
0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

6.3 Directories

and Naming

Directories

Name-Space Management

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Desired Properties of Directories

No restrictions on names

Fast

Space-efficient

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

S5FS Directories

.

..

unix

etc

home

pro

dev

1

1

117

4

18

36

93

Inode

Number

Component

Name

directory entry

each entry is 32 bytes long in S5FS (see "s5fs.h" in weenix)

this is what get stored inside the "data blocks" of a directory file

i.e., a directory is implemented as an inode and the disk

map inside the inode points directly or indirectly to its

"data blocks"

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

FFS Directory Format

117

16 4

’u’ ’n’ ’i’ ’x’

’\0’

4

12 3

’e’ ’t’ ’c’ ’\0’

18

484 3

’u’ ’s’ ’r’ ’\0’

Free Space

Content of Directory File

unsorted entries

Dir
inode

100-200 entries

entry
length

name
length

inode

last entry
is different

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Look Up Filename In A Directory

Dir
inode

100-200 entries

O(n) is no good

B+ tree

How to look for a file named "foo.c"?

O(log n) is desirable

hash table

O(1) is great

linear search

don’t treat the directory contents as a sequential file

Hash file names to disk blocks

h(filename) tells you which bucket

(i.e., block) the file information is in

treat it as an array of hash buckets

collisions

The usual problem with hash tables

one disk read

length of conflict/collision resolution chain

is determined by block size

what do you do when the block is full?

traditional approach is to get a new hash function and

rehash every entry

too expensive

each bucket is stored in a disk block

h("bar.c")

Dir
inode

100-200 entries

h("foo.c")

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Hash Table

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Extensible Hashing

where hi hashes names to 2
 i
 buckets

Uses a sequence of hash functions, h0, h1, h2, ...

for any name x, the low-order i bits of hi(x) are the same in hi+1(x)

hi+1 is an extension on hi

To use extensible hashing, also need to add a level of indirection

inode index

inode index

inode index

inode index

inode index

inode index

inode index

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Extensible Hashing (part 1)

Betty

Harry

Belinda

Joe

Ralph

Lilly
0

1

2

3

Buckets

Indirect buckets

h2

George

bucket#

Bucket = block

inode index

inode index

inode index

inode index

inode index

inode index

inode index

Betty

Harry

Belinda

Joe

Ralph

Lilly

George

h2(Fritz) = 2

insert(Fritz)

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Extensible Hashing (part 1)

0

1

2

3

Buckets

Indirect buckets

h2

but bucket 2 is full

bucket#

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Extensible Hashing (part 2)

0,4

1,5

2,6

3,7

Buckets
Indirect buckets

h3

since there are 8 buckets, you need h3

First you double the number of indirect buckets

then you rehash all the entries using h3

inode index

inode index

inode index

inode index

inode index

inode index

inode index

Betty

Harry

Belinda

Joe

Ralph

Lilly

George

easily accomplished for extensible hashing with

indirection

bucket#

on the average half of them should go to bucket 2 and the other

half should go to bucket 6

h2(Fritz) = 2, let’s say h3(Fritz) = 6, bucket 2 is full, get a new

bucket, and rehash all items in bucket 2 with h3

inode index

inode index

inode index

inode index

inode index

inode index

inode index

Betty

Harry

Belinda

Joe

Ralph

Lilly

George

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Extensible Hashing (part 2)

Buckets
Indirect buckets

h3

e.g., h3(Belinda) = 2, h3(George) = 6

0,4

1,5

2,6

3,7

bucket#

inode index

inode index

inode index

inode index

inode index

inode index

Betty

Harry

Belinda

Joe

Ralph

Lilly

inode indexGeorge
6

Buckets

Indirect buckets

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Extensible Hashing (part 2)

h3

h2(Fritz) = 2, let’s say h3(Fritz) = 6

0,4

1,5

2

3,7

bucket#

inode index

inode index

inode index

inode index

inode index

inode index

Betty

Harry

Belinda

Joe

Ralph

Lilly

inode index

inode indexFritz

George

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Extensible Hashing (part 3)

