Operating Systems - CSCI 402

6.1 The Basics of
File Systems

_)> UNIX’s S5FS
ﬁ> Disk Architecture
ﬁ} Problems with S5FS

) Improving Performance

Copyright © William C. Cheng

Operating Systems - CSCI 402

Disk Architecture

Sector

.- == ~
ad \\
I i TraCK
S 7
I \\ ’/

Disk heads '

(on top and bottom : "0
of each platter) ,

N

<

~~— ——’
e mm mm mm = =

ﬁ} Smallest addressable unit is a sector

— disk address = (head/surface#, cylinder/track#, sector#)
Copyright © William C. Cheng

2

Rhinopias Disk Drive

Rotation speed 10,000 RPM

Number of surfaces 8

Sector size 512 bytes
Sectors/track 500-1000; 750 average
Tracks/surface 100,000

Storage capacity

307.2 billion bytes

Average seek time

4 milliseconds

One-track seek time

.2 milliseconds

Maximum seek time

10 milliseconds

ﬁ> Disk access time: time to copy a sector from disk to controller
= gccess time = seek time + rotational latency + data transfer time
Q some people would use the term "response time" to mean

@

"access time'', but we should avoid the use of the term

"response time"
Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

S5FS on Rhinopias (A Marketing Disaster ...)

) Rhinopias’s maximum transfer speed?
= 63.9 MB/sec

ﬁ} S5FS’s average speed on Rhinopias?
= average seek time:
Q < 4 milliseconds (say 2)
= average rotational latency:
Q ~3 milliseconds
= per-sector transfer time:
Q negligible
time/sector: 5 milliseconds
effective transfer speed: 102.4 KB/sec (.16% of maximum)

[

[

Copyright © William C. Cheng

Operating Systems - CSCI 402

6.1 The Basics of
File Systems

_)> UNIX’s S5FS
ﬁ> Disk Architecture
ﬁ} Problems with S5FS

) Improving Performance

Copyright © William C. Cheng

Operating Systems - CSCI 402

What to Do About It?

_,) Hardware
= employ pre-fetch buffer in disk controller
Q filled by hardware with what’s underneath disk head
Q helps reads a bit; doesn’t help writes

G> Software
= better on-disk data structures
Q increase block size
Q minimize seek time
Q reduce rotational latency

Copyright © William C. Cheng

Operating Systems - CSCI 402

FFS
) Better on-disk organization

ﬁ> Longer component names in directories

_) Retains disk map of S5FS

Copyright © William C. Cheng

Operating Systems - CSCI 402

Larger Block Size

Not just this { - -

Copyright © William C. Cheng

Operating Systems - CSCI 402

Larger Block Size

) . i
\ — — —
But all this -

= O(n) = O(n/4), why bother?
Q reading consecutive sectors is faster
& much better than the hardware solution of pre-fetching
Q to improve file system performance, you need to reduce |
&

the number of times you go to the disk
Copyright © William C. Cheng

9

Operating Systems - CSCI 402

The Down Side ...

Smaller Larger
Block Size Block Size

................

Copyright © William C. Cheng

Operating Systems - CSCI 402

The Down Side ...

Smaller Larger
Block Size Block Size

Wasted Space

T

= internal fragmentation

- Wasted Space

~

= even worse internal |
fragmentation 3 @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Two Block Sizes ...

Copyright © William C. Cheng

Operating Systems - CSCI 402

Two Block Sizes ...

Wasted Space

T

= e.g., 16KB blocks and 1KB fragments
= pest of both worlds
Q but there is no "free lunch"”, so what’s the cost?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Rules

ﬁ} File-system blocks may be split into fragments that can be
independently assigned to files
= fragments assigned to a file must be contiguous and in order

ﬁ> The number of fragments per block (1, 2, 4, or 8) is fixed for
each file system

ﬁ> Allocation in fragments may only be done on what would be the
last block of a file, and only for small files

Copyright © William C. Cheng

Operating Systems - CSCI 402

Use of Fragments (1)

= Cahn save even more space

Copyright © William C. Cheng

Operating Systems - CSCI 402

Use of Fragments (2)

= A can grow by 2 segments

Copyright © William C. Cheng

Operating Systems - CSCI 402

Use of Fragments (3)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Minimizing Seek Time

Rotation speed 10,000 RPM

Number of surfaces 8

Sector size 512 bytes
Sectors/track 500-1000; 750 average
Tracks/surface 100,000

Storage capacity 307.2 billion bytes
Average seek time 4 milliseconds
One-track seek time .2 milliseconds
Maximum seek time 10 milliseconds

ﬁ> Keep related things close to one another

) Separate unrelated things

Copyright © William C. Cheng

Operating Systems - CSCI 402

Cylinder Groups

C_ D

Cylinder

group :

= recall that seeking to the next cyliner/track is much faster
than seeking to a random track

Copyright © William C. Cheng

Operating Systems - CSCI 402

Minimizing Seek Time

S5FS: I-list Data Region
012...

