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OS Design

> We will now look at how OSes are constructed
= what goes into an OS
= how they interact with each other
= how is the software structured
—= how performance concerns are factoered in

ﬁ} We will introduce new components in this chapter
= scheduling (Ch 5)
= file systems (Ch 6)
= virtual memory (Ch 7)

ﬁ> We will start with a simple hardware configuration
= what OS is needed to support this

) Applications views the OS as the "computer"

= the OS needs to provide a consistent and usable interface

Q while being secure and efficient
= that’s a pretty tall order!
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OS Design

ﬁ} Our goal is to build a general-purpose OS
= cah run a variety of applications
Q some are interactive
Q many use network communication
Q all read/write to a file system
= |t’s like most general-purpose OSes
Q Linux Q Solaris
Q FreeBSD Q Mac OS X
Q Chromium OS (has a Linux kernel)
QO Windows (the only one that’s not directly based on Unix)
= all these OSes are quite similar, functionally!
they all provide:
Q processes Q threads
file systems Q network protocols with similar APls
user interface with display, mouse, keyboard
access control based on file ownership and that file |
&

O O O

owers can control
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OS Design Issues

) Performance
= efficiency of application

—) Modularity
= tradeoffs between modularity and performance

) Device independence
= for new devices, don’t need to write a new OS

) Security/Isolation
= isolate OS from application
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Simple Configuration
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_, Early 1980s OS, so we can focus on the basic OS issues
= nho support for bit-mapped displays and mice |
= generally less efficient design 3 @;
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OS Components
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A Simple System: To Be Discussed
ﬁ} What is the functionality of the components?

_, What are the key data structures?

ﬁ> What mechanisms are there to support the applications?
) How is the system broken up into modules?

_, To what extent is the system extensible?

_, What parts run in the OS kernel in privileged mode? What parts
run as library code in user applications? What parts run as
separate applications?

ﬁ} In which execution contexts do the various activities take place?
= e.g., thread context vs. interrupt context
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OS Components
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OS Components
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OS Components
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OS Components
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OS Components
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OS Components
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Some Important OS Concepts

ﬁ} From an application program’s point of view, our system has:
= processes with threads
= a file system
= terminals (with keyboards)
= a hetwork connection

) Need more details on these... Need to look at:
— how can they be provided
—= how applications use them
= how this affects the design of the OS
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Processes And File Systems

) The purpose of a process
= holds an address space
= holds a group of threads that execute within that address space
= holds a collection of references to open files and other
"execution context"

_) Address space:
— set of addresses that threads of the process can usefully
reference
= more precisely, it’s the content of these addressable locations
Q text, data, bss, dynamic, stack segments/regions and what’s
in them
& a memory segment/region contains usable contiguous
memory addresses
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Address Space Initialization

) Design issue:
= how should the OS initialize these address space regions?

ﬁ} Unix does it in two steps

— make a copy of the address space using fork ()

= then copy contents from the file system to the process address
space (as part of the exec operation)

= quite wasteful (both in space and time) for the text region since
it’s read-only data
Q should share the text region

= what about data regions? they can potentially be written into
Q can also share a portion of a data region if that portion is

never modified

Q copy data structures are much faster than copy data
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Remember This?

_) Virtual Memory

Text Page Table

main 4096 Access | Physical Addr

subr 4132

printf 4156 - -

write 16156 R

startup 16172 ™~
- R | N\

ata R

aX 16384 1 — \

printfargs 16388 /R//VV /

StandardFiles 16396 {
BSS

X 17420 Physical

Physical
Page
Physical
ask buddy systemto _ Page
allocate these pages Physical
Page
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Processes Can Share Memory Pages
ﬁ> Inside fork (), can simply copy parent’s page table to child

Child Page Table

Access | Physical Addr
R o
TN
R P ~—_
R |/~
rRW |/ [

= power of indirection
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exec ()

ﬁ} Inside exec (), need to wipe out the address space (and page
table) and create a new address space (and page table)

Child Page Table
Access | Physical Addr

prog

—
\

— text
data

= should you copytext and data segments of the new program from
disk into memory now?
Q can be quite wasteful if you quit your new program quickly
(and only use a small amount of the data you just copied form

disk) X

Copyright © William C. Cheng




Operating Systems - CSCI 402

Memory Map

= memory map
Q part hardware, part OS
Q each program thinks

it has its own full
address space 2134
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Memory Map

