Operating Systems - CSCI 402

6.3 Directories
and Naming

) Directories
_, Name-Space Management

Copyright © William C. Cheng

Operating Systems - CSCI 402

Desired Properties of Directories

) No restrictions on names

_, Fast

_) Space-efficient

Copyright © William C. Cheng

S5FS Directories

Operating Systems - CSCI 402

Component
Name

Inode
Number

directory entry

1
1

unix 117
etc 4

home 18

pro 36

dev 93

= each entry is 32 bytes long in S5FS (see "s5fs.h" in weenix)
= this is what get stored inside the "data blocks™ of a directory file
Q l.e., a directory is implemented as an inode and the disk

map inside the inode points directly or indirectly to its 3(\
"data blocks" 3 /‘2’

Copyright © William C. Cheng

Operating Systems - CSCI 402

FFS Directory Format

= unsorted entries

name
length 100-200 entri
—/' - entries
\
Dir \
inode
last entry
is different
Free Space
Content of Directory File @!’2

Copyright © William C. Cheng

Operating Systems - CSCI 402

Look Up Filename In A Directory

> How to look for a file named "foo.c"?
= O(n)is no good
Q linear search
= O(log n) is desirable -
Q B+ tree S
= O(1)is great
Q hash table Oir

100-200 entries

A\

Copyright © William C. Cheng

Operating Systems - CSCI 402

Hash Table

) Hash file names to disk blocks
= don’t treat the directory contents as a sequential file

= treat it as an array of hash buckets
Q each bucket is stored in a disk block | |100-200 entries
= h(filename) tells you which bucket T~
(i.e., block) the file information is in \ h("foo.c”)
Q one disk read Oir \ /
ﬁ> The usual problem with hash tables inode v'\h(“bar-c")

= collisions
Q length of conflict/collision resolution chain
iIs determined by block size
Q what do you do when the block is full?
& traditional approach is to get a new hash function and
rehash every entry
& too expensive

Copyright © William C. Cheng

Operating Systems - CSCI 402

Extensible Hashing

_) Uses a sequence of hash functions, hy, h;, h, ...
= where h; hashes names to 2' buckets
= for any name Xx, the low-order / bits of h;(x) are the same in h;_ ,(x)
Q h;,,is an extension on h;

ﬁ> To use extensible hashing, also need to add a level of indirection

Copyright © William C. Cheng

Operating Systems - CSCI 402

Extensible Hashing (part 1)

bucket#

inode index

inode index

____——5_; inode index 1

Belinda [inode index
Indirect buckets George |inode index

Harry inode index

Betty inode index

Buckets

ﬁ> Bucket = block

Copyright © William C. Cheng

Extensible Hashing (part 1)

inode index

inode index

inode index

Belinda

inode index

Indirect buckets George

Harry

inode index

inode index

Betty

inode index

Buckets

_) insert(Fritz)
= h2(Fritz) = 2
Q but bucket 2 is full

Copyright © William C. Cheng

Operating Systems - CSCI 402

bucket#

Operating Systems - CSCI 402

Extensible Hashing (part 2)

bucket#

inode index

- - 0.4
inode index
Joe inode index

~ g
Belinda |inode index

- 2,6
‘ George |inode index
Harr inode index

y 3,7
Betty inode index

Buckets

Indirect buckets

ﬁ> First you double the number of indirect buckets
= since there are 8 buckets, you need h;
= then you rehash all the entries using h;
Q easily accomplished for extensible hashing with |
indirection y @;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Extensible Hashing (part 2)

bucket#

inode index
0.4
inode index
Joe inode index
— g
Belinda inode index
- - 2,6
‘ George |inode index
Harr inode index
y W= 3,7
Betty inode index

Buckets

Indirect buckets

) h2(Fritz) = 2, let’s say h3(Fritz) = 6, bucket 2 is full, get a new
bucket, and rehash all items in bucket 2 with h3
= on the average half of them should go to bucket 2 and the other
half should go to bucket 6 |
o e.g., h3(Belinda) = 2, h3(George) = 6 Wy