FFS: CG1 CG2
012..

ﬁ> Complication: which cylinder group to create a file?
— the practice: use heuristics and not go for the "optimal solution”
Q attempt to put new inodes in the same cylinder group as their
directories
Q put inodes for new directories in cylinder groups with "lots" of
free space
Q put the beginning of a file (first 10KB, i.e., direct blocks) in the
inode’s cylinder group
Q put additional portions of the file (each 2MB) in cylinder |
®

groups with "lots" of free space
Copyright © William C. Cheng

20

Operating Systems - CSCI 402

Locality Of File Access

f.c

/\ /\

a.c b.c

= if access "d.c", likely to access "e.c"

Copyright © William C. Cheng

Operating Systems - CSCI 402

Locality Of File Access

CG3

CG1 ‘\

CG2

= if access "d.c", likely to access "e.c"

Copyright © William C. Cheng

Operating Systems - CSCI 402

How Are We Doing? (Part 1)

_, Configure Rhinopias with 20 cylinders per group
= 2-MB file fits entirely within one cylinder group
— average seek time within cylinder group is ~.3 milliseconds
= average rotational delay still 3 milliseconds
= .12 milliseconds required for disk head to pass over 8KB
block
3.42 milliseconds for each block
2.4 million bytes/second average effective transfer speed
factor of 20 improvement
3.7% of maximum possible

0 0 0 [

Copyright © William C. Cheng

Operating Systems - CSCI 402

Minimizing Latency

Copyright © William C. Cheng

Operating Systems - CSCI 402

Numbers

_, Rhinopias spins at 10,000 RPM
= 6 milliseconds/revolution

> 100 microseconds required to
service disk-completion interrupt
and start next operation
= typical of early 1980s

ﬁ> Each block takes
120 microseconds to traverse
disk head

_) Reading successive blocks is
expensive!

Copyright © William C. Cheng

Operating Systems - CSCI 402

Minimizing Latency

) Block interleaving

Copyright © William C. Cheng

Operating Systems - CSCI 402

How’re We Doing Now? (Part 2)

) Time to read successive blocks (two-way interleaving):

— after request for second block is issued, must wait 20
microseconds for the beginning of the block to rotate under
disk head

= factor of 15 improvement
Q together with other improvements, overall, a factor of 300

improvement

Copyright © William C. Cheng

Operating Systems - CSCI 402

How’re We Doing Now? (Altogether)

) Same setup as before
= 2-MB file within one cylinder group
actually fits in one cylinder
block interleaving employed: every other block is skipped
3-millisecond seek to that cylinder
3-millisecond rotational delay for first block
50 blocks/track, but 25 read in each revolution
10.24 revolutions required to read all of file
32.4 MB/second (50% of maximum possible)

[

0 000 [0 [

Copyright © William C. Cheng

Operating Systems - CSCI 402

Further Improvements?
) S5FS: 0.16% of capacity

I:> FFS without block interleaving
= factor of 20 improvement
— reached 3.8% of capacity

) FFS with block interleaving
= another factor of 15 improvement
— reached 50% of capacity

> Can we reach 100% of capacity?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Larger Transfer Units

) Allocate in whole tracks or cylinders
= too much wasted space

) Allocate in blocks, but group them together
= transfer many at once

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Block Clustering
) Allocate space in blocks, eight at a time

_, Linux’s Ext2 (an FFS clone):
= allocate eight blocks at a time
— extra space is available to other files if there is a shortage
of space

) FFS on Solaris (~1990)
= delay disk-space allocation until:
Q 8 blocks are ready to be written
Q or the file is closed

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Can We Get To 100% Of Disk Transfer Capacity?
file8

file6

file4 '

file1

Copyright © William C. Cheng

What A File Look Like in S5FS & FFS

Operating Systems - CSCI 402

File Data:
File On-dlsk. inode v '
Representation: ||
S5FS: I-list Data Region
012..
inode
FFS: CG1 CG2
012..

) Using all the tricks in FFS, we can only get to 50% of the disk
transfer capacity

Copyright © William C. Cheng

Operating Systems - CSCI 402

CPU, Memory, Disk Speeds Over Time

Capacity/Speed

A
CPU

Memory

Disk

= this figure is not drawn to scale

Copyright © William C. Cheng

Operating Systems - CSCI 402

CPU, Memory, Disk Speeds Over Time

Capacity/Speed
A
CPU
/ Memory
: : Aggressive
: : Caching

Time

= this figure is not drawn to scale

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Different Approach

) We have lots of primary memory
= cache the entire disk in memory
Q if disk is too big, need to cache intelligently
Q may be enough to cache only files being accesses

