Operating Systems - CSCI 402

4.2 Rethinking
Operating-System
Structure

ﬁ} Virtual Machines
ﬁ} Microkernel

Copyright © William C. Cheng

Monolithic Kernel

_) Major advantage of monolithic kernel
—= performance

> Major down side of monolithic kernel
= reliability (i.e., buggy kernel)

) Proposal to fix the reliability problem
= shrink the code in "privileged mode"

_, Two major approaches
= Virtual machines
= microkernel

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Virtual Machines

ﬁ} A nicely designed and implemented monolithic OS is great
= but that’s not the reality

ﬁ} Major problem with a monolithic OS implementation
= bugs in one component can adversely affect another component
Q worse if large nhumber of programmers contribute code
& some coders are not as good as others
& good coders have bad days

ﬁ} Modern OSs isolate applications from one another
= code executing in the privileged mode can do things the
user mode code cannot
Q e.g., invoking privileged instructions
= if you invoke a privileged instruction in user mode, you will
cause a violation and trap into the kernel

ﬁ> Can the same kind of isolation be provided for OS components?

= if yes, at what cost? (there is no free lunch) 7NN
Y &

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Machines
Part 1: > 50 Years Ago

_, Had a different motivation

Copyright © William C. Cheng

Operating Systems - CSCI 402

It’s 1964 ...

) IBM has a single-user time-sharing system called CMS
= |BM wants to build a multiuser time-sharing system

) TSS (Time-Sharing System) project
it’s a very difficult system to build
large, monolithic system

lots of people working on it

for years

total, complete flop

_) CP67

= Virtual machine monitor (VMM)
= supports multiple virtual IBM 360s

[

) Put the two together ...
= a (working) multiuser time-sharing system

Copyright © William C. Cheng

Virtual Machines

Applications Applications Applications
OSa OSb OSc
Virtual Virtual Virtual
Machine Machine Machine

Operating Systems - CSCI 402

Virtual Machine Monitor (VMM)

Hardware

ﬁ> A "monitor” is a synchronization construct that allows executing
entities to have both mutual exclusion and the ability to
wait (block) for a certain condition to become true

_, What abstraction does a virtual machine provide?

= hardware 3

6

Copyright © William C. Cheng

Virtual Machines

Applications Applications Applications
OSa OSb OSc
Virtual Virtual Virtual
Machine Machine Machine

Operating Systems - CSCI 402

Virtual Machine Monitor (VMM)

Hardware

G> A single user time-sharing system could be developed
independently of the VMM
= and it can be tested on a real machine (which behaves
identical to the VM)
= no ambiguity about the interface VMM must provide to
its applications - identical to the real machine!
Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Machines

ﬁ} What is considered a virtual machine (for this class)?
= run (not emulate/simulate) OSx "inside" / "on-top-of" OSy
Q we will refer to OSx as the "guest OS" and OSy as the
"host OS" (these terms came from VMware)
Q a virtual machine is not an OS emulator
& must execute "guest OS" on the real CPU directly
= make "guest OS" think that it’s running on hardware, but in
reality, it is running inside a virtual machine
Q therefore, the code and data structures you put into "host OS"
so that you can run "guest OS" in it is called "virtual machine"
= "host OS" may be a specialized OS

ﬁ> Different types of virtualization technologies
= pure virtualization: "guest OS" is unmodified
Q "guest OS" thinks it’s running directly on hardware
= para-virtualization: "guest OS" is modified

Q modified "guest OS" can only run inside virtual machine [@J

= something else: we shouldn’t call it a virtual machine 8
Copyright © William C. Cheng

Operating Systems - CSCI 402

User Application

User

Privileged "Guest"” OS

Virtual Machine
VMM Privileged

Real Machine

ﬁ} Run the entire virtual machine in user mode of the real machine
= VMM runs in the privileged mode of the real machine

> VMM keeps track of whether each virtual machine is in the
virtual privileged mode or in the virtual user mode
= OSruns in the (virtual) privileged mode of the virtual machine
= Applications runs in the (virtual) user mode of the virtual
machine 3

