Operating Systems - CSCI 402

4.1 A Simple System
(Monolithic Kernel)

ﬁ> A Framework for Devices

ﬁ> Low-level Kernel (will come back to talk about this after Ch 7)
_) Processes & Threads

G> Storage Management

Copyright © William C. Cheng

Operating Systems - CSCI 402

Storage Management

ﬁ} What physical "devices" can you use to store data?
= primary storage, i.e., physical memory
Q "directly” addressable (using "one level of indirection")
& physical memory is not considered a "device"
= secondary storage, i.e., disk-based storage
Q to store files (i.e., implement the abstraction of "files")
Q to support virtual memory

ﬁ> An application is only aware of virtual memory (it thinks virtual

memory is real memory)

= applications should not care about how much physical memory
Is available to it

= there may not be enough physical memory for all processes

= the OS makes sure that real primary storage is available
when necessary

= e.(g., an application can allocate a 1GB block of memory while
the machine only has 256MB of physical memory / @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Memory Map

= virtual memory map
Q part hardware, part OS
Q each program thinks

it has its own full
address space 334

Copyright © William C. Cheng

Operating Systems - CSCI 402

Storage Management

ﬁ} Two ways for an application to access secondary storage
= using sequential I/O: open (), read (), write (), close ()
= using block I/O: open () , mmap (), close ()

—, Memory management concerns

1) mapping virtual addresses to real ones

2) determining which addresses are valid, i.e., refer to allocated
memory, and which are not

3) keeping track of which real objects, if any, are mapped into each
range of virtual addresses

4) deciding what should be kept in primary storage (RAM) and what
to fetch from elsewhere

Copyright © William C. Cheng

Operating Systems - CSCI 402

Memory Management Concerns

ﬁ} In reality, the OS is too slow since every virtual address needs
to be resolved
= some of the virtual memory mechanisms must be built into
the hardware
Q In some cases, the hardware is given the complete "map”
(i.e., mapping from virtual to physical address)
Q 1In other cases, only a partial map is given to the hardware
Q In either case, OS needs to provide some map to the hardware
and needs a data structure for the map
& page table is part of the virtual memory map (it "maps"
virtual address to physical address)

ﬁ> Virtual Memory Map (vmmap) data structure in the OS
= Implements the address space
Q only user part of the address space needs to be represented

= implements memory-mapped files
|
(42,

Copyright © William C. Cheng

Operating Systems - CSCI 402

Memory Management Concerns
) A valid virtual address must be ultimately resolvable by the OS

to a location in the physical memory

= if It cannot be resolved, the
virtual address is considered
an invalid virtual address

= referencing an unresolvable
virtual address causes a
segmentation fault (the OS
will deliver SIGSEG to the
process)
Q the default action would be

to terminate the process
= e.g., virtual address 0

_) A page faultis not a segmentation
fault if it can be resolved

Copyright © William C. Cheng

Page Table
Access | Physical Addr
R ~
R ,/. \
R~ /
Page
Page

Page

Operating Systems - CSCI 402

User Address Space Representation

recall that there is something
called "address space description”
ina PCB

as_region as_region as_region as_region as_region
1000-7fff 8000-1afff 1b000-1bfff 200000-41ffffff 7fffd000-7fffffff
rx, shared rw, private rw, private rw, shared rw, private
file file
object object

ﬁ> as_region (address space region data structure) contains:
= slart address, length, access permissions, shared or private
= if mapped to a file, pointer to the corresponding file object

) This is related to Kernel Assignment 3 where you need to (i\
L
=/

create and manage address spaces / virtual memory maps
Copyright © William C. Cheng

Operating Systems - CSCI 402

User Address Space Representation

a 1GB file that

has been
mapped R/W
and shared
as_region as_region as_region as_region as_region
1000-7fff 8000-1afff 1b000-1bfff 200000-41ffffff 7ffd000-7fffffff
rx, shared rw, private rw, private rw, shared rw, private
text data+bss heap stack
file file
object object

ﬁ> In this example, text and data map portions of the same file
= lextis marked read-execute and shared
— data+bss is marked read-write and private to mean that changes
will be private, i.e., will not affect other processes exec’ed

from the same file (AR
&y

Copyright © William C. Cheng

Operating Systems - CSCI 402

How OS Makes Virtual Memory Work?

ﬁ} If a thread access a virtual memory location that’s both in primary
storage and mapped by the hardware’s map
= no action by the OS

ﬁ> If a thread access a virtual memory location that’s not in primary
storage or if the translation is not in the hardware’s map
= a page faultis occurred and the OS is invoked
Q OS checks the as_region address space data structures to
make sure the reference is valid
& ifit’s valid, the OS does whatever that’s necessary to
locate or create the object of the reference
& find, or if necessary, make room for it in primary storage
if it’s not already there, and put it there
& fix up all the kernel data structures then return from page
fault so that application can retry the memory access

Q if invalid, it turns into a segmentation fault (or bad page faul
|
D,

9

Copyright © William C. Cheng

Operating Systems - CSCI 402

Storage Management

_, Two issues need further discussion
= how is the primary storage managed (in terms of ""resource
management")?
= how are the objects managed in secondary storage?