Buckets

Indirect buckets

h3

without the indirect buckets, it will be expensive, i.e., O(n)

The power of indirection

6

0,4

1,5

2

3,7

bucket#

with indirect buckets, O(1)

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

B Trees

Each node in a B tree corresponds to one disk block

B+ tree:

A B tree of order m has the following properties:

1) every node has ≤ m children

2) every node (except root & leaves) has ≥ ceil(m/2) children

3) the root has at least 2 children (unless it is also a leaf)

4) all leaves appear at the same level and carry no keys

5) a non-leaf node with k children contains k-1 keys

usually omitted from the drawings

guarantee that each node of size m is at least 50% full

We will illustrate the basic idea with an example

real B+ tree algorithm is more complicated than depicted

internal nodes contain no data, just keys

there are a lot of B tree variations in various application areas

leaf nodes are linked to ease sorted sequential traversal

m is often large to reduce the number of disk accesses

R
ic

h
a
rd

Iv
a
n

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

B+ Trees (part 1)

A
le

x

G
a
s
to

n

B
o

n
n

ie
C

la
ire

D
a
n

ie
lle

E
a
rl

F
ra

n
c
e
s

O
tto

H
e
rm

in
e

Ig
o

r

Iv
a
n

J
e
a
n

n
e

K
a
rl

L
is

a
M

a
tth

e
w

N
ic

o
le

P
a
u

la
-

R
ic

h
a
rd

S
h

a
ry

T
o

m
a
s

V
irg

in
ie

W
a
lte

r
-

D
a
n

ie
lle

G
a
s
to

n

L
is

a

O
tto

V
irg

in
ie

-

Ex: a B+ tree of order 3

every internal node has either 2 or 3 children

if a node has > 3 children, it needs to split into two nodes

if a node has < 2 children, it needs to merge with its neighbor

we will assume that this is also true for the leaf nodes

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

B+ Trees (part 1)

Insertion: e.g., "Lucy"

R
ic

h
a
rd

Iv
a
n

A
le

x

G
a
s
to

n

B
o

n
n

ie
C

la
ire

D
a
n

ie
lle

E
a
rl

F
ra

n
c
e
s

O
tto

H
e
rm

in
e

Ig
o

r

Iv
a
n

J
e
a
n

n
e

K
a
rl

L
is

a
M

a
tth

e
w

N
ic

o
le

P
a
u

la
-

R
ic

h
a
rd

S
h

a
ry

T
o

m
a
s

V
irg

in
ie

W
a
lte

r
-

D
a
n

ie
lle

G
a
s
to

n

L
is

a

O
tto

V
irg

in
ie

-

let’s say you search left if < key, and search right if ≥ key

R
ic

h
a
rd

Iv
a
n

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

B+ Trees (part 1)

A
le

x

G
a
s
to

n

B
o

n
n

ie
C

la
ire

D
a
n

ie
lle

E
a
rl

F
ra

n
c
e
s

O
tto

H
e
rm

in
e

Ig
o

r

Iv
a
n

J
e
a
n

n
e

K
a
rl

L
is

a
M

a
tth

e
w

N
ic

o
le

P
a
u

la
-

R
ic

h
a
rd

S
h

a
ry

T
o

m
a
s

V
irg

in
ie

W
a
lte

r
-

D
a
n

ie
lle

G
a
s
to

n

L
is

a

O
tto

V
irg

in
ie

-

Insertion: e.g., "Lucy"

let’s say you search left if < key, and search right if ≥ key

M
a
tth

e
w

-

Iv
a
n

-

R
ic

h
a
rd

-

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

B+ Trees (part 2)

A
le

x

G
a
s
to

n

B
o

n
n

ie
C

la
ire

D
a
n

ie
lle

E
a
rl

F
ra

n
c
e
s

O
tto

H
e
rm

in
e

Ig
o

r

Iv
a
n

J
e
a
n

n
e

K
a
rl

L
is

a
L

u
c
y

-

M
a
tth

e
w

N
ic

o
le

-

P
a
u

la
-

R
ic

h
a
rd

S
h

a
ry

T
o

m
a
s

V
irg

in
ie

W
a
lte

r
-

D
a
n

ie
lle

G
a
s
to

n

L
is

a

-

O
tto

-

V
irg

in
ie

-

Insertion: e.g., "Lucy"

may cause split at the

root node

increase depth

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

B+ Trees (part 2)