ﬁ} For the text region, why bother copying the executable file into the
address space in the first place?
= cah just map the file into the address space (Ch 7)
Q mapping is an important concept in the OS
& file mapping is not the same thing as address translation
& some virtual memory pages map to files, and some map to
physical memory
Q mapping let the OS tie the regions of the address space to
the file system
QO address space and files are divided into pieces, called pages
Q If several processes are executing the same program, then
at most one copy of that program’s text page is in memory
at once
= fext regions of all processes running this program are setup,
using hardware address translation facilities, to share these
pages
Q this type of mapping is known as shared mapping f
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Memory Map

) The kernel uses a memory map to keep track of the mapping
from virtual pages to file pages
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= the kernel also uses memory map to keep track of the mapping
from virtual pages to physical pages

Q also use it to maintain the page table data structure
Copyright © William C. Cheng
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Processes Can Share Memory Pages

Child Page Table
Access | Physical Addr
R ~_
R ]
R |/ »
rw |/ [

= can we really
share data
segment pages?

Parent Page Table

Access | Physical Addr
R ~
I
R/ ,/. \
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Address Space Initialization

_) Text regions uses shared mapping

ﬁ> Data regions of all processes running this program initially refer
to pages of memory containing the initial data region
= this type of mapping is known as private mapping
Q when does each process really need a private copy of such a

page?
& when data is modified by a process, it gets a new and

private copy of the initial page
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Copy-On-Write

ﬁ} Copy-on-write (COW):
= a process gets a private copy of the page after a thread in the
process performs a write to that page for the first time
Q the basic idea is that only those pages of memory that are
modified are copied

ﬁ} Use private mapping and copy-on-write for data and bss regions

ﬁ> The dynamic/heap and stack regions use a special form of private
mapping
= their pages are initialized, with zeros (in Linux); copy-on-write
Q these are known as anonymous pages

ﬁ> If we can implement copy-on-write at the right time, then it's
perfectly okay for processes to share address spaces
= details in Ch 7
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Shared Files

ﬁ} If a bunch of processes share a file

= we can also map the file into the address space of each process
= in this case, the mapping is shared
= when one process modifies a page, no private copy is made

Q Instead, the original page itself is modified

Q everyone gets the changes

Q and changes are written back to the file

& more onissuesin Ch6

) Can also share a file read-only
= writing through such a map will cause segmentation fauit
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Memory Maps Summary

) File mapping
—= shared mapping
Q R/W: may change shared data on disk
Q R/O: read-only
= private mapping
Q R/W: copy-on-write (will not change data on disk)
Q R/O: read-only

) Anonymous mapping
—= shared mapping (may be just shared with child processes)

Q R/W: may change shared data in memory
Q R/O: read-only
= private mapping
Q R/W: copy-on-write
Q R/O: read-only

ﬁ} Can also use all of the above in an application |
= mmap () system call 3 @J
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Block I/0O vs. Sequential I/O

ﬁ} Mapping files into address space is one way to perform I/O on files
= block/page is the basic unit
= some would refer to this as block I/O

G> Some devices cannot be mapped into the address space
= e.g., receiving characters typed into the keyboard, sending
a message via a network connection
— need a more traditional approach using explicit system calls
such as read () and write ()
= this is referred to as sequential I/0

ﬁ> It also makes sense to be able to read a file like reading from
the keyboard
— similarly, a program that produces lines of text as output
should be able to use the same code to write output to a file
or write it out to a network connection
= makes life easier! (and make code more robust)
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System Call API

) Backwards compatibility is an important issue
= try not to change it much (to make developers happy)

( ) ( )
App App | °°°
& J _ J
Applications
System Call API
0S
Processor Memory
Management Management
/0 Management ]
[ 3
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Portability

ﬁ} It is desirable to have a portable operating system
= portable across various hardware platforms

ﬁ} For a monolithic OS, it is achieved through the use of a
Hardware Abstraction Layer (HAL)

= a portable interface to machine configuration and
processor-specific operations within the kernel

Applications

—[ System Call API ]—

OS

—( HAL API o

HAL

Hardware @!,}
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Hardware Abstraction Layer (HAL)

) Portability across machine configuration
= e.g., different manufacturers for x86 machines will require
different code to configure interrupts, hardware timers, etc.

) Portability across processor families
= e.g., may need additional code for context switching, system
calls, interrupting handler, virtual memmory management, etc.

