
0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

4.2 Rethinking

Operating-System

Structure

Virtual Machines

Microkernel

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Monolithic Kernel

performance

Major advantage of monolithic kernel

reliability (i.e., buggy kernel)

Major down side of monolithic kernel

shrink the code in "privileged mode"

Proposal to fix the reliability problem

virtual machines

Two major approaches

microkernel

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Machines

worse if large number of programmers contribute code

A nicely designed and implemented monolithic OS is great

some coders are not as good as others

but that’s not the reality

Major problem with a monolithic OS implementation

bugs in one component can adversely affect another component

good coders have bad days

Modern OSs isolate applications from one another

if yes, at what cost? (there is no free lunch)

Can the same kind of isolation be provided for OS components?

e.g., invoking privileged instructions

if you invoke a privileged instruction in user mode, you will

cause a violation and trap into the kernel

code executing in the privileged mode can do things the

user mode code cannot

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Machines

Part 1: > 50 Years Ago

Had a different motivation

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

It’s 1964 ...

large, monolithic system

TSS (Time-Sharing System) project

IBM wants to build a multiuser time-sharing system

IBM has a single-user time-sharing system called CMS

virtual machine monitor (VMM)

CP67

lots of people working on it

for years

total, complete flop

a (working) multiuser time-sharing system

Put the two together ...

supports multiple virtual IBM 360s

it’s a very difficult system to build

A "monitor" is a synchronization construct that allows executing

entities to have both mutual exclusion and the ability to

wait (block) for a certain condition to become true

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Machines

Virtual Machine Monitor (VMM)

Hardware

Virtual
Machine

Virtual
Machine

Virtual
Machine

OSa OSb OSc

Applications Applications Applications

What abstraction does a virtual machine provide?

hardware

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Machines

Virtual Machine Monitor (VMM)

Hardware

Virtual
Machine

Virtual
Machine

Virtual
Machine

OSa OSb OSc

Applications Applications Applications

and it can be tested on a real machine (which behaves

identical to the VM)

A single user time-sharing system could be developed

independently of the VMM

no ambiguity about the interface VMM must provide to

its applications - identical to the real machine!

What is considered a virtual machine (for this class)?

run (not emulate/simulate) OSx "inside" / "on-top-of" OSy

we will refer to OSx as the "guest OS" and OSy as the

"host OS" (these terms came from VMware)

make "guest OS" think that it’s running on hardware, but in

reality, it is running inside a virtual machine

therefore, the code and data structures you put into "host OS"

so that you can run "guest OS" in it is called "virtual machine"

Different types of virtualization technologies

pure virtualization: "guest OS" is unmodified

para-virtualization: "guest OS" is modified

"guest OS" thinks it’s running directly on hardware

modified "guest OS" can only run inside virtual machine

"host OS" may be a specialized OS

a virtual machine is not an OS emulator

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Machines

something else: we shouldn’t call it a virtual machine

must execute "guest OS" on the real CPU directly

OS runs in the (virtual) privileged mode of the virtual machine

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

How?

Privileged

User

User

Privileged

Real Machine

Virtual Machine

VMM runs in the privileged mode of the real machine

Run the entire virtual machine in user mode of the real machine

VMM keeps track of whether each virtual machine is in the

virtual privileged mode or in the virtual user mode

VMM

"Guest" OS

Application

Applications runs in the (virtual) user mode of the virtual

machine

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

VMM Operations

VMM

Hardware

Virtual
Machine

Guest OSa

Applications
e.g., "add", "mul", pointer manipulation

Execute a non-privileged instruction

e
x

e
c

u
te

d

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

VMM Operations

VMM

Hardware

Virtual
Machine

Guest OSa

Applications
e.g., "add", "mul", pointer manipulation

Execute a non-privileged instruction

executes directly on

hardware

from application’s

perspective, no

difference running in VM

or on hardware

e
x

e
c

u
te

d

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

VMM Operations

VMM

Hardware

Virtual
Machine

Guest OSa

Applications
e.g., "add", "mul", pointer manipulation

Execute a non-privileged instruction

executes directly on

hardware

from application’s

perspective, no

difference running in VM

or on hardware

Note: this looks like our kernel

assignments (but quite different)

QEMU

Weenix

Applications

a emulator program
for the x86
instruction set

Hardware

Linux

emulated

executed

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

VMM Operations

VMM

Hardware

Virtual
Machine

Guest OSa

Applications
e.g., "trap" (system call, page fault, etc.)