9

Copyright © William C. Cheng

Operating Systems - CSCI 402

VMM Operations

_) Execute a non-privileged instruction
= e.g., 'add”, "mul”, pointer manipulation

Applications

Guest OSa

Virtual
Machine

VMM

Hardware

Copyright © William C. Cheng

Operating Systems - CSCI 402

VMM Operations

_) Execute a non-privileged instruction
= e.g., 'add”, "mul”, pointer manipulation

Applications

()
executes directly on Guest OSa
hardware 3 :
= from application’s 3 Virtual
perspective, no o Machine
difference running in VM ®
or on hardware VMM
_ J
Hardware

Copyright © William C. Cheng

Operating Systems - CSCI 402

VMM Operations

_) Execute a non-privileged instruction .
W A A W ol o : : Applications
= e.g., 'add”, "mul”, pointer manipulation
()
executes directly on Guest OSa
hardware 2 -
= from application’s 3 V|rtu_al
perspective, no o Machine
difference running in VM ®
or on hardware VMM
_ J
: : Hardwar
_, Note: this looks like our kernel ardware
assignments (but quite different)
T Applications
emulated, Weenix a emulator program
QEMU for the x86
executed Linux Instruction set
Hardware / (5!,)_

Copyright © William C. Cheng

Operating Systems - CSCI 402

VMM Operations

_) Execute a privileged instruction S
= e.g., 'trap” (system call, page fault, etc.) / pplications

Guest OSa

Virtual
Machine

[

Hardware

Copyright © William C. Cheng

VMM Operations

_) Execute a privileged instruction
= e.g., trap" (system call, page fault, etc.)

Q in areal machine, trap handler is
indexed by the trap humber into a
hardware-mandated jump table

Q the VMM needs to find the address
of the virtual machine’s trap handler
in the table and transfer control to it

Copyright © William C. Cheng

Operating Systems - CSCI 402

Applications

/

Guest OSa

Virtual
Machine

VMM

Hardware

Operating Systems - CSCI 402

VMM Operations

_) Execute a privileged instruction ot
= e.g., trap" (system call, page fault, etc.) / pplications
the VMM is invoked Guest OSa
= the VMM figures out which -
VM is currently executing Virtual
Machine
—
L) Hardware

Copyright © William C. Cheng

Operating Systems - CSCI 402

VMM Operations

_) Execute a privileged instruction L
" " Applications
= e.g., trap" (system call, page fault, etc.)
()
the VMM is invoked Guest OSa
= the VMM figures out which - >
VM is currently executing Vlrtu_al
= VMM then asks the Machine
corresponding VM to
deliver the trap to its OS VMM
3 VMM should be virtual
L machine independent) e e

Copyright © William C. Cheng

VMM Operations

_) Execute a privileged instruction
= e.g., 'trap"” (system call, page fault, etc.)

r

the VMM is invoked

= the VMM figures out which
VM is currently executing

= VMM then asks the
corresponding VM to
deliver the trap to its OS
3 VMM should be virtual

machine independent

~

Operating Systems - CSCI 402

Applications

Guest OSa

Virtual
Machine

VMM

Hardware

_, Without VM, the application will simply traps into the OS directly

= how it’s a lot more involved (and slower)

) Interrupts pretty much work the same way

Copyright © William C. Cheng

VMM Operations

_) Execute a privileged instruction
= e.g., 'trap"” (system call, page fault, etc.)

r

the VMM is invoked

= the VMM figures out which
VM is currently executing

= VMM then asks the
corresponding VM to
deliver the trap to its OS
3 VMM should be virtual

machine independent

~

) "Virtual Machine" in the picture contains:
= virtual CPU, virtual disk, virtual display, virtual keyboard, etc.

