
Ch 4: Operating-System

Design

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

virtual memory (Ch 7)

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

OS Design

what goes into an OS

We will now look at how OSes are constructed

how they interact with each other

how is the software structured

how performance concerns are factoered in

scheduling (Ch 5)

We will introduce new components in this chapter

file systems (Ch 6)

what OS is needed to support this

We will start with a simple hardware configuration

the OS needs to provide a consistent and usable interface

Applications views the OS as the "computer"

while being secure and efficient

that’s a pretty tall order!

threads

network protocols with similar APIs

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

OS Design

Our goal is to build a general-purpose OS

can run a variety of applications

some are interactive

many use network communication

all read/write to a file system

it’s like most general-purpose OSes

Linux

FreeBSD

Solaris

Mac OS X

Windows (the only one that’s not directly based on Unix)

Chromium OS (has a Linux kernel)

all these OSes are quite similar, functionally!

they all provide:

processes

file systems

user interface with display, mouse, keyboard

access control based on file ownership and that file

owers can control

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

OS Design Issues

Performance

efficiency of application

Modularity

tradeoffs between modularity and performance

Device independence

for new devices, don’t need to write a new OS

Security/Isolation

isolate OS from application

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Simple Configuration

Terminal

with Display,

Keyboard

Primary

Storage

Network

Interface

Processor

Disk

Early 1980s OS, so we can focus on the basic OS issues

no support for bit-mapped displays and mice

generally less efficient design

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

OS Components

Processor
Management

Applications

OS

Memory
Management

I/O Management

App App

What is the functionality of the components?

What are the key data structures?

How is the system broken up into modules?

To what extent is the system extensible?

What parts run in the OS kernel in privileged mode? What parts

run as library code in user applications? What parts run as

separate applications?

In which execution contexts do the various activities take place?

e.g., thread context vs. interrupt context

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple System: To Be Discussed

What mechanisms are there to support the applications?

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

OS Components

Processor Management Memory Management

I/O Management

Scheduling

Interrupt
management

Virtual
memory

Real
memory

Human interface
device

Network
protocols

File system

Logical I/O management

Physical device drivers

Processes
and

threads

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

OS Components

Processor Management Memory Management

I/O Management

Scheduling

Interrupt
management

Virtual
memory

Real
memory

Human interface
device

Network
protocols

File system

Logical I/O management

Physical device drivers

Processes
and

threads

supports multithreaded

processes

each process has its

own address space

for weenix, keep MTP=0

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

OS Components

Processor Management Memory Management

I/O Management

Scheduling

Interrupt
management

Virtual
memory

Real
memory

Human interface
device

Network
protocols

File system

Logical I/O management

Physical device drivers

supports virtual memory

Processes
and

threads

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

OS Components

Processor Management Memory Management

I/O Management

Scheduling

Interrupt
management

Virtual
memory

Real
memory

Processes
and

threads

Human interface
device

Network
protocols

File system

Logical I/O management

Physical device drivers

by a simple time-sliced

scheduler (preemptive)

theads executing is

multiplexed on a single

processor

for weenix, FCFS,

non-preemptive

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

OS Components

Processor Management Memory Management

I/O Management

Scheduling

Interrupt
management

Virtual
memory

Real
memory

Processes
and

threads

Human interface
device

Network
protocols

Logical I/O management

Physical device drivers

layered on disks

has a file system

File system

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

OS Components

Processor Management Memory Management

I/O Management

Scheduling

Interrupt
management

Virtual
memory

Real
memory

Processes
and

threads

Human interface
device

Network
protocols

File system

Logical I/O management

Physical device drivers

text interface (typically 24

80-character rows)

user interacts over a

terminal

every character typed on

the keyboard is sent to

the processor

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

OS Components

Processor Management Memory Management

I/O Management

Scheduling

Interrupt
management

Virtual
memory

Real
memory

Processes
and

threads

Human interface
device

Network
protocols

File system

Logical I/O management

Physical device drivers

communication over

Ethernet using TCP/IP

none for weenix

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Some Important OS Concepts

processes with threads

From an application program’s point of view, our system has:

a file system

terminals (with keyboards)

a network connection

Need more details on these... Need to look at:

how applications use them

how this affects the design of the OS

how can they be provided

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Processes And File Systems

The purpose of a process

holds an address space

holds a group of threads that execute within that address space

holds a collection of references to open files and other

"execution context"