Execute a privileged instruction

in a real machine, trap handler is

indexed by the trap number into a

hardware-mandated jump table

e.g., "trap" (system call, page fault, etc.)

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

VMM Operations

VMM

Hardware

Virtual
Machine

Guest OSa

Applications
Execute a privileged instruction

the VMM needs to find the address

of the virtual machine’s trap handler

in the table and transfer control to it

e.g., "trap" (system call, page fault, etc.)

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

VMM Operations

VMM

Hardware

Virtual
Machine

Guest OSa

Applications
Execute a privileged instruction

the VMM figures out which

VM is currently executing

the VMM is invoked

e.g., "trap" (system call, page fault, etc.)

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

VMM Operations

VMM

Hardware

Virtual
Machine

Guest OSa

Applications
Execute a privileged instruction

the VMM figures out which

VM is currently executing

the VMM is invoked

VMM then asks the

corresponding VM to

deliver the trap to its OS

VMM should be virtual

machine independent

e.g., "trap" (system call, page fault, etc.)

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

VMM Operations

VMM

Hardware

Virtual
Machine

Guest OSa

Applications
Execute a privileged instruction

now it’s a lot more involved (and slower)

Without VM, the application will simply traps into the OS directly

Interrupts pretty much work the same way

the VMM figures out which

VM is currently executing

the VMM is invoked

VMM then asks the

corresponding VM to

deliver the trap to its OS

VMM should be virtual

machine independent

e.g., "trap" (system call, page fault, etc.)

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

VMM Operations

VMM

Hardware

Virtual
Machine

Guest OSa

Applications
Execute a privileged instruction

"Virtual Machine" in the picture contains:

virtual CPU, virtual disk, virtual display, virtual keyboard, etc.

data structures and code that represent hardware

components

the VMM figures out which

VM is currently executing

the VMM is invoked

VMM then asks the

corresponding VM to

deliver the trap to its OS

VMM should be virtual

machine independent

Note that most instructions the trap handler executes are not

privileged (such as the code to setup PCB, TCB, etc.)

clearly, these instructions can run in non-privileged mode

what type of code must execute in privileged mode? (later)

e.g., "trap" (system call, page fault, etc.)

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

VMM Operations

VMM

Hardware

Virtual
Machine

Guest OSa

Applications
Execute a privileged instruction

the VMM figures out which

VM is currently executing

the VMM is invoked

VMM then asks the

corresponding VM to

deliver the trap to its OS

VMM should be virtual

machine independent

what if "return from interrupt" is not privileged?

e.g., read()

What about I/O?

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

VMM Operations

VMM

Hardware

Guest OSa

Applications

Disk

Virtual
Machine

e.g., read()

What about I/O?

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

VMM Operations

VMM

Hardware

Virtual
Disk

Guest OSa

Applications

each VM has a virtual disk

real disk is divvy up among

the virtual machines

Disk

e.g., read()

What about I/O?

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

VMM Operations

VMM

Hardware

Guest OSa

Applications

read() eventually reaches the OS

the OS asks for a block on the

virtual disk Virtual
Diskin x86: memory-mapped I/O

Disk

Disk

e.g., read()

What about I/O?

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

VMM Operations

VMM

Hardware

Guest OSa

Applications

read() eventually reaches the OS

the OS asks for a block on the

virtual disk

the VMM emulates the

instruction (i.e., translates

it into a request for the

real disk)

memory-mapped I/O causes a

trap into VMM

there’s really no disk in

the VM

Virtual
Disk

there is no "handler" in

the guest OS for I/O

instructions

in x86: memory-mapped I/O

Disk

e.g., read()

What about I/O?

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

VMM Operations

VMM

Hardware

Guest OSa

Applications

read() eventually reaches the OS

the OS asks for a block on the

virtual disk

the VMM emulates the

instruction (i.e., translates

it into a request for the

real disk)

memory-mapped I/O causes a

trap into VMM

there’s really no disk in

the VM

Virtual
Disk

there is no "handler" in

the guest OS for I/O

instructions

in x86: memory-mapped I/O

the guest OS is expecting

an interrupt

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Why Virtual Machine?

