
4.1 A Simple System

(Monolithic Kernel)

0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Framework for Devices

Low-level Kernel (will come back to talk about this after Ch 7)

Processes & Threads

Storage Management

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Storage Management

primary storage, i.e., physical memory

What physical "devices" can you use to store data?

secondary storage, i.e., disk-based storage

"directly" addressable (using "one level of indirection")

An application is only aware of virtual memory (it thinks virtual

memory is real memory)

physical memory is not considered a "device"

to store files (i.e., implement the abstraction of "files")

to support virtual memory

applications should not care about how much physical memory

is available to it

there may not be enough physical memory for all processes

the OS makes sure that real primary storage is available

when necessary

e.g., an application can allocate a 1GB block of memory while

the machine only has 256MB of physical memory

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Memory Map

Program 1

Program 2

Program 3

Disk Disk

Memory

virtual memory map

part hardware, part OS

each program thinks

it has its own full

address space

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Storage Management

using sequential I/O: open(), read(), write(), close()

Two ways for an application to access secondary storage

using block I/O: open(), mmap(), close()

Memory management concerns

mapping virtual addresses to real ones

determining which addresses are valid, i.e., refer to allocated

memory, and which are not

keeping track of which real objects, if any, are mapped into each

range of virtual addresses

deciding what should be kept in primary storage (RAM) and what

to fetch from elsewhere

1)

2)

3)

4)

In reality, the OS is too slow since every virtual address needs

to be resolved

some of the virtual memory mechanisms must be built into

the hardware

in some cases, the hardware is given the complete "map"

(i.e., mapping from virtual to physical address)

in other cases, only a partial map is given to the hardware

in either case, OS needs to provide some map to the hardware

and needs a data structure for the map

Virtual Memory Map (vmmap) data structure in the OS

implements the address space

implements memory-mapped files

page table is part of the virtual memory map (it "maps"

virtual address to physical address)

only user part of the address space needs to be represented

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Management Concerns

referencing an unresolvable

virtual address causes a

segmentation fault (the OS

will deliver SIGSEG to the

process)

A valid virtual address must be ultimately resolvable by the OS

to a location in the physical memory

if it cannot be resolved, the

virtual address is considered

an invalid virtual address

the default action would be

to terminate the process

e.g., virtual address 0

A page fault is not a segmentation

fault if it can be resolved

-

Start Access Physical Addr

4096

8192

12288

16384

R

-

R

R/W

Page Table

Page

Page

Page

0 - -

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Management Concerns

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

User Address Space Representation

as_region
1000-7fff

rx, shared

as_region
8000-1afff
rw, private

as_region
1b000-1bfff
rw, private

as_region
200000-41ffffff

rw, shared

as_region
7fffd000-7fffffff

rw, private

file
object

file
object

PCB address
space

start address, length, access permissions, shared or private

as_region (address space region data structure) contains:

if mapped to a file, pointer to the corresponding file object

recall that there is something

called "address space description"

in a PCB

This is related to Kernel Assignment 3 where you need to

create and manage address spaces / virtual memory maps

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

User Address Space Representation

as_region
1000-7fff

rx, shared

as_region
8000-1afff
rw, private

as_region
1b000-1bfff
rw, private

as_region
200000-41ffffff

rw, shared

as_region
7fffd000-7fffffff

rw, private

file
object

file
object

PCB address
space

text data+bss heap

a 1GB file that
has been

mapped R/W
and shared

stack

text is marked read-execute and shared

In this example, text and data map portions of the same file

data+bss is marked read-write and private to mean that changes

will be private, i.e., will not affect other processes exec’ed

from the same file

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

How OS Makes Virtual Memory Work?

no action by the OS

If a thread access a virtual memory location that’s both in primary

storage and mapped by the hardware’s map

a page fault is occurred and the OS is invoked

If a thread access a virtual memory location that’s not in primary

storage or if the translation is not in the hardware’s map

OS checks the as_region address space data structures to

make sure the reference is valid

if it’s valid, the OS does whatever that’s necessary to

locate or create the object of the reference

find, or if necessary, make room for it in primary storage

if it’s not already there, and put it there

if invalid, it turns into a segmentation fault (or bad page fault)

fix up all the kernel data structures then return from page

fault so that application can retry the memory access

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Storage Management

how is the primary storage managed (in terms of "resource

management")?