ﬁ> With a well-defined Hardware Abstraction Layer, most of the OS is
machine and processor independent
= porting an OS to a new computer is done by
Q writing new HAL routines
Q relink with the kernel
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4.1 A Simple System
(Monolithic Kernel)

ﬁ> A Framework for Devices

ﬁ> Low-level Kernel (will come back to talk about this after Ch 7)

_) Processes & Threads

G> Storage Management (will come back to talk about this after Ch 5)
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Computer Terminal

—) VT100
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Devices

) Challenges in supporting devices
= device independence
= device discovery

ﬁ> Device naming
= two choices
Q independent name space (i.e., named independently from
other things In the system)
Q devices are named as files

Copyright © William C. Cheng



Operating Systems - CSCI 402

A Framework for Devices

ﬁ} Device driver:
= every device is identified by a device "number"”, which is
actually a pair of numbers
Q a major device number - identifies the device driver
Q a minor device humber - device index for all devices
managed by the same device driver

ﬁ} Special entries were created in the file system to refer to devices
= usually in the /dev directory
Q e.g., /dev/diskl, /dev/disk2 each marked as a special file
& a special file does not contain data
<& it refers to devices by their major and minor device
numbers
& ifyoudo "1s -1", you can see the device numbers

_ Data structure in the early Unix systems
= statically allocated array in the kernel called cdevsw

|
(character device switch) 3 @J
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Finding Devices

unix | etc [home| pro | dev

/

dis!(1 disk2

y 0

" device number: 1
major = 6 2
3

4

~N

minor = 1

r

read entry point :
: write entry point :

L4
1
]
1
1

Sa
~
-
-~
-----
_____________

> <
= entries In cdevsw contains mmap :
addresses of the device e 5
driver entry points
Q a device driver maintains cdevsw |
its own data structure 3
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Device Drivers in Early Unix Systems

ﬁ} The kernel was statically configured to contain device-specific
information such as:
= Interrupt-vector locations
= locations of device-control registeres on whatever bus the
device was attached to

ﬁ} Static approach was simple, but cannot be easily extended
— a kernel must be custom configured for each installation

X
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Device Probing

) First step to improve the old way
= allow the devices to to be found and automatically
configured when the system booted
= (still require that a kernel contain all necessary device
drivers)

_, Each device driver includes a probe routine
= Invoked at boot time
= probe the relevant buses for devices and configure them
Q including identifying and recording interrupt-vector and
device-control-register locations

ﬁ} This allowed one kernel image to be built that could be useful
for a number of similar but not identical installations
= boot time is kind of long
= Impractical as the number of supported devices gets big

X
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Device Probing

> What's the right thing to do?
Step 1: discover the device without the benefit of having the
relevant device driver in the kernel
Step 2: find the needed device drivers and dynamically link
them into the kernel
= but how do you achieve this?

ﬁ} Solution: use meta-drivers
—= a meta-drive handles a particular kind of bus
= e.g., USB (Universal Serial Bus)
Q a USB meta-driver is installed into the kernel
Q any device that goes onto a USB (Universal Serial Bus)
must know how to interact with the USB meta-driver via the
USB protocol
Q once a connected device is identified, system software would
select the appropriate device driver and load into the kernel

Q what about applications? how can they reference (A
PP y . (\

dynamically discovered devices?
Copyright © William C. Cheng
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Discovering Devices

ﬁ} So, you plug in a new device to your computer on a particular bus
= OS would notice
= find a device driver
Q what kind of device is it?
Q where is the driver?
= assigh a name, but how is it chosen?
= multiple similar devices, but how does application choose?

ﬁ> In some Linux systems, entries are added into /dev as the kernel

discovers them

= lookup the nhames from a database of names known as devfs
Q downside of this approach is that device naming

conventions not universally accepted

Q what’s an application to do?

= some current Linux systems use udev
Q user-level application assigns hames based on rules

rovided by an administrator INNY
X P Y 3
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Discovering Devices

ﬁ} What about the case where different devices acted similarly?
= e.(g., touchpad on a laptop and USB mouse
= how should the choice be presented to applications?

