
0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

6.1 The Basics of

File Systems

UNIX’s S5FS

Disk Architecture

Problems with S5FS

Improving Performance

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Disk Architecture

Disk heads

(on top and bottom

of each platter)

Sector

Track

C
y
li
n

d
e
r

disk address = (head/surface#, cylinder/track#, sector#)

Smallest addressable unit is a sector

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Rhinopias Disk Drive

Rotation speed

Number of surfaces

Sector size

Sectors/track

Tracks/surface

Storage capacity

Average seek time

One-track seek time

Maximum seek time

10,000 RPM

8

512 bytes

500-1000; 750 average

100,000

307.2 billion bytes

4 milliseconds

.2 milliseconds

10 milliseconds

Disk access time: time to copy a sector from disk to controller

access time = seek time + rotational latency + data transfer time

some people would use the term "response time" to mean

"access time", but we should avoid the use of the term

"response time"

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

S5FS on Rhinopias (A Marketing Disaster ...)

63.9 MB/sec

Rhinopias’s maximum transfer speed?

average seek time:

S5FS’s average speed on Rhinopias?

< 4 milliseconds (say 2)

average rotational latency:

~3 milliseconds

per-sector transfer time:

negligible

time/sector: 5 milliseconds

effective transfer speed: 102.4 KB/sec (.16% of maximum)

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

6.1 The Basics of

File Systems

UNIX’s S5FS

Disk Architecture

Problems with S5FS

Improving Performance

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

What to Do About It?

Hardware

better on-disk data structures

Software

helps reads a bit; doesn’t help writes

increase block size

minimize seek time

reduce rotational latency

employ pre-fetch buffer in disk controller

filled by hardware with what’s underneath disk head

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

FFS

Better on-disk organization

Longer component names in directories

Retains disk map of S5FS

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Larger Block Size

Not just this

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Larger Block Size

But all this

O(n) = O(n/4), why bother?

reading consecutive sectors is faster

to improve file system performance, you need to reduce

the number of times you go to the disk

much better than the hardware solution of pre-fetching

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The Down Side ...

Smaller

Block Size

Larger

Block Size

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The Down Side ...

Wasted Space

Smaller

Block Size

Wasted Space

Larger

Block Size

even worse internal

fragmentation

internal fragmentation

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Two Block Sizes ...

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Two Block Sizes ...

Wasted Space

e.g., 16KB blocks and 1KB fragments

best of both worlds

but there is no "free lunch", so what’s the cost?

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Rules

fragments assigned to a file must be contiguous and in order

File-system blocks may be split into fragments that can be

independently assigned to files

The number of fragments per block (1, 2, 4, or 8) is fixed for

each file system

Allocation in fragments may only be done on what would be the

last block of a file, and only for small files

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Use of Fragments (1)

File A

File B
can save even more space

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Use of Fragments (2)

File A

File B
A can grow by 2 segments

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Use of Fragments (3)

File A

File B

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Minimizing Seek Time

Keep related things close to one another

Separate unrelated things

Rotation speed

Number of surfaces

Sector size

Sectors/track

Tracks/surface

Storage capacity

Average seek time

One-track seek time

Maximum seek time

10,000 RPM

8

512 bytes

500-1000; 750 average

100,000

307.2 billion bytes

4 milliseconds

.2 milliseconds

10 milliseconds

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Cylinder Groups

Cylinder

group

recall that seeking to the next cyliner/track is much faster

than seeking to a random track

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Minimizing Seek Time

the practice: use heuristics and not go for the "optimal solution"

Complication: which cylinder group to create a file?

CG2

S5FS: I-list Data Region

0 1 2 ...

FFS: CG1

0 1 2 ...

attempt to put new inodes in the same cylinder group as their

directories

put inodes for new directories in cylinder groups with "lots" of

free space

put the beginning of a file (first 10KB, i.e., direct blocks) in the

inode’s cylinder group

put additional portions of the file (each 2MB) in cylinder

groups with "lots" of free space

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Locality Of File Access

if access "d.c", likely to access "e.c"

x

z

e.cd.c

y

b.ca.c

f.c

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Locality Of File Access

if access "d.c", likely to access "e.c"

x

z

e.cd.c

y

b.ca.c

f.c

CG3

CG1

CG2

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

How Are We Doing? (Part 1)

2-MB file fits entirely within one cylinder group

Configure Rhinopias with 20 cylinders per group

average seek time within cylinder group is ~.3 milliseconds

average rotational delay still 3 milliseconds

.12 milliseconds required for disk head to pass over 8KB

block

3.42 milliseconds for each block

2.4 million bytes/second average effective transfer speed

factor of 20 improvement

3.7% of maximum possible

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Minimizing Latency

6

5

4

3

7

8

1

2

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Numbers

6 milliseconds/revolution

Rhinopias spins at 10,000 RPM

typical of early 1980s

100 microseconds required to

service disk-completion interrupt

and start next operation

Each block takes

120 microseconds to traverse

disk head

Reading successive blocks is

expensive!

