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3.5 Booting

Copyright © William C. Cheng



Operating Systems - CSCI 402

Boot

ﬁ} Came from the idiomatic expression, "to pull yourself up by your
bootstraps”
= without the help of others
= it’s a difficult situation

|:> In OS

= load its OS into memory
Q which kind of means that you need an OS in memory to do it

ﬁ} Solution

= |oad a tiny OS into memory
Q known as the bootstrap loader
Q then again, who loads this tiny OS into memory?
<& how about first loading a tiny bootstrap loader?
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toggle
switches

ﬁ} How about manually put into memory a simple bootstrap loader?
= approach taken by PDP-8
Q "toggles in” the program
= read OS from paper tape
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PDP-8 Boot Code
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VAX-11/780 Boot

) Separate "console computer"
= LSI-11
= hard-wired to always run the code contained in its on-board
read-only memory
= then read boot code (i.e., the bootstrap loader) from floppy disk
= then load OS from root directory of first file system on primary

disk

ﬁ> Code on floppy disk (the bootstrap loader) would handle:

= disk device
= on-disk file system
= |t needs the right device driver
= It needs to know how the disk is setup

Q what sort of file system is on the disk

Q how the disk is partitioned

<& a disk may hold multiple and different file systems,

each in a separate partition (A
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Configuring the OS

) Early Unix
= QS statically linked to contain all needed device drivers

Q device drivers were statically linked to the OS
= all device-specific info included with drivers
= disk drivers contained partitioning description
—= therefore, the following actions may all require compiling a new
version of the OS:
Q adding a new device
Q replacing a device
QO modifying disk-partitioning information
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Configuring the OS

) Later Unix
= QS statically linked to contain all needed device drivers

= at boot time, OS would probe to see which devices were present

and discover device-specific info
= partition table in first sector of each disk

) Even later Unix
— allowed device drivers to be dynamically loaded into a running

system
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Issues

) Open architecture
= although MS-DOS was distributed in binary form only
= large market for peripherals, most requiring special drivers
= how to access boot device?
= how does OS get drivers for new devices?
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The Answer: BIOS

) Basic Input-Output System (BIOS)

= code stored in read-only memory (ROM)

= configuration data in non-volatile RAM (NVRAM)
Q such as CMOS
Q Including set of boot-device hames

= the BIOS provides three primary functions
Q power-on self test (POST)

& so it knows where to load the boot program

Q load and transfer control to boot program
Q provide drivers for all devices

—, Main BIOS on motherboard
= supplied as a chip on the "motherboard”
= contains everything necessary to perfrom the above 3 functions
= additional BIOSes on other boards
Q provide access to additional devices
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POST

> On power-on, CPU executes BIOS code
= located in last 64KB of first megabyte of address space
Q starting at location 0xf0000
Q CPU is hard-wired to start executing at Oxffff0 on startup
& the last 16 bytes of this region
< jump to POST

_) POST

= [nitializes hardware
= counts memory locations
Q by testing for working memory

) Next step is to find a boot device
= the CMOS is configured with a boot order

ﬁ} Next step is to load the Master Boot Record (MBR) from the
first sector of the boot device, if it’s a floppy/diskette

= or cylinder 0, head 0, sector 1 of a hard disk (Ch 6) ' }«!’ \

-’
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Getting the Boot Program

T Partition 1

Partition Table

Magic Number

Partition 2
Partition 3
~~~~~~~~~ Partition 4

= the BIOS program loads and
jumps to the boot program
Q the rest, of course,
depends on what’s in the
boot program
& e.g., MS-DOS, Linux

Master Boot Record (MBR)
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MS-DOS Boot Program

ﬁ} One of the hard drive partitions is labeled as the active partition

_> The MS-DOS boot program finds the active partition
= loads the first sector from it
Q which contains the "volume boot program”
= pass control to that program
Q which then load the OS from that partition
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Linux Booting (1)

> Two stages of booting provided by one of:
= lilo (Linux Loader)
Q uses sector numbers of kernel image
Q therefore, must be modified if a kernel image moves
= grub (Grand Unified Boot Manager)
Q understands various file systems
Q can find a kernel image given a file system path name
= both allow dual (or greater) booting
= select which system to boot from menu
Q perhaps choice of Linux or Windows

ﬁ> The next step is for the kernel to configure itself
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Linux Booting (2)

' ) Kernel image is compressed
assembler code = step 1: set up stack, clear BSS,

(startup_32) uncompress kernel, then
transfer control to it

.

[ ) Process 0is created

assembler code = step 2: set up initial page tables,
(different - turn on address translation (Ch 7)
startup_32) = process 0 knows how to handle some

aspects of paging

.

( ﬁ} Do further initialization
= step 3: initialize rest of kernel, create the
"init" process (i.e., process 1, which is the
ancestor of all other user processes)
= invoke the scheduler

C code )
(start_kernel)

.

ﬁ> Your kernel 1 assignment starts at step 3 above / @’_

= NOTE: weenix is not exactly Linux 16
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BIOS Device Drivers

ﬁ} Originally, the BIO provided drivers for all devices
= OS would call BIOS-provided code whenever it required services

of a device driver

ﬁ> These drivers sat in low memory and provided minimal functionality
= later systems would copy them into primary memory
= even later systems would provide their own drivers
= nevertheless, BIO drivers are still used for booting
Q how else can you do it?

X
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Beyond BIOS

ﬁ} BIOS

= designed for 16-bit x86 of mid 1980s
= hot readily extensible to other architectures

ﬁ> Open Firmware
= designhed by Sun
= portable
= drivers, boot code in Forth
Q compiled into bytecode

ﬁ> Intel developed a replacement for BIOS called EFI (Extensible
Firmware Interface)

= also uses bytecode

X
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