It’s a good structuring technique for a multi-user system

OS debugging and testing

Multiple OSes on one machine

Adapt to hardware changes in software

Server consolidation and service isolation

run a production OS in a VM, accessible to users

test a new OS in a separate VM, accessible to developers

one type of applications run really well in one OS

another type of applications run really well in a different OS

one physical machine can support both, no user need to suffer

today, it’s common that a machine in the cloud would run

multiple Linux OS instances and multiple Windows OS instances

web hosting, security concerns

cloud computing

many advantages

it is probably aware that it’s not running on a real machine

A virtual machine is an efficient, isolated duplicate of real

machine

requires faithful virtualization of pretty much all components

processor

memory

interval timers

I/O devices

etc.

this is "pure" virtualization

costly

Paravirtualization:

virtualized entity is a bit different from the real entity

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtualization Requirements

so as to enhance scalability, performance, and simplicity

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Pure Processor Virtualization Requirements

1)

Virtualizing the processor requires:

multiplexing the real processor among the virtual machines

2) making each virtual machine behaves just like a real machine

relatively straightforward

all instructions must work identically

generation of and response to traps and interrupts

must be identical as well

Can all processors be virtualized?

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Pure Processor Virtualization Requirements

Processor in the virtual machine is the real processor

instructions are executed (and not interpreted or emulated)

in a real machine, trap handler is indexed by the trap number

into a hardware-mandated jump table

traps are generated just as they are on real machines

the VMM needs to find the address of the virtual machine’s

trap handler in the table and transfer control to it

interrupts pretty much work the same way

Pretty much everything can be worked out except for one problem

if a virtual machine is executing in the virtual privileged mode,

what’s to prevent it from changing things like memory-mapping

(which can affect the execution the virtual machine)?

or what if "return from interrupt" is not privileged?

this may not be a realistic example because, clearly,

"return from interrupt" must be privileged

such instructions must be identified and make sure that

they work properly under virtualization

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Pure Processor Virtualization Requirements

Under virtualization, we must distinguish between sensitive

instructions and privileged instructions

cause privileged-instruction trap when executed in user mode

but execute fully when the processor is in privileged mode

Privileged instructions:

Sensitive Instructions:

?

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Pure Processor Virtualization Requirements

Sensitive Instructions:

Control-sensitive instructions:

instructions that affect allocation of (real) system resources1)

such as insturctions that change the mapping of virtual to

real memory

instructions whose effect depends on the allocation of (1)2)

such as insturctions that returns the real address of a

location in virtual memory

instructions whose effect depends on the current processor

mode

3)

Behavior-sensitive instructions:

such as x86’s popf insturctions that sets a set of processor

flags when run in privileged mode, but set a different set of

flags otherwise

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Sensitive Instruction Example

e.g., insturctions that change the

mapping of virtual to real memory

A sensitive instruction must execute in the

privilege mode (in the kernel)

VMM

Hardware

Virtual
Machine

Guest OSa

Applications

executing a sensitive instruction

will cause a trap into the VMM

Guest OS runs in the user mode of

the real processor

the VMM emulates the instruction

must not execute such instruction cr3

CPU

cr3

you cannot build a virtual machine for this processor

e.g., insturctions that change the

mapping of virtual to real memory

A sensitive instruction must execute in the

privilege mode (in the kernel)

but what if it’s not?

All sensitive instructions must also be

privileged

it’s an instruction that if it’s not privileged, it will cause the

guest OS (inside a virtual machine) to execute incorrectly

this gives us another definition of "sensitive instruction"

this operational definition may be more useful for an

introductory class like ours 0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Sensitive Instruction Example

VMM

Hardware

Virtual
Machine

Guest OSa

Applications

cr3

CPU

cr3

0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Pure Processor Virtualization Requirements

[Popek and Goldberg, 1974] proved that the sufficient condition to

be able to construct a virtual machine is simply the following:

a computer’s set of sensitive instructions is a subset of its

privileged instructions

The above theorem holds for the

IBM 360

virtual machines can be

constructed for it

i.e., if you execute a sensitive insturction in user mode, you

will trap into the kernel

more importantly, if you execute a sensitive insturction in

virtual user or virtual privileged mode, you will trap into VMM

The above theorem does not

hold for the x86 processors

cannot build virtual

machines for x86

0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The (Real) 360 Architecture

supervisor and problem (user)

Two execution modes

all sensitive instructions are privileged instructions

Memory is protectable: 2KB granularity

All interrupt vectors and the clock are in first 512 bytes of memory

I/O done via channel programs in memory, initiated with privileged

instructions

Dynamic address translation (virtual memory) added for Model 67

Privileged

User

User

Privileged

Real Machine

Virtual Machine

0123

35

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Actions on Real 360

User Mode Privileged Mode

non-sensitive
instruction

"errant"
instruction

sensitive
instruction

executes fine

traps to kernel

traps to kernel

executes fine

traps to kernel

executes fine

kernel

since all sensitive instructions are privileged for IBM 360

such as divide by zero, page fault, etc.