Two issues need further discussion

how are the objects managed in secondary storage?

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

How Is The Primary Storage "Resource" Managed?

application processes

then other subsystem won’t get to run

Who needs primary storage?

OS (e.g., terminal-handling subsystem, communication

subsystem, I/O subsystem, etc.)

If primary storage is managed poorly

one subsystem can use up all the available memory

this can even lead to OS crash when a subsystem uses up all

of physical memory

If there are no mapped files, the solution can be simple

assign each process a fixed amount of primary storage

this way, they won’t compete

but is it fair?

they compete for primary storage

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

In Reality, Have To Deal With Mapped Files

An example to demonstrate a dilemma

one process is using all of its primary storage allocation

it then maps a file into its address space and starts

accessing that file

should the memory that’s needed to buffer this file be

charged against the files subsystem or charged against the

process?

If charged against the files subsystem

if the newly mapped file takes up all the buffer space in the

files subsystem, it’s unfair to other processes

If charged against the process

if other processes are sharing the same file, other processes

are getting a free ride (in terms of memory usage)

even worse, another process may increase the memory

usage of this process (double unfair!)

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

In Reality, Have To Deal With Mapped Files

It’s difficult to be fair

We will discuss some solutions in Ch 7

for now, we use the following solution

give each participant (processes, file subsystem, etc.)

a minimum amount of storage

leave some additional storage available for all to compete

it’s difficult to even define what fair means

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

How Are Objects Managed In Secondary Storage?

file system independent

on Windows, this is called the "I/O manager"

The file system is usually divided into two parts

on Unix, this is called the "virtual file system (VFS)"

file system dependent

on Windows, this is called the "file system"

on Unix, this is called the "actual file system (AFS)"

Kernel Assignment 2

The file system is used to manage objects in secondary storage

supports the "file abstraction"

e.g., FAT32, NTFS, etc.

e.g., ext2, ext3, ext4, etc.

the term "file system" can mean two different things

how to layout data on secondary storage (data structures on

disk)

1)

how to access those data in data structures (code)2)

The file object / inode forms the boundary between VFS and the

AFS (i.e., points to file-system-dependent stuff)
0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Open-File Data Structures
(per process)
file-descriptor

table
(system-wide)

system file table / file object table

FS-dependent
inode table

ref
count access

file
position

(typo in textbook)

inode
pointer

0
1
2
3
4

n-1

the kernel also maintains system file table (or file object table)

In the kernel, each process has its own file-descriptor table

how can this be done?

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File Object

class FileObject {
 unsigned short refcount, access;
 unsigned int file_pos;
 ...
 virtual int create(const char *, int, FileObject **);
 virtual int read(int, void *, int);
 virtual int write(int, const void *, int);
 ...
};

what’s this about C++?

But wait ...

real operating systems are written in C ...

subclasses of file object are the actual file objects

The file object is like an abstract class in C++

checkout the DRIVERS kernel documentation (we skipped

this weenix assignment)

similar trick (polymorphism) used in VFS

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File Object in C

typedef struct {
 unsigned short refcount, access;
 unsigned int file_pos;
 ...
 void **file_ops; /* to array of function pointers */
} FileObject;

one function pointer for each operation on a file

A file object uses an array of function pointers

where they point to is (actual) file system dependent

but the (virtual) interface is the same to higher level of the OS

Loose coupling between the actual file system and storage devices

the actual file system is written to talk to the devices also in a

device-independent manner

i.e., using major and minor device numbers to reference

the device and using standard interface provided by

the device driver

this is how C implements C++ polymorphism

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File System Cache

the primary storage holding these blocks might be mapped

into one or more address spaces of processes that have this

file mapped

blocks are available for immediate access by read and

write system calls

Recently used blocks in a file are kept in a file system cache

Fancier data structures in storage system and file system

e.g., hash table can be used to locate file blocks in the cache

More details in Ch 6

use a lot of tricks to make them look and feel fast

Storage devices are slow

disks are particularly slow

maybe keyed by inode number