Q data structures and code that represent hardware
components

Copyright © William C. Cheng

Operating Systems - CSCI 402

Applications

Guest OSa

Virtual
Machine

VMM

Hardware

Operating Systems - CSCI 402

VMM Operations

_) Execute a privileged instruction L
" " Applications
= e.g., trap" (system call, page fault, etc.) /
()
the VMM is invoked Guest OSa
= the VMM figures out which - >
VM is currently executing Vlrtu_al
= VMM then asks the Machine
corresponding VM to
deliver the trap to its OS VMM
3 VMM should be virtual
L machine independent) e e

ﬁ> Note that most instructions the trap handler executes are not
privileged (such as the code to setup PCB, TCB, etc.)
= clearly, these instructions can run in non-privileged mode
= What type of code must execute in privileged mode? (later)
Q what if "return from interrupt” is not privileged? 193

Copyright © William C. Cheng

Operating Systems - CSCI 402

VMM Operations

—> What about /0?

= e.g., read() Applications

Guest OSa

Virtual
Machine

VMM

Hardware

Copyright © William C. Cheng

Operating Systems - CSCI 402

VMM Operations

ﬁ> What about 1/0? et
| Ion
= e.Jg., read() pplications
Guest OSa
Virtpal
- N Disk
real disk is divvy up among
the virtual machines VMM
= each VM has a virtual disk
L) Hardware

Copyright © William C. Cheng

Operating Systems - CSCI 402

VMM Operations

> What about 1/0?
= e.Jg., read()
—= read () eventually reaches the OS
= the OS asks for a block on the
virtual disk Virtual
Q in x86: memory-mapped I/O Disk

Applications

Guest OS

I/O write (to setup memory/device locations) VMM

Controller Controller Contraller Controller

Hardware

Copyright © William C. Cheng

—> What about /0?
= e.Jg., read()

VMM Operations

—= read () eventually reaches the OS
= the OS asks for a block on the

virtual disk

Q 1In x86: memory-mapped I/O

Copyright © William C. Cheng

r

memory-mapped I/O causes a

trap into VMM

= the VMM emulates the
instruction (i.e., translates
it into a request for the
real disk)

L there is no "handler"” in
the guest OS for I/O
instructions

= there’s really no disk in
the VM

~\

Operating Systems - CSCI 402

Applications

Guest OS

.

Virtual
Disk

\ VMM

I\iardware

!

Operating Systems - CSCI 402

VMM Operations

> What about 1/0? et
= e.g., read () pplications
= read () eventually reaches the OS Guest OS
= the OS asks for a block on the HES
virtual disk Virtual
Q in x86: memory-mapped I/O -
memory-mapped I/O causes a * VMM
trap into VMM
= the VMM emulates the ardware
instruction (i.e., translates

it into a request for the

real disk)

0 there is no "handler’ in
the guest OS for I/O
instructions

Q

= there’s really no disk in
the VM
= the guest OS is expecting

an interrupt 3 @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Why Virtual Machine?

ﬁ} It’'s a good structuring technique for a multi-user system
—= many advantages

) OS debugging and testing
= run a production OS in a VM, accessible to users
= test a new OS in a separate VM, accessible to developers

_) Adapt to hardware changes in software

_) Multiple OSes on one machine
= ohe type of applications run really well in one OS
= another type of applications run really well in a different OS
= ohe physical machine can support both, no user need to suffer
= today, it’'s common that a machine in the cloud would run
multiple Linux OS instances and multiple Windows OS instances

_) Server consolidation and service isolation
= web hosting, security concerns |
= cloud computing 3 @;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtualization Requirements

ﬁ} A virtual machine is an efficient, isolated duplicate of real
machine
= requires faithful virtualization of pretty much all components
Q processor
Q memory
Q interval timers
Q 1/O devices
Q etc.
= this is "pure"” virtualization
Q costly

_) Paravirtualization:
= virtualized entity is a bit different from the real entity
Q so as to enhance scalability, performance, and simplicity
Q It is probably aware that it’s not running on a real machine

Copyright © William C. Cheng

Operating Systems - CSCI 402

Pure Processor Virtualization Requirements
) Can all processors be virtualized?