0123

36

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Actions on Virtual 360

traps to VMM; VMM
delivers trap to the
Guest OS

traps to VMM; VMM
delivers trap to the
Guest OS

Virtual User Mode Virtual Privileged Mode

non-sensitive
instruction

"errant"
instruction

sensitive
instruction

executes fine executes fine

traps to VMM; VMM
delivers trap to the
Guest OS

traps to VMM;
VMM verifies and
emulates instruction

Privileged

User

User

Privileged

Real Machine

Virtual MachineVMM

Application

"Guest" OS

0123

37

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Devices?

connecting (real) people

Terminals

didn’t exist in the 60s

Networks

CP67 supported "mini disks"

Disk drives

virtual or real?

Interval timer

(how did virtual machines communicate?)

extended at Brown into "segment system"

0123

38

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Machines

Part 2: Now

0123

39

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

0123

40

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

How They Are Different

Four execution modes

rings 0 through 3

Intel x86

not all sensitive instructions

are privileged instructions

Memory is protectable:

segment system + virtual

memory

Special register points to

interrupt table

I/O done via memory-mapped I/O

Virtual memory is standard

Two execution modes

supervisor and problem

(user)

IBM 360

all sensitive instructions

are privileged instructions

Memory is protectable:

2k-byte granularity

All interrupt vectors and the

clock are in first 512 bytes

of memory

I/O done via channel programs

in memory, initiated with

privileged instructions

Dynamic address translation

(virtual memory) added for

Model 67

i.e., I/O operations look like

memory accesses

0123

41

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Rings

0

kernel

1

2

3 apps

An x86 processor can be in one of 4 modes/rings

0123

42

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Sensitive x86 Instruction

pops flags (word) off stack, setting processor flags according to

word’s content

sets all flags if in ring 0

popf

just some of them if in other rings

ignores interrupt-disable flag

including interrupt-disable flag

bad news: if invoked in user mode, does not cause a trap!

therefore, this instruction will execute differently in the

guest OS when it’s running on top of a VM (as compared to

running on a real machine)

since the OS is running in user mode under the virtual

machine scheme

this (and a few other instructions) is one of the major problem

to virtualize x86 systems

There is another major problem related to device I/O (later)

0123

43

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

x86 CPU Virtualization - What to Do?

rewrite kernel binaries of guest OSes

Binary rewriting

fix the hardware so it’s virtualizable

Hardware virtualization

virtual machine differs from real machine

Paravirtualization

replace sensitive instructions with "hypercalls"

do so dynamically (i.e., dynamic binary rewriting)

provides more convenient interfaces for virtualization

hypervisor interface between virtual and real machines

guest OS source code is modified (and recompiled)

VMware does this

no need to modify guest OS

we use the terms "hypervisor" and "VMM" interchangeably

0123

44

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Binary Rewriting

replaces sensitive instructions with hypercalls

Privilege-mode code run via binary translator

translated code is cached

VMWare

U.S. patent 6,397,242

usually translated just once

guest OS is unmodified

VirtualBox appears to do something similar to VMWare

see https://www.virtualbox.org/manual/ch10.html#idp58764736

for more details

0123

45

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Fixing the Hardware

new processor mode

Intel Vanderpool technology: VT-x

"ring -1"

certain operations and events in non-root mode cause VM-exit

to root mode

non-VMM OSes must not be written to use root mode!

root mode

other modes are non-root

essentially a hypercall

code in root mode specifies which operations and events

cause VM-exits

e.g., popf, page fault

lots and lots and lots of device drivers

I/O via memory-mapped registers is not

0123

46

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

I/O Virtualization

Channel programs were generic for IBM 360

must VMM handle all of them?

can be emmulated in the VMM

problem: scalability

0123

47

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Real-Machine OS Structure

processprocessprocessprocessprocess

OS

DevicesProcessor(s)

Device drivers

Lots of devices need to be supported by desktop OSes (such as

Windows and Mac OS X)

0123

48

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

On a Virtual Machine ...

Virtual
devices

VMM

DevicesProcessor(s)

Device drivers

Virtual
processor(s)

OS
Device drivers

processprocess

Virtual
devices

Virtual
processor(s)

OS
Device drivers

processprocess

Who is going to write all the device drives for the new OS?