Address space:

set of addresses that threads of the process can usefully

reference

more precisely, it’s the content of these addressable locations

text, data, bss, dynamic, stack segments/regions and what’s

in them

a memory segment/region contains usable contiguous

memory addresses

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Address Space Initialization

Design issue:

how should the OS initialize these address space regions?

Unix does it in two steps

make a copy of the address space using fork()

can also share a portion of a data region if that portion is

never modified

what about data regions? they can potentially be written into

should share the text region

quite wasteful (both in space and time) for the text region since

it’s read-only data

then copy contents from the file system to the process address

space (as part of the exec operation)

copy data structures are much faster than copy data

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Remember This?

Virtual Memory

Start Access Physical Addr

4096

8192

12288

16384

R

R

R

R/W

Text
 main 4096
 subr 4132
 printf 4156
 write 16156
 startup 16172

Data
 aX 16384
 printfargs 16388
 StandardFiles 16396

BSS
 X 17420
 errno 17680

Page Table

0 - -

Physical

Page

Physical

Page

Physical

Page

Physical

Page

ask buddy system to

allocate these pages

#

1

2

3

4

0

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Processes Can Share Memory Pages

Start Access Physical Addr

4096

8192

12288

16384

R

R

R

R/W

Parent Page Table

0 - -Start Access Physical Addr

4096

8192

12288

16384

R

R

R

R/W

Child Page Table

0 - -

Physical

Page

Physical

Page

Physical

Page

Physical

Page

Inside fork(), can simply copy parent’s page table to child

#

1

2

3

4

0#

1

2

3

4

0

power of indirection

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

exec()

Start Access Physical Addr

4096

8192

12288

16384

Child Page Table

0 - -

Inside exec(), need to wipe out the address space (and page

table) and create a new address space (and page table)

- -

- -

- -

- -

prog

text

data

bss

#

1

2

3

4

0

should you copytext and data segments of the new program from

disk into memory now?

can be quite wasteful if you quit your new program quickly

(and only use a small amount of the data you just copied form

disk)

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Map

Program 1

Program 2

Program 3

Disk Disk

Memory

memory map

part hardware, part OS

each program thinks

it has its own full

address space

For the text region, why bother copying the executable file into the

address space in the first place?

can just map the file into the address space (Ch 7)

mapping let the OS tie the regions of the address space to

the file system

address space and files are divided into pieces, called pages

if several processes are executing the same program, then

at most one copy of that program’s text page is in memory

at once

text regions of all processes running this program are setup,

using hardware address translation facilities, to share these

pages
0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Map

mapping is an important concept in the OS

this type of mapping is known as shared mapping

file mapping is not the same thing as address translation

some virtual memory pages map to files, and some map to

physical memory

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Map

Start Access Physical Addr

4096

8192

12288

16384

Child Page Table

0 - -

The kernel uses a memory map to keep track of the mapping

from virtual pages to file pages

- -

- -

- -

- -

prog

text

data

bss

 OS

the kernel also uses memory map to keep track of the mapping

from virtual pages to physical pages

#

1

2

3

4

0

also use it to maintain the page table data structure

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Processes Can Share Memory Pages

Start Access Physical Addr

4096

8192

12288

16384

R

R

R

R/W

Parent Page Table

0 - -Start Access Physical Addr

4096

8192

12288

16384

R

R

R

R/W

Child Page Table

0 - -

can we really

share data

segment pages?