_ Virtualizing the processor requires:
1) multiplexing the real processor among the virtual machines
< relatively straightforward
2) making each virtual machine behaves just like a real machine
& all instructions must work identically
& generation of and response to traps and interrupts
must be identical as well

Copyright © William C. Cheng

Operating Systems - CSCI 402

Pure Processor Virtualization Requirements

ﬁ} Processor in the virtual machine is the real processor
= instructions are executed (and not interpreted or emulated)
= traps are generated just as they are on real machines
Q in areal machine, trap handler is indexed by the trap number
into a hardware-mandated jump table
Q the VMM needs to find the address of the virtual machine’s
trap handler in the table and transfer control to it
Q iInterrupts pretty much work the same way

ﬁ> Pretty much everything can be worked out except for one problem
= |f a virtual machine is executing in the virtual privileged mode,
what’s to prevent it from changing things like memory-mapping
(which can affect the execution the virtual machine)?
Q or what if "return from interrupt” is not privileged?
<& this may not be a realistic example because, clearly,
"return from interrupt” must be privileged

Q such instructions must be identified and make sure that [\
S

the)é work properly under virtualization
Copyright © William C. Cheng

Operating Systems - CSCI 402

Pure Processor Virtualization Requirements

ﬁ} Under virtualization, we must distinguish between sensitive
instructions and privileged instructions

_) Privileged instructions:
= cause privileged-instruction trap when executed in user mode
but execute fully when the processor is in privileged mode

ﬁ> Sensitive Instructions:
= ?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Pure Processor Virtualization Requirements

ﬁ} Sensitive Instructions:
= Control-sensitive instructions:
1) instructions that affect allocation of (real) system resources
<& such as insturctions that change the mapping of virtual to
real memory
— Behavior-sensitive instructions:
2) instructions whose effect depends on the allocation of (1)
& such as insturctions that returns the real address of a
location in virtual memory
3) instructions whose effect depends on the current processor
mode
& such as x86’s popf£ insturctions that sets a set of processor
flags when run in privileged mode, but set a different set of
flags otherwise

X 30

Copyright © William C. Cheng

Sensitive Instruction Example

_) A sensitive instruction must execute in the
privilege mode (in the kernel)
= e.g., insturctions that change the
mapping of virtual to real memory

()

Guest OS runs in the user mode of

the real processor

= executing a sensitive instruction
will cause a trap into the VMM

= must not execute such instruction

= the VMM emulates the instruction

L

Copyright © William C. Cheng

Applications

Guest OSa

.

[cr3]] Virtual
ceu|Machine

VMM

[cr3]
Hardware

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Sensitive Instruction Example

ﬁ} A sensitive instruction must execute in the Avplicati
privilege mode (in the kernel) pplications
= e.(., Insturctions that change the
mapping of virtual to real memory [ELEBHOREE
[cr3]] Virtual
ceu|Machine
VMM
ﬁ} All sensitive instructions must also be [ci3] Hard D
privileged ardware

= but what if it’s not?
Q you cannot build a virtual machine for this processor
= this gives us another definition of "sensitive instruction"
Q 1it’s an instruction that if it’s not privileged, it will cause the
guest OS (inside a virtual machine) to execute incorrectly
& this operational definition may be more useful for an (\
0 —

introductory class like ours A=Y/

Copyright © William C. Cheng

Operating Systems - CSCI 402

Pure Processor Virtualization Requirements

ﬁ} [Popek and Goldberg, 1974] proved that the sufficient condition to
be able to construct a virtual machine is simply the following:
= a computer’s set of sensitive instructions is a subset of its
privileged instructions
= l.e., if you execute a sensitive insturction in user mode, you
will trap into the kernel
Q more importantly, if you execute a sensitive insturction in
virtual user or virtual privileged mode, you will trap into VMM

) The above theorem holds for the
IBM 360
= virtual machines can be
constructed for it
_) The above theorem does not
hold for the x86 processors
= cahnot build virtual |
machines for x86 Y 2?2;