0123

49

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

On a Virtual Machine ...

Virtual
devices

VMM

DevicesProcessor(s)

Device drivers

Virtual
processor(s)

OS
Device drivers

processprocess

Virtual
devices

Virtual
processor(s)

OS
Device drivers

processprocess

This is more suitable for server machines (higher performance)

scalability problem: who is going to write device drivers

for VMM in lower-end machines?

VMAppprocessprocess

VMware’s solution is to use a guest/host model

VMDriver takes the place of the VMM
0123

50

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

VMware Workstation - Host/Guest Model

Host OS

DevicesProcessor(s)

Device drivers

Virtual
devices

Virtual
processor(s)

Guest OS

Device
drivers

processprocess

Virtual
devices

Virtual
processor(s)

Guest OS

Device
drivers

processprocess

VMDriver

plenty of device drivers already available on host OS

callback functions are

registered with host OS

during VMDriver initialization

convenience over performance

This is more suitable for "workstations" - more variety of devices

0123

51

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

VMware Workstation - Host/Guest Model

Host OS

DevicesProcessor(s)

Device drivers

VMApp

Virtual
devices

Virtual
processor(s)

Guest OS

Device
drivers

processprocess

Virtual
devices

Virtual
processor(s)

Guest OS

Device
drivers

processprocess

VMDriver

processprocess

0123

52

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Paravirtualization

traps to hypervisor/VMM

Sensitive instructions replaced with hypervisor calls

guest machine has no device drivers

Virtual machine provides higher-level device interface

OS is changed already, might as well change I/O, if there

are sufficient benefits

event channel

event channel

0123

53

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Xen

net device
driver

net device
driver

block
back end

net
back end

Ring 0

OS

block
front end

net
front end

Ring 1

OS
shared mem

shared mem

App

Ring 3

App

Ring 3

Domain U1
(virtual machine)

Domain 0
(for I/O virtualization)

App

Ring 3

App

Ring 3

App

Ring 3

Hardware

VMM (for CPU virtualization)
Ring 0

it directly talks to the hardware

Domain 0 OS is like the Host OS in VMware but only for I/O

0123

54

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Additional Applications

isolate web servers

Sandboxing

isolate device drivers

VM not tied to particular hardware

Migration

easy to move from one (real) platform to another

0123

55

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Xen with Isolated Driver

net device
driver

net
back end

OS

block
front end

net
front end

OS

App App

Domain U1Domain 0

App App

Hardware

VMM
disk device

driver

block
back end

OS

Domain U2

0123

56

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Summary

No driver

in guest

Hypervisor

calls

Virtualization

Full (VMware)

CPU

Para (Xen)

I/OI/O CPU

Dynamic

binary

rewriting

Split
driver

in VMM

Host/
Guest

Containers

0123

57

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

One More Kind Of Virtualization

not covered in textbook

Containerized OS (or OS Containers)

OS

VM/Containers

OSa

App App App

VM/Containers

App App App

OSb

the OS provides the abstraction that each container runs on

top of a separate OS (but there is really only one OS)

e.g., OpenVZ, Linux Containers (LXC), Docker

0123

58

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Containerized OS

e.g., processes for container A is kept separate from processes

for container B

Within the OS, the management of resources for each container

is separated

OS

A B

Process
Management

List of processes
for container A

List of processes
for container B

because "guest OS" does not run in user space here and

there is really no "guest OS"

Others may consider this "virtual machine", but we shouldn’t

0123

59

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

7.2.6 Virtualizing

Virtual Memory

0123

60

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Machines Meet Virtual Memory

Virtual virtual
memory

A user process thinks it’s

accessing virtual memory

but it’s really dealing with

virtual virtual memory
App

0123

61

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Machines Meet Virtual Memory

Virtual virtual
memory

Virtual real memory

A user process thinks it’s

accessing virtual memory

but it’s really dealing with

virtual virtual memory

The OS in a VM thinks it’s

managing real memory

but it’s really dealing with

virtual real memory

App

Guest OS

0123

62

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Machines Meet Virtual Memory

Virtual virtual
memory

Virtual real memory

Real memory

A user process thinks it’s

accessing virtual memory

but it’s really dealing with

virtual virtual memory

The OS in a VM thinks it’s

managing real memory

but it’s really dealing with

virtual real memory

VMM needs to manage real

memory

how can we virtualize

virtual memory?