6

5

4

3

7

8

1

2

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Minimizing Latency

3

2

4

1

Block interleaving

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

How’re We Doing Now? (Part 2)

after request for second block is issued, must wait 20

microseconds for the beginning of the block to rotate under

disk head

Time to read successive blocks (two-way interleaving):

factor of 15 improvement

together with other improvements, overall, a factor of 300

improvement

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

How’re We Doing Now? (Altogether)

2-MB file within one cylinder group

Same setup as before

actually fits in one cylinder

block interleaving employed: every other block is skipped

.3-millisecond seek to that cylinder

3-millisecond rotational delay for first block

50 blocks/track, but 25 read in each revolution

10.24 revolutions required to read all of file

32.4 MB/second (50% of maximum possible)

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Further Improvements?

S5FS: 0.16% of capacity

FFS without block interleaving

FFS with block interleaving

Can we reach 100% of capacity?

factor of 20 improvement

another factor of 15 improvement

reached 3.8% of capacity

reached 50% of capacity

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Larger Transfer Units

too much wasted space

Allocate in whole tracks or cylinders

transfer many at once

Allocate in blocks, but group them together

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Block Clustering

Allocate space in blocks, eight at a time

extra space is available to other files if there is a shortage

of space

Linux’s Ext2 (an FFS clone):

delay disk-space allocation until:

FFS on Solaris (~1990)

allocate eight blocks at a time

8 blocks are ready to be written

or the file is closed

0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Can We Get To 100% Of Disk Transfer Capacity?
file8

file7

file5

file3

file2

file6

file4

file1

f7f8f6f2f1f5f4f3

CG2

0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

What A File Look Like in S5FS & FFS

File Data:

(e.g., PDF)

File On-disk

Representation:

S5FS: I-list Data Region

0 1 2 ...

0 1K 2K 3K 4K 5K

inode

FFS: CG1

0 1 2 ...

inode

Using all the tricks in FFS, we can only get to 50% of the disk

transfer capacity

0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

CPU, Memory, Disk Speeds Over Time

Capacity/Speed

Time

Disk

CPU

Memory

S5FS
FFS

this figure is not drawn to scale

0123

35

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

CPU, Memory, Disk Speeds Over Time

Capacity/Speed

Time

Disk

CPU

Memory

S5FS
FFS

Aggressive

Caching

this figure is not drawn to scale

0123

36

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Different Approach

We have lots of primary memory

Read time from disk doesn’t matter

Time for writes does matter

cache the entire disk in memory

if disk is too big, need to cache intelligently

may be enough to cache only files being accesses

once a disk block is brought into memory, keep it in memory

with a high hit rate, performance can get > 100% of disk capacity

e.g., with a 90% hit rate, the disk will appear to be 10 times

faster; with a 99% hit rate, the disk will appear to be 100 times

faster

next read of this block will cost you 0 in disk access time

0123

37

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The Buffer Cache

read()

OS

Buffer Cache

write()

FS

now vs. later

Aggressive caching

most read and write will have a cache hit

for writes, need to update the disk

write-through vs. write-back

can perform > 100% of the disk transfer capacity for reads

if buffer cache is used, read performance no longer an issue

0123

38

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The Buffer Cache

read()

OS

Buffer Cache

write()

FS

now

Problems with write-through

slow

0123

39

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The Buffer Cache

read()

OS

Buffer Cache

write()

FS

later

Problems with write-back

writes to the disk can wait, may be for quite a while

longer the wait, higher the risk

how?

you organize the disk as a very long log

0123

40

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The Buffer Cache

read()

OS

Buffer Cache

write()

FS

later

Need a file system optimized for writing!

also need to address the "risk factor"

0123

41

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Log-Structured File Systems

file2

file1

file3

0 1 2 ...

 log

append only

Main principles

never delete / update

0123

42

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Log-Structured File Systems

inode

0 1 2 ...

data log

file2

file1

file3

append only

Main principles

never delete / update

0123

43

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Log-Structured File Systems

minimize seek latency

write a cylinder at a time

How does "append only" and "never delete / update" help with

write performance?

minimize rotational latency

through batching, a single, long write can write out everything

Sprite FS (a log-structured file system)

one seek followed by many many writes

0123

44

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

LFS Data Placement Example

File On-disk

Representation:
inode

LFS:

0 1 2 ...

you modify file A, e.g., append to the last block of file A

0123

45

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

LFS Data Placement Example

What happens if you want to modify the file?

how does "append-only" really work?

LFS:

0 1 2 ...

Ex: you create file A and then file B

Inode Map: A B

you modify file A, e.g., append to the last block of file A

0123

46

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

LFS Data Placement Example

What happens if you want to modify the file?

how does "append-only" really work?

LFS:

Ex: you create file A and then file B

Inode Map:

0 1 2 ...

A B

you modify file A, e.g., append to the last block of file A

the updated file is still file A

0123

47

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

LFS Data Placement Example

What happens if you want to modify the file?

how does "append-only" really work?