Copyright © William C. Cheng

Operating Systems - CSCI 402

How Is The Primary Storage "Resource"” Managed?

_> Who needs primary storage?
= application processes
= OS (e.g., terminal-handling subsystem, communication
subsystem, I/0O subsystem, etc.)
= they compete for primary storage

) If primary storage is managed poorly
= onhe subsystem can use up all the available memory
Q then other subsystem won’t get to run
Q this can even lead to OS crash when a subsystem uses up all
of physical memory

ﬁ} If there are no mapped files, the solution can be simple
= assign each process a fixed amount of primary storage
Q this way, they won’t compete
Q butis it fair?

Copyright © William C. Cheng

Operating Systems - CSCI 402

In Reality, Have To Deal With Mapped Files

_) An example to demonstrate a dilemma
= ohe process is using all of its primary storage allocation
= It then maps a file into its address space and starts
accessing that file
= should the memory that’s needed to buffer this file be
charged against the files subsystem or charged against the
process?

ﬁ> If charged against the files subsystem
= If the newly mapped file takes up all the buffer space in the
files subsystem, it’s unfair to other processes

) lf charged against the process
= if other processes are sharing the same file, other processes
are getting a free ride (in terms of memory usage)
= even worse, another process may increase the memory
usage of this process (double unfair!)

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

In Reality, Have To Deal With Mapped Files

) It’s difficult to be fair
= jt’s difficult to even define what fair means

—> We will discuss some solutions in Ch 7
= for now, we use the following solution
Q give each participant (processes, file subsystem, etc.)
a minimum amount of storage
Q leave some additional storage available for all to compete

Copyright © William C. Cheng

Operating Systems - CSCI 402

How Are Objects Managed In Secondary Storage?

ﬁ} The file system is used to manage objects in secondary storage
= the term "file system” can mean two different things
1) how to /ayout data on secondary storage (data structures on
disk)
2) how to access those data in data structures (code)

) The file system is usually divided into two parts
= file system independent
Q supports the "file abstraction”
Q on Unix, this is called the "virtual file system (VFS)"
& Kernel Assignment 2
Q on Windows, this is called the "//O manager"
= file system dependent
Q on Unix, this is called the "actual file system (AFS)"
& e.g., ext2, ext3, ext4, etc.
Q on Windows, this is called the "file system”
o e.g., FAT32, NTFS, etc. / @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Open-File Data Structures

(per process)
file-descriptor (system-wide) FS-dependent
table system file table / file object table inode table

N\

A WON=O

.,

n-1

ref file inode

count 4C€C€SS position pointer
(typo in textbook)

ﬁ> In the kernel, each process has its own file-descriptor table
= the kernel also maintains system file table (or file object table)

) The file object / inode forms the boundary between VFS and the

AFS (i.e., points to file-system-dependent stuff) |
= how can this be done? 1534

Copyright © William C. Cheng

Operating Systems - CSCI 402

File Object

ﬁ} The file object is like an abstract class in C++
= sUbclasses of file object are the actual file objects

class FileObject {
unsigned short refcount, access;
unsigned int file_pos;

virtual int create(const char *, int, FileObject *¥*);
virtual int read(int, void *, int);
virtual int write(int, const void *, int);

};

ﬁ} But wait ...

= what’s this about C++?
Q real operating systems are written in C ...
Q checkout the DRIVERS kernel documentation (we skipped
this weenix assignment) |
<& similar trick (polymorphism) used in VFS 3 @

Copyright © William C. Cheng

Operating Systems - CSCI 402

File Objectin C

typedef struct ({
unsigned short refcount, access;
unsigned int file_pos;

void **file ops; /* to array of function pointers */
} FileObject;

_) Afile object uses an array of function pointers
= this is how C implements C++ polymorphism
= ohe function pointer for each operation on a file
= Where they point to is (actual) file system dependent
= but the (virtual) interface is the same to higher level of the OS

ﬁ} Loose coupling between the actual file system and storage devices
— the actual file system is written to talk to the devices also in a
device-independent manner
Q i.e., using major and minor device numbers to reference
the device and using standard interface provided by |
the device driver 2.?2;

Copyright © William C. Cheng

Operating Systems - CSCI 402

File System Cache

_) Storage devices are slow
— disks are particularly slow
= use a lot of tricks to make them look and feel fast

ﬁ> Recently used blocks in a file are kept in a file system cache
= the primary storage holding these blocks might be mapped
into one or more address spaces of processes that have this
file mapped
Q blocks are available for immediate access by read and
write system calls

ﬁ> Fancier data structures in storage system and file system
= e.g., hash table can be used to locate file blocks in the cache
QO maybe keyed by inode nhumber

ﬁ} More details in Ch 6

Copyright © William C. Cheng

