
5.1.1.3 Scheduler

Activations Model

0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Problems With Two-level Model

if there are N kernel threads and if N user threads are blocked

in I/O

no other user threads can make progress

Two-level model does not solve the I/O blocking problem

user-level thread schedulers are not aware of the

kernel-level thread scheduler

it may know the number of kernel threads

Another problem: Priority Inversion

how can the user-level scheduler talk to the kernel-level

scheduler?

it’s possible to have a higher priority user thread scheduled

on a lower priority kernel thread and vice versa

people have tried this, but it’s complicated

Solaris solution basically goes back to one-level model

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model - Variation on
Two-Level Model

in other models, we think of the kernel as providing some

kernel thread contexts

then multiplexing these contexts on processors using the

kernel’s scheduler

The scheduler activations model is radically different from the

other models

in scheduler activations model, we divvy up processors to

processes, and processes determine which threads get to

use these processors

the kernel should supply however many kernel contexts it

finds necessary

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model Example

Kernel scheduler

User
scheduler

User
scheduler

User

Kernel

Kernel scheduler

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model Example

kernel scheduler assigns a processor to the process

Let’s say a process starts up running a single thread

if the thread blocks, the process gives up the processor to

the kernel scheduler

code in user-level library notifies the kernel that it needs

two processors

Suppose the user program creates a new thread and

parallelism is desired

when a processor becomes available, the kernel creates a

new kernel context

the kernel places an upcall to the user-level library,

effectively giving it the processor

the user-level library code assigns this processor to the

new thread

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model Example

Kernel scheduler

User
scheduler A

User
scheduler B

User

Kernel

Kernel scheduler

a1 a2 b1 b2

Kernel scheduler does not schedule threads

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model Example

Kernel scheduler

User
scheduler A

User
scheduler B

User

Kernel

Kernel scheduler

kernel scheduler does an

upcall to offer processor 1

to user scheduler A

a1 a2 b1 b2

Kernel scheduler does not schedule threads

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model Example

Kernel scheduler

User
scheduler A

User
scheduler B

User

Kernel

Kernel scheduler

a1 a2 b1 b2

kernel scheduler does an

upcall to offer processor 1

to user scheduler A

user scheduler A chooses

a1 to run on processor 1

kernel does not choose

threads, just processes

Kernel scheduler does not schedule threads

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model Example

Kernel scheduler

User
scheduler A

User
scheduler B

Kernel scheduler

a2 b2

User

Kernel

user scheduler B chooses

b1 to run on processor 2

b1a1

kernel scheduler does an

upcall to offer processor 2

to user scheduler B

Kernel scheduler does not schedule threads

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model Example

Kernel scheduler

User
scheduler A

User
scheduler B

Kernel scheduler

a2 b2

User

Kernel

user scheduler B chooses

b2 to run on processor 3

b1a1

Kernel scheduler does not schedule threads

kernel scheduler makes

another upcall to offer

processor 3 to user

scheduler B

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model Example

Kernel scheduler

User
scheduler A

User
scheduler B

Kernel scheduler

a2 b2

User

Kernel

processor 1 now

becomes available

b1a1

read()

[blocks]

Kernel scheduler can have various scheduling policies

let’s say that thread a1 calls

read() and blocks in the

kernel

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model Example

Kernel scheduler

User
scheduler A

User
scheduler B

Kernel scheduler

a2 b2

User

Kernel

user scheduler A chooses

a2 to run on processor 1

b1a1

read()

[blocks]

Kernel scheduler can have various scheduling policies

depending on the kernel’s

policy, kernel scheduler may

offer processor 1 to user

scheduler A

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model Example

Kernel scheduler

User
scheduler A

User
scheduler B

Kernel scheduler

a2 b2

User

Kernel

e.g., when b1’s quantum

expires, kernel can take

away processor from b1

b1a1

read()

[blocks]

Kernel scheduler can have various scheduling policies

kernel notifies the user

schedulers when resources

are available/unavailable

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduler Activations Model

it has not been adopted by a major OS vendor

it can take many many years to take something in research

and move it into the real world

Scheduler Activations Model seems like a good solution for

two-level models

need to conduct extensive experiments to know about all

the pluses and minuses of a new approach

it may not solve all types of priority inversion problems