LFS:

Ex: you create file A and then file B

Inode Map:

0 1 2 ...

A B

but the inode has changed

the updated file is still file A

but the inode has changed

you modify file A, e.g., append to the last block of file A

0123

48

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

LFS Data Placement Example

What happens if you want to modify the file?

how does "append-only" really work?

LFS:

Ex: you create file A and then file B

Inode Map:

0 1 2 ...

inode
map piece

a piece of the inode map is appended to the log

A B

this piece is the one that contains the disk address of inode A

the updated file is still file A

but the inode has changed

you modify file A, e.g., append to the last block of file A

0123

49

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

LFS Data Placement Example

What happens if you want to modify the file?

how does "append-only" really work?

LFS:

Ex: you create file A and then file B

Inode Map:

0 1 2 ...

inode
map piece

a piece of the inode map is appended to the log

fixed regions (previous version and current version) on the

disk keeps track of all the inode map pieces

A B

known as checkpoint file

CheckPt File

...

this piece is the one that contains the disk address of inode A

indexed by inode number

Inode Map cached in primary memory

points to inode on disk

written out to disk in pieces as updated

checkpoint file contains locations of pieces

Commonly/Recently used inodes and other disk blocks cached

in primary memory

written to disk occasionally

two copies: current and previous

0123

50

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

More On Inode Map

outside of the "log" part of the LFS

0 1 2 ...

inode
map pieceA B

CheckPt File B

...

CheckPt File A

...

good performance for writes

Advantages

can recover from crashes easily through the use of

checkpoint files

0123

51

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

LFS Summary

can waste a lot of disk space

Disadvantages

cannot reclaim disk space and will run out of disk space

11728 10624

Windows’ equivalent of disk map in S5FS is extent

an extent is a list of runs (consecutive disk blocks)

block numbers within a file

block numbers within a file system

0123

52

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Extents in FAT16 & FAT 32

3 4 5 60 1 2

runlist

length offset length offset length offset length offset

3 11728 4 10624

12

0

1

2

3

...

7

8

9

10

11

inode

...

256 max
entries

256 max
entries

256 max
entries

256 max
entries

256 max
entries

256 max
entries

256 max
entries

assuming blocksize = 1KB

up to 10KB+256KB+64MB+16GB

limit set at 2GB

256 max
entries

Data
Region

i-list

0123

53

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Recall S5FS Disk Map

lots of small areas of free space

Could result in highly fragmented disk space

solution: use a defragmenter to coalesce free space

linear search through a long list of extents

Random access

solution: multiple levels

external fragmentation

usually two levels

O(n) to find a disk block, recall that a disk map in S5FS is O(1)

0123

54

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Problems with Extents in FAT16 & FAT 32

Two-level runlists

Top-level runlist

0123

55

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Extents in NTFS

9738

11728

runlist

10624

length offset length offset length offset length offset

84 9738 132 1076 98 124

length offset length offset length offset length offset

3 11728 4 10624

0 1 2 3 4 5 6

make sure that every runlist fits inside one disk block

better performance, but still needs de-frag

0123

56

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Extra Slides

0123

57

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

dir1/file1

We create two single-block files

dir2/file2

allocate and initialize inode for file1 and write it to disk

FFS

update dir1 to refer to it (and update dir1 inode)

write data to file1

six writes, plus six more for the other file

allocate disk block

fill it with data and write to disk

update inode

seek and rotational delays

0123

58

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

FFS Picture

file2 inode

file2 data

dir1 inode

dir1 data

file1 inode

dir2 inode

dir2 data

file1 data

0123

59

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example (Continued)

one single, long write does everything

Sprite (a log-structured file system)

0123

60

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Sprite Picture

file2

inode

file2

data

dir1

inode

dir1

data

file1

inode

dir2

inode

dir2

data

file1

data

inode

map

0123

61

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

S5FS Layouts

Data Region

I-list

Superblock

Boot block

0123

62

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

FFS Layout

cg block

inodes

data

cg summary

super block

boot block

cg block

inodes

data

super block

data

cg n-1

cg i

cg 1

cg 0

0123

63

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

6.1 The Basics of

File Systems

UNIX’s S5FS

Disk Architecture

Problems with S5FS

Improving Performance

Dynamic Inodes

0123

64

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

NTFS Master File Table

User File 0

User File 1

Expansion entries

Quota Info

Bad-Cluster File

Boot File

Free-Space Bitmap

Root Directory

Attribute Definitions

Volume Info

Log

MFT Mirror

MFT

0123

65

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The Buffer Cache

Buffer

User Process

Buffer Cache

0123

66

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Multi-Buffered I/O

Process

read(...)

previous

block

i - 1

current

block

i

probable

next block

i + 1

0123

67

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Maintaining the Cache

buffer requests

returns of no-longer-active

buffers

probably free buffers

probably active buffers

returns of

active buffers

LRU

Aged

youngest

oldest