App

Guest OS

VMM

0123

63

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Machines Meet Virtual Memory

Shadow page table

(for each VM)

VMM’s page table

i

i

0

1

2

3

3

1

i0

1

2

3

3

2

1

Virtual machine’s
page table

i

i

0

1

2

3

1

2
Virtual virtual

memory

Virtual real memory

Real memory

When a VM changes its page table, VMM must update the

corresponding Shadow Page Table

main problem: poor performance

translates virtual real

addresses to

physical addresses

translates virtual virtual addresses

to virtual real addresses

App

0123

64

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Solution 1: Paravirtualization to the Rescue

real memory

i

i

0

1

2

3

1

2

i0

1

2

3

3

2

1

i

i

0

1

2

3

3

1

virtual

real

memoryvirtual

virtual

memory

Direct translation

Make a hypervisor call when

page table needs to be modified

helps a bit, but not much faster

0123

65

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Solution 2: Hardware to the Rescue

real memory

virtual

virtual

memory

Extended Page Tables

virtual

real

memory

1

i1

0

i2

23

i

1

0

2

23

3

1

The processor traverses the

two tables in sequence and does the

conversion all by itself

0123

66

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

x86 Paging with EPT

10 bits 10 bits 12 bits

Page Directory
(pd)

Page Table
(pt)

EPTP

CR3

Page

these translates virtual real addresses

to physical addresses

0123

67

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

x86 Paging with EPT

10 bits 10 bits 12 bits

Page Directory
(pd)

Page Table
(pt)

EPTP

CR3

Page

these translates virtual real addresses

to physical addresses

0123

68

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Microkernels

(Back to Section 4.2)

0123

69

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

OS Services as User Apps

Application
program

Application
programVersion

control

File system
A

File system
B

Line
discipline

TCP/IP
user
mode

privileged
mode

Microkernel

Process Management

Memory Management

Device Drivers

Message Passing

0123

70

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Why?

It’s cool ...

OS components run as protected user-level applications

Assume that OS coders are incompetent, malicious, or both ...

easier to add, modify, and extend user-level components

than kernel components

Extensibility

0123

71

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Implementation Issues

Application
program

Application
program

File system
A

File system
Buser

mode

privileged
mode

Microkernel

Process Management

Memory Management

Device Drivers

Message Passing

How are modules linked together?

How is data moved around efficiently?

e.g., how would you implement read()/write()?

e.g., which file system supports read()/write()?

can’t use system calls any more!

0123

72

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Mach

Developed at CMU, then Utah

basis of NeXT OS

Early versions shared kernel with Unix

Later versions still shared kernel with Unix

basis of GNU/HURD project

Even later versions actually functioned as working microkernel

basis of OSF/1

basis of Mac OS X

HURD: HIRD of Unix-replacing daemons

HIRD: HURD of interfaces representing depth

0123

73

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

Application
program

File system
A

user
mode

privileged
mode

Disk driver

Request
Port

Request
Port

Port: messaging service

works like a "named pipe"

0123

74

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

Application
program

File system
A

user
mode

privileged
mode

Disk driver

Request
Port

Request
Port

Port: messaging service

req

req

works like a "named pipe"

0123

75

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

Application
program

File system
A

user
mode

privileged
mode

Disk driver

Response
Port

Request
Port

Response
Port

Request
Port

Port: messaging service

req

req

resp

resp

works like a "named pipe"

0123

76

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Mach Ports Permissions

Client

Server

Response
Port

Request
Port

Linkage construct

Send
Rights

Receive
Rights

Client

Response
Port

Communication construct

client create response port and capability (like a key) to send

data through it

include capability in the request message to server

0123

77

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Mach Ports Permissions

Client

Server

Response
Port

Request
Port

Capability

Request Msg

+ Capability

Communication construct

client create response port and capability (like a key) to send

data through it

include capability in the request message to server

0123

78

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Mach Ports Permissions

Client

Server

Response
Port

Request
Port

Capability +

Response Msg

0123

79

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

RPC

communication across process boundaries

Ports used to implement remote procedure calls

if procedures are on same machine ...

local RPC

0123

80

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Successful Microkernel Systems

?

?

...

0123

81

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Attempts

graphics subsystem ran as user-level process

Windows NT 3.1

moved to kernel in 4.0 for performance reasons

based on Mach

Mac OS X

all services in kernel for performance reasons

based on Mach

HURD

services implemented as user processes

no one uses it, for performance reasons ...