Copyright © William C. Cheng

Operating Systems - CSCI 402

The (Real) 360 Architecture

_, Two execution modes
= supervisor and problem (user)
= all sensitive instructions are privileged instructions

> Memory is protectable: 2KB granularity
ﬁ> All interrupt vectors and the clock are in first 512 bytes of memory

ﬁ} I/0 done via channel programs in memory, initiated with privileged
instructions

ﬁ> Dynamic address translation (virtual memory) added for Model 67

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Actions on Real 360

User
User Privileged

Real Machine

User Mode Privileged Mode

non-sensitive - -
TR T executes fine executes fine
"errant”

el traps to kernel | traps to kernel
sensitive :
e ey traps to kernel | executes fine

such as divide by zero, page fault, etc.

since all sensitive instructions are privileged for IBM 360 3 ;}!i}—

Copyright © William C. Cheng

Operating Systems - CSCI 402

Actions on Virtual 360

User

Privileged | VMM

Real Machine

User Application

Privileged "Guest" OS

Virtual Machine

Virtual User Mode

Virtual Privileged Mode

non-sensitive : :

ey Y executes fine executes fine

"arrant” traps to VMM; VMM traps to VMM; VMM

e T e delivers trap to the delivers trap to the
Guest OS Guest OS

- traps to VMM; VMM traps to VMM;

isr?;fbté\{ﬁm delivers trap to the VMM verifies and

Guest OS emulates instruction

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Devices?

_, Terminals
= cohnhnecting (real) people

> Networks
= didn’t exist in the 60s
= (how did virtual machines communicate?)

) Disk drives
= CP67 supported "mini disks"
= extended at Brown into "segment system”

ﬁ> Interval timer
= Virtual or real?

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Machines
Part 2: Now

Copyright © William C. Cheng

Operating Systems - CSCI 402

Copyright © William C. Cheng

Operating Systems - CSCI 402

How They Are Different

IBM 360
—= Two execution modes
Q supervisor and problem
(user)
Q all sensitive instructions
are privileged instructions
—= Memory is protectable:
2k-byte granularity
= All interrupt vectors and the
clock are in first 512 bytes
of memory
= |/O done via channel programs
in memory, initiated with
privileged instructions
—= Dynamic address translation
(virtual memory) added for
Model 67

Copyright © William C. Cheng

Intel x86
—= Four execution modes
Q rings 0 through 3
Q not all sensitive instructions
are privileged instructions
—= Memory is protectable:
segment system + virtual
memory
= Special register points to
interrupt table
= |/O done via memory-mapped I/O
Q i.e., I/O operations look like
memory accesses
= Virtual memory is standard

Operating Systems - CSCI 402

_> An x86 processor can be in one of 4 modes/rings

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Sensitive x86 Instruction

ﬁ} popf

= pops flags (word) off stack, setting processor flags according to
word’s content
Q sets all flags if in ring 0
& including interrupt-disable flag
Q just some of them if in other rings
& ignores interrupt-disable flag
= bad news: if invoked in user mode, does not cause a trap!
Q therefore, this instruction will execute differently in the
guest OS when it’s running on top of a VM (as compared to
running on a real machine)
& since the OS is running in user mode under the virtual
machine scheme
Q this (and a few other instructions) is one of the major problem
to virtualize x86 systems

There is another major problem related to device 1/0 (later (AR
=) jor p (ater) (b

Copyright © William C. Cheng

Operating Systems - CSCI 402

x86 CPU Virtualization - What to Do?

