
Ch 5: Processor

Management

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Processor Management

lock/mutex implementation on multiprocessors

Threads Implementation

Interrupts

Scheduling

Linux/Windows Scheduler

5.1 Threads

Implementations

Strategies

A Simple Thread Implementation

Multiple Processors

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Threads Implementation

we will discuss various strategies for supporting threads

The ultimate goal of the OS is to support user-level applications

in the kernel?

Where are operations on threads implemented?

or in user-level library?

one-level or 1 × 1 model (threads are implemented in the kernel)

Approaches

two-level model (threads are implemented in user library)

variable-weight processes

N × 1

M × N

scheduler activations model

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

One-Level Model (1 × 1)

User

Kernel

Processors

all aspects of the thread implementation are in the kernel

i.e., all thread routines (e.g., pthread_mutex_lock) called

by user code are all system calls

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

One-Level Model (1 × 1)

each user thread is mapped to a kernel thread

The simplest and most direct approach is the one-level model

it’s a system call, so it traps into the kernel

If a thread calls pthread_create()

associate it with the process control block

the kernel creates a thread control block

the kernel creates a kernel and a user stack for this thread

why does it have to be done in the kernel?

What about pthread_mutex_lock()

it’s not necessary to protect the threads from each other!

you definitely don’t need the kernel to protect threads

from each other

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

One-Level Model (1 × 1)

if pthread_mutex_lock finds the mutex available, it should

return quickly (and lock the mutex)

Problem: system calls are expensive

if this can be done in user code, it can be 20 times faster

(for the case where the mutex is available)

in Win32 threads, an equivalent of a mutex is represented

in a user-level data structure

if such an object is not locked, it returns quickly

if such an object is locked, it makes a system call and

blocks in the kernel

Does it happen a lot that pthread_mutex_lock finds the mutex

available?

think about your warmup2

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Variable-Weight Processes

Variant of one-level model

Portions of parent process selectively copied into or shared

with child process

Children created using clone() system call

Files:
file-descriptor table

Virtual Memory

FS:
root, cwd, umask

Signal
Info

Parent Child

Other
Thread

Other
Thread

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Linux Threads (pre 2.6)

Initial
Thread

Other
Thread

Manager
Thread

Pipe

new kernel-supported synchronization construct: futex (fast

user-space mutex)

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

NPTL in Linux 2.6

full POSIX-threads semantics on improved variable-weight

processes

getpid() returns process ID of first thread in group

Native POSIX-Threads Library

threads of a "process" form a thread group

any thread in group can wait for any other to terminate

signals to process delivered by kernel to any thread in

group

used to implement mutexes, semaphores, and condition

variables

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Two-Level Model

what an user-level application perceives as a thread is

implemented within user-level library code

In the two-level model, a user-level library plays a major role

single kernel thread (per user process)

Two versions

multiple kernel threads (per user process)

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Two-Level Model - One Kernel Thread (N × 1)

User

Kernel

Processors

threads are implemented entirely in the user level

This is one of the earliest ways of implementing threads

thread control block, mutex in user space

thread stack allocated by user library code

mostly done on uniprocessors

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Two-Level Model - One Kernel Thread (N × 1)

Within a process, user threads are multiplexed not on the

processor, but on a kernel-supported thread

a stack and a thread control block is allocated

User thread creation

relative straightforward

Synchronization implementation

thread is put on a queue of runnable threads

wait for its turn to become the running thread

if a thread must block, it simply queues itself on a wait queue

and calls context-switch routine to pass control to the

first thread on the runnable queue

e.g., mutex (one queue per mutex)

the OS multiplexes kernel threads (or equivalently, processes)

on the processor

kernel does not know about the existance of user threads

there are really no "kernel threads" in these systems

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Two-Level Model - One Kernel Thread (N × 1)

fast, because no system calls for thread-related APIs

Major advantage

what if a thread makes a system call (for a non-thread-related

API)?

Major disadvantage

it gets blocked in the kernel

no other user thread in the process can run

also, there is no true parallelism within a process even

when more CPUs are available

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Coping ...

ssize_t read(int fd, void *buf, size_t count)
{
 ssize_t ret;
 while (1) {
 if ((ret = real_read(fd, buf, count)) == -1) {
 if (errno == EWOULDBLOCK) {
 sem_wait(&FileSemaphore[fd]);
 continue;
 }
 }
 break;
 }
 return(ret);
}

real_read() either returns immediately with data in buf

Solution is to have a non-blocking read() called real_read()

or returns immediately with an error code in errno

EWOULDBLOCK means that a real read() would block, i.e.,

data is not ready to be read

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Coping ...

ssize_t read(int fd, void *buf, size_t count)
{
 ssize_t ret;
 while (1) {
 if ((ret = real_read(fd, buf, count)) == -1) {
 if (errno == EWOULDBLOCK) {
 sem_wait(&FileSemaphore[fd]);
 continue;
 }
 }
 break;
 }
 return(ret);
}

perhaps a signal handler will invoke sem_post() when data is

ready to be read

One semaphore for each open file

only works for some I/O objects - not a general solution

Major drawback

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Two-Level Model: Multiple Kernel Threads (M × N)

User

Kernel

Processors

no system calls for thread-related APIs

Implementation is similar to the two-level model with a single

kernel thread

This is called the M-to-N model

if we don’t have enough kernel threads per user process,

we end up having the same problem with the N-to-1 model

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Deadlock

User

Kernel

first user thread writes to a full pipe and get blocked in the

kernel

Ex: two threads are communicating using a pipe (this is

essentially a kernel implementation of the producer-consmer

problem)

first thread just happened to use the last kernel thread

2nd thread wants to read the pipe to unblock the first

thread, but cannot because no kernel thread left

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Deadlock

User

Kernel

an obvious solution

Solaris solution: automatically create a new kernel thread

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Problems With Two-level Model

if there are N kernel threads and if N user threads are blocked

in I/O

no other user threads can make progress

Two-level model does not solve the I/O blocking problem

user-level thread schedulers are not aware of the

kernel-level thread scheduler

it may know the number of kernel threads

Another problem: Priority Inversion

how can the user-level scheduler talk to the kernel-level

scheduler?

it’s possible to have a higher priority user thread scheduled

on a lower priority kernel thread and vice versa

people have tried this, but it’s complicated

Solaris solution basically goes back to one-level model

Will address these problems a little later with Scheduler

Activations Model