Copyright © William C. Cheng

Operating Systems - CSCI 402

Extensible Hashing (part 2)

bucket#
inode index
0.4
inode index
inode index
1,5
Belinda |inode index 5
Harr inode index
Y 3,7
Betty inode index
- 6
Indirect buckets George |inode index

) h2(Fritz) = 2, let’s say h3(Fritz) = 6 Buckets

Copyright © William C. Cheng

Operating Systems - CSCI 402

Extensible Hashing (part 3)

bucket#
inode index
0.4
inode index
inode index
1,5
Belinda |inode index 5
Harr inode index
Y 3,7
Betty inode index
Fritz inode index 6
Indirect buckets George |inode index

_) The power of indirection Buckets
= without the indirect buckets, it will be expensive, i.e., O(n)
= with indirect buckets, O(7)

Copyright © William C. Cheng

Operating Systems - CSCI 402

B Trees

ﬁ} A B tree of order m has the following properties:
1) every node has < m children
2) every node (except root & leaves) has > ceil(m/2) children
3) the root has at least 2 children (unless it is also a leaf)
4) all leaves appear at the same level and carry no keys
Q usually omitted from the drawings

5) a non-leaf node with k children contains k-7 keys

= guarantee that each node of size m is at least 50% full

= m is often large to reduce the number of disk accesses

> Each node in a B tree corresponds to one disk block
= B+ tree:
Q internal nodes contain no data, just keys
Q leaf nodes are linked to ease sorted sequential traversal
= there are a lot of B tree variations in various application areas

> We will illustrate the basic idea with an example |
= real B+ tree algorithm is more complicated than depicted » @;
Copyright © William C. Cheng

B+ Trees (part 1)

ﬁ} Ex: a B+ tree of order 3

= every internal node has either 2 or 3 children
Q 1if a node has > 3 children, it needs to split into two nodes
Q if a node has < 2 children, it needs to merge with its neighbor

Q we will assume that this is also true for the leaf nodes

UBA|
pieyoly

ajleiueq

uojsen \
— a—__|

esr]
ONO

f ETTLS I

J

Operating Systems - CSCI 402

10D|
UBA|

N
I

ey
esr]
Mmayliey
9]02IN

uojsen
aulWIaH

Xo|V
ajuuog
ale)

soouel]

ajleiueq

oN0
e|ned

pIeqary
Kieys

Sewo|

SIUuIbIIA
191 |B M

Copyright © William C. Cheng

Operating Systems - CSCI 402

B+ Trees (part 1)

_) Insertion: e.g., "Lucy"
= |et’s say you search left if < key, and search right if > key

UBA|
pieyoly

SIUIBAIA

aJelueq

uojsen
esr
oN0o

N\
=
=

%

uojsen)
aulWIdH
10D|
UBA|
SIUuIbIIA
191 |B M

ey
esr]
Mmayliey
9]02IN

Xo|V
ajuuog
ale)

soouel]

ajleiueq

Copyright © William C. Cheng

Operating Systems - CSCI 402

B+ Trees (part 1)

_) Insertion: e.g., "Lucy"
= |et’s say you search left if < key, and search right if > key

UeA|
pIeyory

——
SIS TS

SIUIDJIA

aJelueq

uojsen
esi
OoNO

10D|
UBA|
2100
e|ned
pieyoly
Aeys
Sewo|
SIUIDJIIA
19}j1e\

auuear
ey
esr]
Mmayliey
9]02IN

Xo1V
ajuuog
ale)
9J|eiueq
[1e3
soouelq
uojsen
SUIWIOH

Copyright © William C. Cheng

Operating Systems - CSCI 402

B+ Trees (part 2)

_) Insertion: e.g., "Lucy"
—= may cause split at the

root node
Q increase depth

Mmaylen

pIeyory f

UBA|

—] S
JIG S TS TS

SIUIDJIA

aJelueq

uojsen
esi
ol0

2100
e|ned
pieyoly
Aeys
Sewo|
SIUIDJIIA
19}j1e\

Mmaylley
9]02IN

Xo|y
aluuog
ale)
aIPIueq
[1e3
seouel]
uojsen

aulWIdH
10D|
UBA|
auueapr
ey
esi
AonT

Copyright © William C. Cheng

Operating Systems - CSCI 402

B+ Trees (part 2)