Physical

Page

Physical

Page

Physical

Page

Physical

Page

#

1

2

3

4

0#

1

2

3

4

0

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Address Space Initialization

Data regions of all processes running this program initially refer

to pages of memory containing the initial data region

this type of mapping is known as private mapping

when does each process really need a private copy of such a

page?

when data is modified by a process, it gets a new and

private copy of the initial page

Text regions uses shared mapping

their pages are initialized, with zeros (in Linux); copy-on-write

The dynamic/heap and stack regions use a special form of private

mapping

these are known as anonymous pages

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Copy-On-Write

Copy-on-write (COW):

a process gets a private copy of the page after a thread in the

process performs a write to that page for the first time

the basic idea is that only those pages of memory that are

modified are copied

If we can implement copy-on-write at the right time, then it’s

perfectly okay for processes to share address spaces

details in Ch 7

Use private mapping and copy-on-write for data and bss regions

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Shared Files

we can also map the file into the address space of each process

If a bunch of processes share a file

in this case, the mapping is shared

when one process modifies a page, no private copy is made

instead, the original page itself is modified

everyone gets the changes

and changes are written back to the file

more on issues in Ch 6

Can also share a file read-only

writing through such a map will cause segmentation fault

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Maps Summary

shared mapping

File mapping

R/W: may change shared data on disk

private mapping

R/W: copy-on-write (will not change data on disk)

Anonymous mapping

R/O: read-only

mmap() system call

Can also use all of the above in an application

shared mapping (may be just shared with child processes)

private mapping

R/W: may change shared data in memory

R/O: read-only

R/O: read-only

R/W: copy-on-write

R/O: read-only

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Block I/O vs. Sequential I/O

Mapping files into address space is one way to perform I/O on files

block/page is the basic unit

need a more traditional approach using explicit system calls

such as read() and write()

Some devices cannot be mapped into the address space

e.g., receiving characters typed into the keyboard, sending

a message via a network connection

this is referred to as sequential I/O

some would refer to this as block I/O

It also makes sense to be able to read a file like reading from

the keyboard

similarly, a program that produces lines of text as output

should be able to use the same code to write output to a file

or write it out to a network connection

makes life easier! (and make code more robust)

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

System Call API

Processor
Management

Applications

OS

Memory
Management

I/O Management

Backwards compatibility is an important issue

System Call API

try not to change it much (to make developers happy)

App App

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Portability

It is desirable to have a portable operating system

portable across various hardware platforms

For a monolithic OS, it is achieved through the use of a

Hardware Abstraction Layer (HAL)

a portable interface to machine configuration and

processor-specific operations within the kernel

System Call API

HAL API

Applications

OS

HAL

Hardware

0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Hardware Abstraction Layer (HAL)

Portability across machine configuration

e.g., different manufacturers for x86 machines will require

different code to configure interrupts, hardware timers, etc.

Portability across processor families

e.g., may need additional code for context switching, system

calls, interrupting handler, virtual memmory management, etc.

With a well-defined Hardware Abstraction Layer, most of the OS is

machine and processor independent

porting an OS to a new computer is done by

writing new HAL routines

relink with the kernel

0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

4.1 A Simple System

(Monolithic Kernel)

A Framework for Devices

Low-level Kernel (will come back to talk about this after Ch 7)

Processes & Threads

Storage Management (will come back to talk about this after Ch 5)

0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Computer Terminal

VT100

0123

35

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A "tty"

independent name space (i.e., named independently from

other things in the system)

0123

36

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Devices

device independence

Challenges in supporting devices

device discovery

two choices

Device naming

devices are named as files

every device is identified by a device "number", which is

actually a pair of numbers

a major device number - identifies the device driver

Device driver:

a special file does not contain data

a minor device number - device index for all devices

managed by the same device driver

usually in the /dev directory

Special entries were created in the file system to refer to devices

e.g., /dev/disk1, /dev/disk2 each marked as a special file

it refers to devices by their major and minor device

numbers

if you do "ls -l", you can see the device numbers

0123

37

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Framework for Devices

statically allocated array in the kernel called cdevsw

(character device switch)

Data structure in the early Unix systems

0123

38

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Finding Devices

unix etc home pro dev

disk1 disk2 ...

device number:
major = 6
minor = 1

cdevsw

0

1

2

3

4

entries in cdevsw contains

addresses of the device

driver entry points

a device driver maintains

its own data structure

read entry point

write entry point

mmap

...