_, Read time from disk doesn’t matter
= once a disk block is brought into memory, keep it in memory
Q next read of this block will cost you 0 in disk access time
= with a high hit rate, performance can get > 100% of disk capacity
Q e.g., with a 90% hit rate, the disk will appear to be 10 times
faster; with a 99% hit rate, the disk will appear to be 100 times

faster

ﬁ> Time for writes does matter

Copyright © William C. Cheng

Operating Systems - CSCI 402

The Buffer Cache

read () write ()

——

\ v/
FS

Buffer Cache

) now vs. later
> Agdgressive caching @

—= most read and write will have a cache hit
Q can perform > 100% of the disk transfer capacity for reads

Q if buffer cache is used, read performance no longer an issue
= for writes, need to update the disk
: . : (5!,}_
Q write-through vs. write-back A

Copyright © William C. Cheng

Operating Systems - CSCI 402

The Buffer Cache

read () write ()

——

\ v /

Buffer Cache

S

_) Problems with write-through
= slow

FS

Copyright © William C. Cheng

Operating Systems - CSCI 402

The Buffer Cache

read () write ()

——

\ v /

Buffer Cach€™ w=

R\
@) later
ﬁ> Problems with write-back

= writes to the disk can wait, may be for quite a while
Q longer the wait, higher the risk

FS

Copyright © William C. Cheng

Operating Systems - CSCI 402

The Buffer Cache

read () write ()

——

\ v /

Buffer Cach€™ w=

—
~N
8) later

) Need a file system optimized for writing!
= how?
Q you organize the disk as a very long /og
Q also need to address the "risk factor"”

FS

Copyright © William C. Cheng

Operating Systems - CSCI 402

Log-Structured File Systems

) Main principles
= append only filet
= never delete / update

file2 —~

— log —™

012..
Copyright © William C. Cheng

Operating Systems - CSCI 402

Log-Structured File Systems

) Main principles
= append only filet
= never delete / update

file2 —~

— log — inode | data @!,2

012..
Copyright © William C. Cheng

Operating Systems - CSCI 402

Log-Structured File Systems

ﬁ} How does "append only"” and "never delete / update” help with
write performance?
= minimize seek latency
Q one seek followed by many many writes
= minimize rotational latency
Q write a cylinder at a time

) Sprite FS (a log-structured file system)
= through batching, a single, long write can write out everything

Copyright © William C. Cheng

Operating Systems - CSCI 402

LFS Data Placement Example

File On-disk

_ inode
Representation:

LFS:

012..

Copyright © William C. Cheng

Operating Systems - CSCI 402

LFS Data Placement Example

> What happens if you want to modify the file?
= how does "append-only" really work?

) Ex: you create file A and then file B

LFS: > E i

012.. / | \
Inode Map: A B

= you modify file A, e.g., append to the last block of file A

Copyright © William C. Cheng

Operating Systems - CSCI 402

LFS Data Placement Example

> What happens if you want to modify the file?
= how does "append-only" really work?

) Ex: you create file A and then file B

LFS: - X i

012.. / | \
Inode Map: A B

= you modify file A, e.g., append to the last block of file A

Copyright © William C. Cheng

Operating Systems - CSCI 402

LFS Data Placement Example

> What happens if you want to modify the file?
= how does "append-only" really work?

) Ex: you create file A and then file B

N

LFS: ~ %X

012.. /<
B

Inode Map: A

= you modify file A, e.g., append to the last block of file A
= the updated file is still file A
Q but the inode has changed

Copyright © William C. Cheng

Operating Systems - CSCI 402

LFS Data Placement Example

> What happens if you want to modify the file?
= how does "append-only" really work?

) Ex: you create file A and then file B/\‘

| | inode

[|
LFS: > XIX | | I A B map piece

L/

012... | \t/

= you modify file A, e.g., append to the last block of file A
= the updated file is still file A
Q but the inode has changed
— a piece of the inode map is appended to the log
Q this piece is the one that contains the disk address of inode A

Inode Map:

483

Copyright © William C. Cheng

Operating Systems - CSCI 402

LFS Data Placement Example

> What happens if you want to modify the file?
= how does "append-only" really work?