> Windows has the notion of interface classes
— a device can register itself as members of one or more such
classes
= an application can enumerate all currently connected
members of such a class and choose among them (or use
them all)

X
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4.1 A Simple System
(Monolithic Kernel)

ﬁ> A Framework for Devices

ﬁ> Low-level Kernel (will come back to talk about this after Ch 7)

_) Processes & Threads

G> Storage Management (will come back to talk about this after Ch 5)
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Processes and Threads

) Aprocess is:
= a holder for an address space
= a collection of other information shared by a set of threads
= a collection of references to open files and other "execution

context"”

ﬁ} As discussed in Ch 1, processes related APIs include
= fork (), exec(),wait (), exit ()
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Processes and Threads

address space stack pointer [ L
description other registers [H
open file state I
descriptors H
list of threads thread control blocks I
current state T
process control block stacks
ﬁ} Note: all these are relevant to your Kernel Assignment 1 |
= although we are only doing one thread per process 4534
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Process Life Cycle

_) Pretty simple
= a process starts in the run state
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Process Relationships (1)

_) Process hierarchy
= run "pstree" on Linux

[Login 1 J [Login 2} [Login 3}

% i

[Sub proc.] [Sub proc.J
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Process Relationships (2)

ﬁ} If a process dies, you must reparent all its child processes

Logln 1 Logln 2

<

Sub proc Sub proc
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Process Relationships (3)

ﬁ} If a process dies, you must reparent all its child processes
= new parent is the INIT process

[Sub proc.] [Sub proc.J
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Fork and Threads

DD e

Or

D oo D

) Solaris uses the 2nd approach
— expensive to fork a process

) Problem with 1st approach
= thread 1 called fork () and thread 2 has a mutex locked
Q who will unlock the mutex?
= POSIX solution is to provide a way to unlock all mutex / @’_

before fork ()
Copyright © William C. Cheng
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Thread Life Cycle

Runnable

Running

thread

itself
thread
itself

= a thread starts in the runnable state
Q sleeps in the run queue (or "ready queue")
& threads sleep in the run queue to wait to use the CPU
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Thread Life Cycle

Runnable

Running

thread

itself
thread
itself

—= the scheduler switches a thread’s state from runnable to running
Q the scheduler decides who to run next inside the CPU
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Thread Life Cycle

thread
itself

thread
itself

= a thread goes from running to waiting when a blocking call is
made by the thread itself
Q the scheduler is not involved here
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Thread Life Cycle

thread
itself

thread
itself

—= the scheduler switches a thread’s state from running to runnable
when the thread used up its execution quantum
Q athread can also "yield" the CPU (see examples in
faber_thread_test () in kernel 1)
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Thread Life Cycle

Running

thread
itself
itself

= a thread gets unblocked by the action of another thread or by an
interrupt handler
Q the scheduler is not involved here
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Thread Life Cycle

thread
itself

itself

= jn order for a thread to enter the terminated state, it has to be in

the running state just before that
Q what if something like pthread_cancel () is invoked when

the thread is not in the running state?
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Thread Life Cycle

) Does pthread_exit () delete the thread (completely) that calls it?
= ho, the thread goes into a zombie state (i.e., "terminated’)

_> What's left in the thread after it calls pthread_exit () ?
= |ts thread control block
Q needs to keep thread ID and return code around
= its stack
Q how can a thread delete its own stack? no way!
<& which stack are we talking about anyway?
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Thread Life Cycle

ﬁ} Who is deleting the thread control block and freeing up
the thread’s stack space?

) lf athread is not detached
= it can be taken care of in the pthread_join () code
Q the thread that calls pthread_join () does the clean up

ﬁ> If a thread is detached (our simple OS does not support this)
= can do this is one of two ways
1) use a special reaper thread
& basically doing pthread_join ()
2) queue these threads on a list and have other threads
free them when it’s convenient (e.g., when the
scheduler schedule a thread to run)
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Kernel 1 Process & Thread Life Cycles

ﬁ} Part of the kernel 1 assighment is to implement the life cycles of
processes and threads
= process/thread creation/termination
Q since we are only doing one thread per process (MTP=0),

when a thread dies, the process must die as well

= process/thread cancellation

= process waiting (and no thread joining since MTP=0)

= etc.

ﬁ> Unlike warmup2, in kernel assignments, first procedures of almost
all kernel threads have been written for you already!
= the thread code there make function calls and some of these
functions are not-yet-implemented
Q vyour job is to implement those functions so that these kernel
threads can run perfectly

e
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Kernel 1 Process & Thread Life Cycles

> Hint on how to do this is by reading kernel code
= read the code in "kernel/proc/faber_test.c"
Q if it calls a function that you are suppose to implement, it’s
telling you what it’s expecting from that function!
& feel free to discuss things like that in the class Google
Group
Q you need to understand what every line of code is doing there
Q you need to pass every test there (see grading guidelines)
& you must not change anything there
<& make sure the printout is correct (you may want to discuss
it in the class Google Group)
Q if you need to do something similar in another module, just
copy the code from it
<& you can copy code that’s given to you as course material
and you don’t have to cite your source

B
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