_) Binary rewriting
= rewrite kernel binaries of guest OSes
Q replace sensitive instructions with “"hypercalls”
Q do so dynamically (i.e., dynamic binary rewriting)
<& VMware does this
Q no need to modify guest OS

ﬁ} Hardware virtualization
= fix the hardware so it’s virtualizable

_) Paravirtualization
= virtual machine differs from real machine
Q provides more convenient interfaces for virtualization
Q hypervisor interface between virtual and real machines
& we use the terms "hypervisor” and "VMM" interchangeably

Q guest OS source code is modified (and recompiled)

B

Copyright © William C. Cheng

Operating Systems - CSCI 402

Binary Rewriting

) Privilege-mode code run via binary translator
= guest OS is unmodified
= replaces sensitive instructions with hypercalls
= translated code is cached

Q usually translated just once

VMWare

= U.S. patent 6,397,242

[

ﬁ> VirtualBox appears to do something similar to VMWare
= see https://www.virtualbox.org/manual/ch10.html#idp58764736
for more details

Copyright © William C. Cheng

Operating Systems - CSCI 402

Fixing the Hardware

) Intel Vanderpool technology: VT-x
= hew processor mode
Q "ring -1"
& root mode
& other modes are non-root
— certain operations and events in hon-root mode cause VM-exit
to root mode
Q essentially a hypercali
Q code in root mode specifies which operations and events
cause VM-exits
& e.g., popf, page fault
= non-VMM OSes must not be written to use root mode!

Copyright © William C. Cheng

1/0 Virtualization

ﬁ} Channel programs were generic for IBM 360
= canh be emmulated in the VMM

ﬁ} I/0 via memory-mapped registers is not
= |ots and lots and lots of device drivers
= must VMM handle all of them?

Q problem: scalability

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Real-Machine OS Structure

process process process process process

Processor(s) Devices

E> Lots of devices need to be supported by desktop OSes (such as

Windows and Mac OS X)
47

Copyright © William C. Cheng

Operating Systems - CSCI 402

On a Virtual Machine ...

process process process process
(013) (013)
Device drivers Device drivers
Virtual Virtual Virtual Virtual
processor(s) devices processor(s) devices
VMM
Device drivers
Processor(s) Devices

_> Who is going to write all the device drives for the new 0S?

Copyright © William C. Cheng

Operating Systems - CSCI 402

On a Virtual Machine ...

process process process process
OoS oS
Device drivers Device drivers
Virtual Virtual Virtual Virtual
processor(s) devices processor(s) devices

Device drivers

Processor(s) Devices

ﬁ> This is more suitable for server machines (higher performance)
— scalability problem: who is going to write device drivers |
for VMM in lower-end machines? 3
Copyright © William C. Cheng

VMware Workstation - Host/Guest Model

Operating Systems - CSCI 402

process| |process process| |[process
process process VMApp Guest OS Guest OS
Device Device
drivers drivers
~\ Virtual Virtual Virtual Virtual
~ callback functions are processor(s) | devices processor(s)| devices
registered with host OS VMDriver
during VMDriver initialization
y,
Host OS Device drivers
Processor(s) Devices

_, VMware’s solution is to use a guest/host model
—= VMDriver takes the place of the VMM |
= plenty of device drivers already available on host OS 3 @;

Copyright © William C. Cheng

VMware Workstation - Host/Guest Model

Operating Systems - CSCI 402

process process process process

process process VMApp Guest OS Guest OS
Device Device
drivers drivers
Virtual Virtual Virtual Virtual
processor(s) | Jdevices processor(s)| devices

VMDriver
Host OS Device drivers
Processor(s) Devices

ﬁ> This is more suitable for "workstations” - more variety of devices

= convenience over performance
3(2(1(0) o=
51\,

Copyright © William C. Cheng

Operating Systems - CSCI 402

Paravirtualization

ﬁ} Sensitive instructions replaced with hypervisor calls
= traps to hypervisor/VMM

ﬁ} Virtual machine provides higher-level device interface
= guest machine has no device drivers
Q OS is changed already, might as well change 1/O, if there
are sufficient benefits

Copyright © William C. Cheng

Operating Systems - CSCI 402

Domain 0 Domain U1
(for I/0 virtualization) (virtual machine)
App | | App | | App App | | App
t event channel t
OS - bacnkeend -1 shared mem [frorl:te end OS
block event channel block .
bacz?and -1 shared mem [fronct’(t:end ng 1
! Ring 0

net device | | net device

driver driver VMM (for CPU virtualization)