0123

39

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Device Drivers in Early Unix Systems

The kernel was statically configured to contain device-specific

information such as:

interrupt-vector locations

locations of device-control registeres on whatever bus the

device was attached to

Static approach was simple, but cannot be easily extended

a kernel must be custom configured for each installation

0123

40

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Device Probing

First step to improve the old way

allow the devices to to be found and automatically

configured when the system booted

(still require that a kernel contain all necessary device

drivers)

Each device driver includes a probe routine

invoked at boot time

probe the relevant buses for devices and configure them

including identifying and recording interrupt-vector and

device-control-register locations

This allowed one kernel image to be built that could be useful

for a number of similar but not identical installations

boot time is kind of long

impractical as the number of supported devices gets big

0123

41

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Device Probing

What’s the right thing to do?

Step 1: discover the device without the benefit of having the

relevant device driver in the kernel

Step 2: find the needed device drivers and dynamically link

them into the kernel

but how do you achieve this?

Solution: use meta-drivers

a meta-drive handles a particular kind of bus

e.g., USB (Universal Serial Bus)

a USB meta-driver is installed into the kernel

any device that goes onto a USB (Universal Serial Bus)

must know how to interact with the USB meta-driver via the

USB protocol

once a connected device is identified, system software would

select the appropriate device driver and load into the kernel

what about applications? how can they reference

dynamically discovered devices?

In some Linux systems, entries are added into /dev as the kernel

discovers them

0123

42

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Discovering Devices

OS would notice

what kind of device is it?

So, you plug in a new device to your computer on a particular bus

where is the driver?

find a device driver

assign a name, but how is it chosen?

downside of this approach is that device naming

conventions not universally accepted

multiple similar devices, but how does application choose?

lookup the names from a database of names known as devfs

what’s an application to do?

some current Linux systems use udev

user-level application assigns names based on rules

provided by an administrator

Windows has the notion of interface classes

0123

43

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Discovering Devices

e.g., touchpad on a laptop and USB mouse

What about the case where different devices acted similarly?

how should the choice be presented to applications?

a device can register itself as members of one or more such

classes

an application can enumerate all currently connected

members of such a class and choose among them (or use

them all)

4.1 A Simple System

(Monolithic Kernel)

0123

44

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Framework for Devices

Low-level Kernel (will come back to talk about this after Ch 7)

Processes & Threads

Storage Management (will come back to talk about this after Ch 5)

0123

45

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Processes and Threads

a holder for an address space

A process is:

a collection of references to open files and other "execution

context"

a collection of other information shared by a set of threads

As discussed in Ch 1, processes related APIs include

fork(), exec(), wait(), exit()

0123

46

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Processes and Threads

stack pointer

other registers

state

stack pointer

other registers

state

thread control blocks

stack pointer

other registers

state

stacks

address space
description

open file
descriptors

list of threads

current state

process control block

Note: all these are relevant to your Kernel Assignment 1

although we are only doing one thread per process

Run Zombie

Pretty simple

a process starts in the run state

0123

47

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Process Life Cycle

Sub proc.
0123

48

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Process Relationships (1)

Init

cmd

Login 2Login 1 Login 3

cmd cmd

Sub proc.

cmd cmd

Process hierarchy

run "pstree" on Linux

If a process dies, you must reparent all its child processes

Sub proc.
0123

49

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Process Relationships (2)

Init

cmd

Login 2Login 1 Login 3

cmd cmd

Sub proc.

cmd cmd

Sub proc.
0123

50

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Process Relationships (3)

Init

cmd

Login 2Login 1 Login 3

cmd cmd

Sub proc.

cmd cmd

If a process dies, you must reparent all its child processes

new parent is the INIT process

0123

51

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Fork and Threads

fork

fork

Or

expensive to fork a process

Solaris uses the 2nd approach

1 2

thread 1 called fork() and thread 2 has a mutex locked

Problem with 1st approach

POSIX solution is to provide a way to unlock all mutex

before fork()

who will unlock the mutex?

