backing-store space is allocated only when needed
Q advantage: can get by with minimal backing-store space
Q disadvantage: page outs could fail because of no space and
process gets killed at a seemingly random time

Copyright © William C. Cheng

Operating Systems - CSCI 402

Swap Space

) Space management possibilities
= mixed approach: e.g., reserve stack space for a thread in

Windows

Q the address space for the thread stack is first "reserved”
& no backing store actually created, but space is reserved so

no other thread can use the reserved space

Q when part of this address space is used, it's "committed”

(backing store is actually allocated)

ﬁ> For things like malloc () and allocation of address space for
privately-mapped files
= by default, done with eager evaluation in Windows and
most Unix/Linux systems
= both systems provide means for lazy evaluation as well

Copyright © William C. Cheng

Operating Systems - CSCI 402

Space Allocation in Linux
) Total memory = primary + swap space

G> System-wide parameter: overcommit_memory
= three possibilities
QO maybe (default)
Q always
Q hever

_, mmap has MAP_NORESERVE flag
= don’t worry about over-committing

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Space Allocation in Windows

) Space reservation
= allocation of virtual memory

) Space commitment
= reservation of physical resources
Q paging space + physical memory

_) MapViewOfFile (sort of like mmap)
= Nno over-commitment

) Thread creation
= creator specifies both reservation and commitment for stack
pages

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Summary

oo (0] . .

e ™) OS
Process Virtual Memory
Management Management

[File System]

\. J

) The subsystems are inter-related
= file systems uses threads managed by the process subsystem
— file systems uses buffer cache (managed by the memory
subsystem)
memory subsystem uses threads to do background work
process subsystem keeps track of data structures related |
&

[

[

to files and virtual memory on behalf of processes 3
Copyright © William C. Cheng

Operating Systems - CSCI 402

Summary

oo (0] . .

e ™) OS
[Process] [Virtual Memory]

Management Management

[File System]

\. J

ﬁ> To make sure you understand the big picuture
= think of everything that happens in these subsystems when
you type "1s" into a console

) Kernel 3 is where everything comes together
= although we are already using page tables in earlier

assignments (see pt_init ()) / @’_

Copyright © William C. Cheng

