Operating Systems - CSCI 402

Ch 5: Processor
Management

Bill Cheng

http://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Operating Systems - CSCI 402

Processor Management

) Threads Implementation
= lock/mutex implementation on multiprocessors

) Interrupts
ﬁ} Scheduling
) Linux/Windows Scheduler

Copyright © William C. Cheng

Operating Systems - CSCI 402

5.1 Threads
Implementations

_) Strategies
_) ASimple Thread Implementation

—) Multiple Processors

Copyright © William C. Cheng

Operating Systems - CSCI 402

Threads Implementation

ﬁ} The ultimate goal of the OS is to support user-level applications
= we Wwill discuss various strategies for supporting threads

ﬁ} Where are operations on threads implemented?
= in the kernel?
= Oor in user-level library?

_) Approaches
= ohe-level or 1 x 1 model (threads are implemented in the kernel)

Q variable-weight processes

= two-level model (threads are implemented in user library)
Q Nx1
Q MxN

= scheduler activations model

Copyright © William C. Cheng

Operating Systems - CSCI 402

One-Level Model (1 x 1)

User

>))) Kernel
PV

Processors

Copyright © William C. Cheng

Operating Systems - CSCI 402

One-Level Model (1 x 1)

) The simplest and most direct approach is the one-level model
= all aspects of the thread implementation are in the kernel
Q l.e., all thread routines (e.g., pthread_mutex_1lock) called
by user code are all system calls
= each user thread is mapped to a kernel thread

I:> If a thread calls pthread_create ()
= it’s a system call, so it traps into the kernel
= the kernel creates a thread control block
Q associate it with the process control block
= the kernel creates a kernel and a user stack for this thread

I:> What about pthread_mutex_1lock ()
= why does it have to be done in the kernel?
= [t’s not necessary to protect the threads from each other!
Q you definitely don’t need the kernel to protect threads
from each other

Copyright © William C. Cheng

Operating Systems - CSCI 402

One-Level Model (1 x 1)

) Problem: system calls are expensive
= if pthread_mutex_1lock finds the mutex available, it should

return quickly (and lock the mutex)
Q If this can be done in user code, it can be 20 times faster

(for the case where the mutex is available)
Q in Win32 threads, an equivalent of a mutex is represented

in a user-level data structure
& if such an object is not locked, it returns quickly
& if such an object is locked, it makes a system call and

blocks in the kernel

) Does it happen a lot that pthread_mutex_lock finds the mutex

available?
= think about your warmup?2

Copyright © William C. Cheng

Operating Systems - CSCI 402

Variable-Weight Processes

ﬁ> Variant of one-level model

ﬁ> Portions of parent process selectively copied into or shared
with child process

) Children created using clone () system call

Signal
Info

Files:
file-descriptor table

AN

\ /

Parent Child

FS:

root, cwd, umask

/)

Virtual Memory

Copyright © William C. Cheng

Operating Systems - CSCI 402

Linux Threads (pre 2.6)

Initial
Thread
Manager
O) Thread
Other
Thread

mread

Copyright © William C. Cheng

Operating Systems - CSCI 402

NPTL in Linux 2.6

) Native POSIX-Threads Library
= full POSIX-threads semantics on improved variable-weight
processes
= threads of a "process’ form a thread group
Q getpid () returns process ID of first thread in group
Q any thread in group can wait for any other to terminate
Q signals to process delivered by kernel to any thread in
group
= nhew kernel-supported synchronization construct: futex (fast
user-space mutex)
Q used to implement mutexes, semaphores, and condition
variables

Copyright © William C. Cheng

Operating Systems - CSCI 402

Two-Level Model

ﬁ} In the two-level model, a user-level library plays a major role
— what an user-level application perceives as a thread is
implemented within user-level library code

) Two versions
= single kernel thread (per user process)
—= multiple kernel threads (per user process)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Two-Level Model - One Kernel Thread (N x 1)

DD DD
> Kernel

W

ﬁ> This is one of the earliest ways of implementing threads
= threads are implemented entirely in the user level
Q thread control block, mutex in user space
Q thread stack allocated by user library code