Ring 0

Hardware

= it directly talks to the hardware y
Copyright © William C. Cheng

ﬁ> Domain 0 OS is like the Host OS in VMware but only for I/O (i\
(0) b=
=/

Operating Systems - CSCI 402

Additional Applications

) Sandboxing
—= isolate web servers
= isolate device drivers

) Migration
= VM not tied to particular hardware
= easy to move from one (real) platform to another

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Xen with Isolated Driver

Domain 0 Domain U1

Domain U2

App | | App App | | App

OS > net £ i net OS
back end > - front end

block [« block 0S
front end [> Bl back end |

Y
net device disk device
driver VM M driver

Hardware

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Summary

Virtualization

N

ylMT 7 (Q Containers
CPU /I/O\ CPU I/‘O
Dynamic Split Host/ Hypervisor No driver
binary driver Guest calls in guest

rewriting in VMM

Copyright © William C. Cheng

One More Kind Of Virtualization

) Containerized OS (or OS Containers)
= not covered in textbook

VM/Containers

App | [App | | App

Operating Systems - CSCI 402

VM/Containers

App | [App | | App

OSa

OS

OSb

= the OS provides the abstraction that each container runs on
top of a separate OS (but there is really only one OS)
= e.g., OpenVZ, Linux Containers (LXC), Docker

Copyright © William C. Cheng

Operating Systems - CSCI 402

Containerized OS

ﬁ> Within the OS, the management of resources for each container
Is separated
= e.g., processes for container A is kept separate from processes
for container B

A B

: 0S
| List of processes

for container A

|, Listof processes
for container B

Process e o o
Management

ﬁ> Others may consider this "virtual machine”, but we shouldn’t
= because "guest OS" does not run in user space here and 3
there is really no "guest OS™ NS

Copyright © William C. Cheng

Operating Systems - CSCI 402

7.2.6 Virtualizing
Virtual Memory

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Machines Meet Virtual Memory

_) A user process thinks it’s
accessing virtual memory

App = but it’s really dealing with

virtual virtual memory

Virtual virtual
memory

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Machines Meet Virtual Memory

App
Guest OS

Virtual virtual
memory

Virtual real memory

Copyright © William C. Cheng

_) A user process thinks it’s
accessing virtual memory
= but it’s really dealing with
virtual virtual memory

—) The OS in a VM thinks it's
managing real memory
= but it’s really dealing with
virtual real memory

Operating Systems - CSCI 402

Virtual Machines Meet Virtual Memory

App
Guest OS

Virtual virtual
memory

Virtual real memory

VMM

Real memory

Copyright © William C. Cheng

_) A user process thinks it’s
accessing virtual memory
= but it’s really dealing with
virtual virtual memory

—) The OS in a VM thinks it's
managing real memory
= but it’s really dealing with
virtual real memory

> VMM needs to manage real
memory

= how can we virtualize
virtual memory?

Operating Systems - CSCI 402

Virtual Machines Meet Virtual Memory

0i
0 1 App 1 3 translates virtual real
1| i 2 1 addresses to
physical addresses
2| i : : 3 2
Virtual virtual
3 2 memory VMM’s page table
L -
1 Virtual machine’s
page table 0 3
Virtual real memory 1]
\ 2| i
3 1
translates virtual virtual addresses
to virtual real addresses Shadow page table
Real memory el e vl

_, When a VM changes its page table, VMM must update the
corresponding Shadow Page Table
= main problem: poor performance / ;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Solution 1: Paravirtualization to the Rescue

virtual
virtual

virtual

memory

memory

_> Make a hypervisor call when
page table needs to be modified

= helps a bit, but not much faster
Copyright © William C. Cheng

real memory

Operating Systems - CSCI 402

Solution 2: Hardware to the Rescue

virtual
virtual
memory

W N =0

virtual
real
memory

N|=|W

) The processor traverses the
two tables in sequence and does the

conversion all by itself
Copyright © William C. Cheng

real memory

Operating Systems - CSCI 402

x86 Paging with EPT

10 bits 10 bits 12 bits
CR3
Page Directory Page Table
(pd) (pt)
Page
EPTP — R

y

l
these translates virtual real addresses 3 ;‘0}—
to physical addresses =

Copyright © William C. Cheng

Operating Systems - CSCI 402

x86 Paging with EPT

10 bits 10 bits 12 bits

CR3

Page Directory Page Table
(pd) (pt)

