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5.1.1.3 Scheduler
Activations Model
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Problems With Two-level Model

ﬁ} Two-level model does not solve the 1/0 blocking problem
= if there are N kernel threads and if N user threads are blocked
in /O
Q no other user threads can make progress
Q Solaris solution basically goes back to one-level model

) Another problem: Priority Inversion

— user-level thread schedulers are not aware of the
kernel-level thread scheduler
Q it may know the number of kernel threads

= how can the user-level scheduler talk to the kernel-level
scheduler?
Q people have tried this, but it’'s complicated

= [t’s possible to have a higher priority user thread scheduled
on a lower priority kernel thread and vice versa
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Scheduler Activations Model - Variation on
Two-Level Model

ﬁ} The scheduler activations model is radically different from the
other models
= in other models, we think of the kernel as providing some
kernel thread contexts
Q then multiplexing these contexts on processors using the
kernel’s scheduler
= in scheduler activations model, we divvy up processors to
processes, and processes determine which threads get to
use these processors
Q the kernel should supply however many kernel contexts it
finds necessary
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Scheduler Activations Model Example
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Scheduler Activations Model Example

ﬁ} Let’s say a process starts up running a single thread
= kernel scheduler assigns a processor to the process
= if the thread blocks, the process gives up the processor to
the kernel scheduler

ﬁ> Suppose the user program creates a new thread and
parallelism is desired
= code in user-level library notifies the kernel that it needs
two processors
—= when a processor becomes available, the kernel creates a
new kernel context
Q the kernel places an upcall to the user-level library,
effectively giving it the processor
Q the user-level library code assigns this processor to the
new thread

X
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Scheduler Activations Model Example

User User
scheduler A scheduler B

User
Kernel

[ Kernel scheduler ]

SOV

ﬁ> Kernel scheduler does not schedule threads 3
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Scheduler Activations Model Example
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Scheduler Activations Model Example
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ﬁ> Kernel scheduler does not schedule threads
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Scheduler Activations Model Example
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ﬁ> Kernel scheduler does not schedule threads
Copyright © William C. Cheng




Operating Systems - CSCI 402

Scheduler Activations Model Example
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Scheduler Activations Model Example
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ﬁ> Kernel scheduler can have various scheduling policies
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Scheduler Activations Model Example
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ﬁ> Kernel scheduler can have various scheduling policies
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Scheduler Activations Model Example
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ﬁ> Kernel scheduler can have various scheduling policies
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Scheduler Activations Model

ﬁ} Scheduler Activations Model seems like a good solution for
two-level models
= it has not been adopted by a major OS vendor
Q it can take many many years to take something in research
and move it into the real world
& need to conduct extensive experiments to know about all
the pluses and minuses of a new approach

<& 1t may not solve all types of priority inversion problems
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