ﬁ> Insertion: e.g., "Lucy"

= there is another way
Q "rotate" Nicole to the right (since cannot "rotate" Lisa to

the left)

UBA|
pieyoly

esi
oo

uojsen \
- |

ajleiueq

s
- f S

uojsen)
aulWIdH
10D|
UBA|
ONO
e|ned
pieyoly
Aeys
SBWo |
SIUuIbIIA
191 |B M

ey
esr]
Mmayliey
9]02IN

Xo1V
aluuog
ale)

seouel]

ajleiueq

Copyright © William C. Cheng

Operating Systems - CSCI 402

B+ Trees (part 3)

e.g., 'Otto"

_) Deletion

Walter

Virginie

Tomas

Virginie

Shary

Richard

Paula

Otto

Richard

Otto

Nicole

Matthew

Matthew

Lucy

Lisa

/

Karl

lvan

Jeanne

Lisa

lvan

Igor

Hermine

Gaston

Gaston

Frances

Earl

Danielle

Danielle

UGS T B

Claire

Bonnie

Alex

Copyright © William C. Cheng

Operating Systems - CSCI 402

B+ Trees (part 3)

_) Deletion: e.g., "Otto"
—= merge nodes if necessary
Q may decrease depth

UBA|
Mmayllen

—
ARNE

aIuIbJIA

7 pleyoly

aJelueq
uojsen
esi

olo| 19].13] 22| |=I& - szl Dol S|
Zlo|= mio| |25 x| I o< ol2lo| |5

=I5 o = 5 »n {e] < |o —-|c =lo’| =2 o |
o212 IFI2 213 lo]| 121512 |@ole Slo|c T3 El=
D= oI=|0 - = —_— Q=

X ® =| ISI5|=] |o = S

=3 ® o5 3 < @ o =R =.|®
(1]) 7 Sm (1) Em o (/) o=

Copyright © William C. Cheng

Operating Systems - CSCI 402

Name-Space Management

File system 1

Copyright © William C. Cheng

Operating Systems - CSCI 402

Name-Space Management

) Multiple partitions of hard drive
= onh Windows, you have C:, D:, etc.
= onh Unix, you have /dev/sda0 (ext2), /dev/sdal (ext3), etc.

ﬁ> Main challenge for name-space management
= how do you make the nhame-space appear uniform?
Q Windows: drives
Q Unix: file system mounting
<& create an entry in the inode to point to the file system
<& only happen in memory and not on disk

Copyright © William C. Cheng

Operating Systems - CSCI 402

Unix Name-Space Management

) Unix: file system mounting
= mount one file system on a directory of another file system

File system 1

Copyright © William C. Cheng

Mount Points
) Adirectory can be a mount point

.

Copyright © William C. Cheng

Operating Systems - CSCI 402

mount /dev/disk2 /usr

unix| etc | usr | mnt | dev
tty01|tty02|diski1|disk2| tp1
src | lib | bin
v y |

Mount Points
) Adirectory can be a mount point

.

Copyright © William C. Cheng

Operating Systems - CSCI 402

mount /dev/disk2 /usr

unix| etc | usr | mnt | dev
tty01|tty02|diski1|disk2| tp1
src | lib | bin
v y |

Operating Systems - CSCI 402

File System Mounting

I:> mount /dev/disk2 /usr
= /usr/bin/bash is to be located at /dev/disk2/bin/bash

I:> mount /dev/usb0 /mnt/usb
= onh Mac OS X, instead of /mnt, it uses /Volumes

Weenix

) Try MOUNTING=1 in Config.mk
= may be after the semester is over
= polymorphism

ﬁ> It should be clear that mouting a file system is not the same as
using an alias (i.e., string substitution)

Copyright © William C. Cheng