) Ex: you create file A and then file B/\‘

| | inode

| !
LFS: X|X | | I A B map piece

L/

012.. \)
\ N -

Inode Map: CheckPt File

= you modify file A, e.g., append to the last block of file A

= the updated file is still file A
Q but the inode has changed

— a piece of the inode map is appended to the log
Q this piece is the one that contains the disk address of inode A
Q fixed regions (previous version and current version) on the

disk keeps track of all the inode map pieces |
<& known as checkpoint file 4934

Copyright © William C. Cheng

Operating Systems - CSCI 402

More On Inode Map

_) Inode Map cached in primary memory
= indexed by inode number
points to inode on disk
written out to disk in pieces as updated
checkpoint file contains locations of pieces
Q written to disk occasionally
Q two copies: current and previous
Q outside of the "log" part of the LFS

! L | inode
— X|X | | I A B map piece

0 0 [

N

/

012..)
7 7 I~ Y - 4

CheckPt File A | CheckPt File B

ﬁ> Commonly/Recently used inodes and other disk blocks cached
in primary memor IS\
P y y s @,

Copyright © William C. Cheng

Operating Systems - CSCI 402

LFS Summary

) Advantages
= good performance for writes
= can recover from crashes easily through the use of
checkpoint files

_, Disadvantages
= can waste a lot of disk space
Q cannot reclaim disk space and will run out of disk space

Copyright © William C. Cheng

Operating Systems - CSCI 402

Extents in FAT16 & FAT 32

_) Windows’ equivalent of disk map in S5FS is extent
= an extentis a list of runs (consecutive disk blocks)

runlist

length | offset | length | offset |length | offset |length | offset

3 11728 | 4 10624

11728 0 1 2 10624 3 4 5 6

1
‘. 1
1

block numbers within a file

Copyright © William C. Cheng

Operating Systems - CSCI 402

I-list} Data

Region Recall S5FS Disk Map
= assuming blocksize = 1KB

= up to 10KB+256KB+64MB+16GB
Q limit set at 2GB

|
. |
inode

WIN|=|O

~N|:

g M

\

10
11
12

256 max
entries 256 max
entries j

256 max 256 max
\ entries —"" lenttles /295I16t:ineasx
256 max 256 max
2::tmezx ™| entries —"" " | entries i ;ﬁ!’)_

Copyright © William C. Cheng

Operating Systems - CSCI 402

Problems with Extents in FAT16 & FAT 32

) Could result in highly fragmented disk space
= |ots of small areas of free space
Q external fragmentation
= solution: use a defragmenter to coalesce free space

_, Random access
= linear search through a long list of extents
Q O(n)to find a disk block, recall that a disk map in S5FS is O(7)
= solution: multiple levels
Q usually two levels

Copyright © William C. Cheng

ﬁ} Two-level runlists
= make sure that every runlist fits inside one disk block
= better performance, but still needs de-frag

Extents in NTFS

Top-level runlist

Operating Systems - CSCI 402

.

11728

0

Copyright © William C. Cheng

length | offset |length | offset |length | offset | length | offset
84 | 9738 | 132 | 1076 | 98 124
|
9738 runlist
length | offset |length | offset |length | offset |length | offset
3 11728 | 4 10624
| Al J

Operating Systems - CSCI 402

Extra Slides

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example

) We create two single-block files
= diri/file1
= dir2/file2

_) FFS

allocate and initialize inode for file1 and write it to disk
= update dir1 to refer to it (and update dir1 inode)
= write data to file1
Q allocate disk block
Q fill it with data and write to disk
Q update inode
= six writes, plus six more for the other file
Q seek and rotational delays

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

FFS Picture

dir2 inode file2 inode

>

‘ file2 data
dir2 data ' ‘
' dir1 inode
dir1 data
file1 data
file1 inode
X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example (Continued)

) Sprite (a log-structured file system)
= onhe single, long write does everything

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Sprite Picture

file1 filel dirt dir1 file2 file2 dir2 dir2 inode
data inode data inode data inode data inode map

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

S5FS Layouts

Boot block
Superblock

I-list

Data Region

Copyright © William C. Cheng

Operating Systems - CSCI 402

FFS Layout

e
rd
P 7
. data
' d
7’
Cg n'1 7 <
e .
- inodes
7’
° e cg block
° Phd
g super block
cgi
data
e | T Tm===--__
[J
[J _ -
_--" data
cg 1 -
cg summary
cg0 :
g inodes
T~ cg block
T~ el super block
T~ boot block

Copyright © William C. Cheng

Operating Systems - CSCI 402

6.1 The Basics of
File Systems

_)> UNIX’s S5FS

) Disk Architecture

ﬁ} Problems with S5FS
ﬁ} Improving Performance

) Dynamic Inodes

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

NTFS Master File Table

MFT
MFT Mirror
Log

Volume Info

Attribute Definitions

Root Directory

Free-Space Bitmap
Boot File
Bad-Cluster File

Quota Info

Expansion entries

User File 0

User File 1

Copyright © William C. Cheng

Operating Systems - CSCI 402

The Buffer Cache

Buffer

User Process

Buffer Cache

Copyright © William C. Cheng

Operating Systems - CSCI 402

Multi-Buffered 1/0

Process

read(...)|=

i-1 i i+ 1
previous current probable
block block next block

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Maintaining the Cache

> buffer requests

Aged probably free buffers

returns of no-longer-active

buffers
oldest
LRU probably active buffers
youngest - returns of

active buffers

X

Copyright © William C. Cheng