I
—= mostly done on uniprocessors 3 l,y
Copyright © William C. Cheng

Processors

Operating Systems - CSCI 402

Two-Level Model - One Kernel Thread (N x 1)

ﬁ} Within a process, user threads are multiplexed not on the
processor, but on a kernel-supported thread
= the OS multiplexes kernel threads (or equivalently, processes)
on the processor
— kernel does not know about the existance of user threads
Q there are really no "kernel threads" in these systems

ﬁ} User thread creation
— a stack and a thread control block is allocated
= thread is put on a queue of runnable threads
Q wait for its turn to become the running thread

ﬁ} Synchronization implementation
= relative straightforward
= e.g., mutex (one queue per mutex)
Q if a thread must block, it simply queues itself on a wait queue
and calls context-switch routine to pass control to the |
&

first thread on the runnable queue
Copyright © William C. Cheng

13

Operating Systems - CSCI 402

Two-Level Model - One Kernel Thread (N x 1)

_) Major advantage
= fast, because no system calls for thread-related APls

—) Major disadvantage
= what if a thread makes a system call (for a non-thread-related
API)?
Q it gets blocked in the kernel
Q no other user thread in the process can run
— also, there is no true parallelism within a process even
when more CPUs are available

Copyright © William C. Cheng

Operating Systems - CSCI 402

Coping ...

ssize_t read(int f£d, wvoid *buf, size_t count)

{

ssize_t ret;
while (1) {
if ((ret = real_read(fd, buf, count)) == -1) {
if (errno == EWOULDBLOCK) {
sem_wait (&FileSemaphore[£fd]);
continue;

}
}

break;

}

return (ret) ;

}

I:> Solution is to have a non-blocking read () called real_read()
= real_read() either returns immediately with data in buf
= or returns immediately with an error code in errno
Q EWOULDBLOCK means that a real read () would block, i.e.,
data is not ready to be read AR
2

Copyright © William C. Cheng

Operating Systems - CSCI 402

Coping ...

ssize_t read(int f£d, wvoid *buf, size_t count)

{

ssize_t ret;
while (1) {
if ((ret = real_read(fd, buf, count)) == -1) {
if (errno == EWOULDBLOCK) {
sem_wait (&FileSemaphore[£fd]);
continue;

}
}

break;

}

return (ret) ;

}

) One semaphore for each open file
= perhaps a signal handler will invoke sem_post () when data is
ready to be read

) Major drawback |
= ohly works for some I/O objects - not a general solution 163 |.’
Copyright © William C. Cheng

Operating Systems - CSCI 402

Two-Level Model: Multiple Kernel Threads (M x N)

DD DD
DD D e

@ @ Processors

ﬁ> This is called the M-to-N model

ﬁ> Implementation is similar to the two-level model with a single
kernel thread
= nho system calls for thread-related APIs
= |f we don’t have enough kernel threads per user process, |
we end up having the same problem with the N-to-1 model 173 @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Deadlock

ﬁ> Ex: two threads are communicating using a pipe (this is
essentially a kernel implementation of the producer-consmer

problem)
= first user thread writes to a full pipe and get blocked in the

kernel
Q first thread just happened to use the last kernel thread

Q 2nd thread wants to read the pipe to unblock the first
(N
% thread, but cannot because no kernel thread left v

Copyright © William C. Cheng

Operating Systems - CSCI 402

Deadlock

- - User

G> Solaris solution: automatically create a new kernel thread
= an obvious solution

Copyright © William C. Cheng

Operating Systems - CSCI 402

Problems With Two-level Model

ﬁ} Two-level model does not solve the 1/0 blocking problem
= if there are N kernel threads and if N user threads are blocked
in /O
Q no other user threads can make progress
Q Solaris solution basically goes back to one-level model

) Another problem: Priority Inversion

— user-level thread schedulers are not aware of the
kernel-level thread scheduler
Q it may know the number of kernel threads

= how can the user-level scheduler talk to the kernel-level
scheduler?
Q people have tried this, but it’'s complicated

= [t’s possible to have a higher priority user thread scheduled
on a lower priority kernel thread and vice versa

ﬁ} Will address these problems a little later with Scheduler |
Activations Model @;

Copyright © William C. Cheng