Terminated

0123

52

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Life Cycle

Running

Waiting

a thread starts in the runnable state

Runnable

scheduler

thread

itself

thread

itself

other

sleeps in the run queue (or "ready queue")

threads sleep in the run queue to wait to use the CPU

Terminated

0123

53

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Life Cycle

Runnable

Running

Waiting

the scheduler switches a thread’s state from runnable to running

scheduler

thread

itself

thread

itself

other

the scheduler decides who to run next inside the CPU

Terminated

0123

54

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Life Cycle

Runnable

Running

Waiting

a thread goes from running to waiting when a blocking call is

made by the thread itself

scheduler

thread

itself

thread

itself

other

the scheduler is not involved here

Terminated

0123

55

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Life Cycle

Runnable

Running

Waiting

the scheduler switches a thread’s state from running to runnable

when the thread used up its execution quantum

a thread can also "yield" the CPU (see examples in

faber_thread_test() in kernel 1)

scheduler

thread

itself

thread

itself

other

Terminated

0123

56

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Life Cycle

Runnable

Running

Waiting

a thread gets unblocked by the action of another thread or by an

interrupt handler

scheduler

thread

itself

thread

itself

other

the scheduler is not involved here

Terminated

0123

57

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Life Cycle

Runnable

Running

Waiting

in order for a thread to enter the terminated state, it has to be in

the running state just before that

what if something like pthread_cancel() is invoked when

the thread is not in the running state?

scheduler

thread

itself

thread

itself

other

0123

58

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Life Cycle

Does pthread_exit() delete the thread (completely) that calls it?

no, the thread goes into a zombie state (i.e., "terminated")

What’s left in the thread after it calls pthread_exit()?

its thread control block

its stack

how can a thread delete its own stack? no way!

needs to keep thread ID and return code around

which stack are we talking about anyway?

queue these threads on a list and have other threads

free them when it’s convenient (e.g., when the

scheduler schedule a thread to run)

0123

59

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Life Cycle

If a thread is detached (our simple OS does not support this)

can do this is one of two ways

1) use a special reaper thread

2)

basically doing pthread_join()

Who is deleting the thread control block and freeing up

the thread’s stack space?

it can be taken care of in the pthread_join() code

the thread that calls pthread_join() does the clean up

If a thread is not detached

0123

60

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Kernel 1 Process & Thread Life Cycles

Part of the kernel 1 assignment is to implement the life cycles of

processes and threads

process/thread creation/termination

process/thread cancellation

process waiting (and no thread joining since MTP=0)

since we are only doing one thread per process (MTP=0),

when a thread dies, the process must die as well

etc.

Unlike warmup2, in kernel assignments, first procedures of almost

all kernel threads have been written for you already!

the thread code there make function calls and some of these

functions are not-yet-implemented

your job is to implement those functions so that these kernel

threads can run perfectly

0123

61

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Kernel 1 Process & Thread Life Cycles

Hint on how to do this is by reading kernel code

read the code in "kernel/proc/faber_test.c"

you need to understand what every line of code is doing there

you need to pass every test there (see grading guidelines)

you must not change anything there

if you need to do something similar in another module, just

copy the code from it

make sure the printout is correct (you may want to discuss

it in the class Google Group)

if it calls a function that you are suppose to implement, it’s

telling you what it’s expecting from that function!

feel free to discuss things like that in the class Google

Group

you can copy code that’s given to you as course material

and you don’t have to cite your source