Insertion: e.g., "Lucy"

there is another way

R
ic

h
a
rd

Iv
a
n

A
le

x

G
a
s
to

n

B
o

n
n

ie
C

la
ire

D
a
n

ie
lle

E
a
rl

F
ra

n
c
e
s

O
tto

H
e
rm

in
e

Ig
o

r

Iv
a
n

J
e
a
n

n
e

K
a
rl

L
is

a
M

a
tth

e
w

N
ic

o
le

P
a
u

la
-

R
ic

h
a
rd

S
h

a
ry

T
o

m
a
s

V
irg

in
ie

W
a
lte

r
-

D
a
n

ie
lle

G
a
s
to

n

L
is

a

O
tto

V
irg

in
ie

-

"rotate" Nicole to the right (since cannot "rotate" Lisa to

the left)

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

B+ Trees (part 3)

Deletion: e.g., "Otto"

A
le

x

G
a
s
to

n

B
o

n
n

ie
C

la
ire

D
a
n

ie
lle

E
a
rl

F
ra

n
c
e
s

O
tto

H
e
rm

in
e

Ig
o

r

Iv
a
n

J
e
a
n

n
e

K
a
rl

L
is

a
L

u
c
y

-

M
a
tth

e
w

N
ic

o
le

-

P
a
u

la
-

R
ic

h
a
rd

S
h

a
ry

T
o

m
a
s

V
irg

in
ie

W
a
lte

r
-

D
a
n

ie
lle

G
a
s
to

n

L
is

a

-

O
tto

-

V
irg

in
ie

-

M
a
tth

e
w

-

Iv
a
n

-

R
ic

h
a
rd

-

M
a
tth

e
w

V
irg

in
ie

Iv
a
n

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

B+ Trees (part 3)

A
le

x

G
a
s
to

n

B
o

n
n

ie
C

la
ire

D
a
n

ie
lle

E
a
rl

F
ra

n
c
e
s

H
e
rm

in
e

Ig
o

r

Iv
a
n

J
e
a
n

n
e

K
a
rl

L
is

a
L

u
c
y

-

M
a
tth

e
w

N
ic

o
le

P
a
u

la

R
ic

h
a
rd

S
h

a
ry

T
o

m
a
s

V
irg

in
ie

W
a
lte

r
-

D
a
n

ie
lle

G
a
s
to

n

L
is

a

-

R
ic

h
a
rd

Deletion: e.g., "Otto"

merge nodes if necessary

may decrease depth

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Name-Space Management

z

/

w x

y

File system 2

/

a b

c

File system 1

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Name-Space Management

on Windows, you have C:, D:, etc.

Multiple partitions of hard drive

on Unix, you have /dev/sda0 (ext2), /dev/sda1 (ext3), etc.

Main challenge for name-space management

how do you make the name-space appear uniform?

Windows: drives

Unix: file system mounting

create an entry in the inode to point to the file system

only happen in memory and not on disk

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Unix Name-Space Management

Unix: file system mounting

mount one file system on a directory of another file system

z

/

w x

y

File system 2

/

a b

c

File system 1

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Mount Points

tty01 tty02 disk1disk2 tp1

unix etc usr mnt dev

src lib bin

mount /dev/disk2 /usr

A directory can be a mount point

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Mount Points

tty01 tty02 disk1disk2 tp1

unix etc usr mnt dev

src lib bin

mount /dev/disk2 /usr

A directory can be a mount point

It should be clear that mouting a file system is not the same as

using an alias (i.e., string substitution)

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File System Mounting

/usr/bin/bash is to be located at /dev/disk2/bin/bash

mount /dev/disk2 /usr

on Mac OS X, instead of /mnt, it uses /Volumes

mount /dev/usb0 /mnt/usb

may be after the semester is over

Try MOUNTING=1 in Config.mk

Weenix

polymorphism

