Operating Systems - CSCI 402

5.1.1.3 Scheduler
Activations Model

Copyright © William C. Cheng

Operating Systems - CSCI 402

Problems With Two-level Model

ﬁ} Two-level model does not solve the 1/0 blocking problem
= if there are N kernel threads and if N user threads are blocked
in /O
Q no other user threads can make progress
Q Solaris solution basically goes back to one-level model

) Another problem: Priority Inversion

— user-level thread schedulers are not aware of the
kernel-level thread scheduler
Q it may know the number of kernel threads

= how can the user-level scheduler talk to the kernel-level
scheduler?
Q people have tried this, but it’'s complicated

= [t’s possible to have a higher priority user thread scheduled
on a lower priority kernel thread and vice versa

Copyright © William C. Cheng

Operating Systems - CSCI 402

Scheduler Activations Model - Variation on
Two-Level Model

ﬁ} The scheduler activations model is radically different from the
other models
= in other models, we think of the kernel as providing some
kernel thread contexts
Q then multiplexing these contexts on processors using the
kernel’s scheduler
= in scheduler activations model, we divvy up processors to
processes, and processes determine which threads get to
use these processors
Q the kernel should supply however many kernel contexts it
finds necessary

Copyright © William C. Cheng

Operating Systems - CSCI 402

Scheduler Activations Model Example

BRRED P00

User
Kernel

SO

®

4

Copyright © William C. Cheng

Operating Systems - CSCI 402

Scheduler Activations Model Example

ﬁ} Let’s say a process starts up running a single thread
= kernel scheduler assigns a processor to the process
= if the thread blocks, the process gives up the processor to
the kernel scheduler

ﬁ> Suppose the user program creates a new thread and
parallelism is desired
= code in user-level library notifies the kernel that it needs
two processors
—= when a processor becomes available, the kernel creates a
new kernel context
Q the kernel places an upcall to the user-level library,
effectively giving it the processor
Q the user-level library code assigns this processor to the
new thread

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Scheduler Activations Model Example

User User
scheduler A scheduler B

User
Kernel

[Kernel scheduler]

SOV

ﬁ> Kernel scheduler does not schedule threads 3
Copyright © William C. Cheng

Operating Systems - CSCI 402

Scheduler Activations Model Example

|

User
scheduler A

ﬁ> Kernel scheduler does not schedule threads
Copyright © William C. Cheng

D

|

User
scheduler B

|

r

[Kernel scheduler

SOV

kernel scheduler does an
upcall to offer processor 1

to user scheduler A

Operating Systems - CSCI 402

Scheduler Activations Model Example

T> D D
User \ User
scheduler A scheduler B

()
kernel scheduler does an

n upcall to offer processor 1

. to user scheduler A

5 = user scheduler A chooses
[. Kernel scheduler a1 to run on processor 1

= kernel does not choose

threads, just processes
_ J

PP

ﬁ> Kernel scheduler does not schedule threads
Copyright © William C. Cheng

Operating Systems - CSCI 402

Scheduler Activations Model Example

T} D)2 @

Y 4
User \ S User
scheduler A ’ scheduler B

¥ ’
1 [
i [
1 '} r ~
. ' upcall to offer processor 2
: ,' to user scheduler B
E T = user scheduler B chooses
[. Kernel sc¢heduler b1 to run on processor 2

ﬁ> Kernel scheduler does not schedule threads
Copyright © William C. Cheng

Operating Systems - CSCI 402

Scheduler Activations Model Example

T})

User -

scheduler ll-_]

User
scheduler B

ﬁ> Kernel scheduler does not schedule threads

Copyright © William C. Cheng

'é

|)
r‘------

N

kernel scheduler makes

another upcall to offer

processor 3 to user

scheduler B

= user scheduler B chooses
b2 to run on processor 3

Operating Systems - CSCI 402

Scheduler Activations Model Example

v
aD @ IS e S e
O" *‘

*
' ‘

User . User .
scheduler A ’ scheduler B !

’ ’
) r
| = -® \d
read () : - ayfm m = .
! _",' let’s say that thread a1 calls
" 7 read () and blocks in the
Y . N kernel
[blocks] L ¥ = processor 1 now
[Kernel scheduler | becomes available
J

ﬁ> Kernel scheduler can have various scheduling policies
Copyright © William C. Cheng

Operating Systems - CSCI 402

Scheduler Activations Model Example

!
'. . [
User " . User .
scheduler A | | S scheduler B K
I q] S s
l. : . ¢ ‘
read () ! N - gufmm==" .
J—_.'_,'__J depending on the kernel’s
' [,' policy, kernel scheduler may
 / .‘ .' ,' offer processor 1 to user
[blocks] | T T scheduler A
[Kernel scheduler | = user scheduler A chooses

a2 to run on processor 1

ﬁ> Kernel scheduler can have various scheduling policies
Copyright © William C. Cheng

Operating Systems - CSCI 402

Scheduler Activations Model Example

1 “
|
User . User .
scheduler A| , scheduler B K
[|
] i '0'
[- -
¥ s " = mm=
read () . (———&‘ N
&
' ¢ schedulers when resources
Y ! are available/unavailable
[blocks]

|
¥
[|
[

[|
|
JKernel scheduler

= e.d., when b1’s quantum
expires, kernel can take
away processor from b1

PV

ﬁ> Kernel scheduler can have various scheduling policies

Copyright © William C. Cheng

Operating Systems - CSCI 402

Scheduler Activations Model

ﬁ} Scheduler Activations Model seems like a good solution for
two-level models
= it has not been adopted by a major OS vendor
Q it can take many many years to take something in research
and move it into the real world
& need to conduct extensive experiments to know about all
the pluses and minuses of a new approach

<& 1t may not solve all types of priority inversion problems

Copyright © William C. Cheng