Page
EPTP }——)

y

l
these translates virtual real addresses 3 ;‘0}—
to physical addresses =

Copyright © William C. Cheng

Operating Systems - CSCI 402

Microkernels
(Back to Section 4.2)

Copyright © William C. Cheng

Application Application
Version program program
control
File sxstem File system _ L|_ne_ TCP/IP
user B discipline
mode
privileged
mode
Process Management
Microkernel Memory Management

Copyright © William C. Cheng

OS Services as User Apps

Operating Systems - CSCI 402

Device Drivers
Message Passing

Operating Systems - CSCI 402

Why?
_) Itscool ...

ﬁ> Assume that OS coders are incompetent, malicious, or both ...
= OS components run as protected user-level applications

) Extensibility
— easier to add, modify, and extend user-level components
than kernel components

Copyright © William C. Cheng

Operating Systems - CSCI 402

Implementation Issues

_, How are modules linked together?
= e.g., how would you implement read () /write ()?
Q can’t use system calls any more!
= e.g., Which file system supports read () /write () ?

) How is data moved around efficiently?

File system File system Application Application
user A B program program
mode
privileged
mode

Process Management
Memory Management
Device Drivers
Message Passing

Microkernel

Copyright © William C. Cheng

Operating Systems - CSCI 402

Mach
) Developed at CMU, then Utah

_, Early versions shared kernel with Unix
= basis of NeXT OS

) Later versions still shared kernel with Unix
= basis of OSF/1
QO basis of Mac OS X

ﬁ> Even later versions actually functioned as working microkernel
= basis of GNU/HURD project
Q HURD: HIRD of Unix-replacing daemons
QO HIRD: HURD of interfaces representing depth

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example

) Port: messaging service
= works like a "named pipe" Application
program
File system
A
user
mode
privileged
mode
Request Request
Port Port
Disk driver

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example

) Port: messaging service
= works like a "named pipe" Application
program
File system
A req
user
mode req
privileged
mode
y
Request Request
Port Port
Disk driver

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example
) Port: messaging service
= works like a "named pipe" Application
program
File system A
A req
user
mode req resp
privileged \
mode
y
Response Request Response Request
Port Port Port Port
resp V/
Disk driver

Copyright © William C. Cheng

Operating Systems - CSCI 402

Mach Ports Permissions

) Linkage construct

Client Client
Server ! !
A Send
Rights
Receive]
Rights
Request Response Response
Port Port Port

Copyright © William C. Cheng

Operating Systems - CSCI 402

Mach Ports Permissions

_, Communication construct
= client create response port and capability (like a key) to send
data through it
Q include capability in the request message to server

Client
A

Server Request Msg

A \ + Capability

Capability

Request Response
Port Port

Copyright © William C. Cheng

Operating Systems - CSCI 402

Mach Ports Permissions

_, Communication construct
= client create response port and capability (like a key) to send
data through it
Q include capability in the request message to server

Client
A
Server
A
<___
Capability +
Response Msg
Y
Request Response
Port Port

Copyright © William C. Cheng

Operating Systems - CSCI 402

RPC

ﬁ} Ports used to implement remote procedure calls
= communication across process boundaries
= if procedures are on same machine ...

Q local RPC

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Successful Microkernel Systems

=)

gou

Copyright © William C. Cheng

Operating Systems - CSCI 402

Attempts

) Windows NT 3.1
= graphics subsystem ran as user-level process
= moved to kernel in 4.0 for performance reasons

) Mac OS X
—= based on Mach
= all services in kernel for performance reasons

_, HURD

—= based on Mach
= services implemented as user processes
= ho one uses it, for performance reasons ...

Copyright © William C. Cheng

