
0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

3.5 Booting

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Boot

without the help of others

Came from the idiomatic expression, "to pull yourself up by your

bootstraps"

it’s a difficult situation

load its OS into memory

In OS

which kind of means that you need an OS in memory to do it

load a tiny OS into memory

Solution

known as the bootstrap loader

then again, who loads this tiny OS into memory?

how about first loading a tiny bootstrap loader?

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

PDP-8

approach taken by PDP-8

How about manually put into memory a simple bootstrap loader?

read OS from paper tape

toggle
switches

"toggles in" the program

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

PDP-8 Boot Code

07756 6032 KCC

07757 6031 KSF

07760 5357 JMP .-1

07761 6036 KRB

07762 7106 CLL RTL

07763 7006 RTL

07764 7510 SPA

07765 5357 JMP 7757

07766 7006 RTL

07767 6031 KSF

07770 5367 JMP .-1

07771 6034 KRS

07772 7420 SNL

07773 3776 DCA I 7776

07774 3376 DCA 7776

07775 5356 JMP 7756

07776 0000 AND 0

07777 5301 JMP 7701

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

VAX-11/780

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

VAX-11/780 Boot

LSI-11

Separate "console computer"

then read boot code (i.e., the bootstrap loader) from floppy disk

then load OS from root directory of first file system on primary

disk

hard-wired to always run the code contained in its on-board

read-only memory

disk device

Code on floppy disk (the bootstrap loader) would handle:

what sort of file system is on the disk

on-disk file system

a disk may hold multiple and different file systems,

each in a separate partition

it needs the right device driver

it needs to know how the disk is setup

how the disk is partitioned

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Configuring the OS

OS statically linked to contain all needed device drivers

Early Unix

all device-specific info included with drivers

disk drivers contained partitioning description

device drivers were statically linked to the OS

therefore, the following actions may all require compiling a new

version of the OS:

replacing a device

adding a new device

modifying disk-partitioning information

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Configuring the OS

OS statically linked to contain all needed device drivers

Later Unix

at boot time, OS would probe to see which devices were present

and discover device-specific info

partition table in first sector of each disk

allowed device drivers to be dynamically loaded into a running

system

Even later Unix

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

IBM PC

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Issues

large market for peripherals, most requiring special drivers

Open architecture

how to access boot device?

how does OS get drivers for new devices?

although MS-DOS was distributed in binary form only

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The Answer: BIOS

code stored in read-only memory (ROM)

Basic Input-Output System (BIOS)

configuration data in non-volatile RAM (NVRAM)

the BIOS provides three primary functions

supplied as a chip on the "motherboard"

additional BIOSes on other boards

such as CMOS

power-on self test (POST)

load and transfer control to boot program

provide drivers for all devices

provide access to additional devices

Main BIOS on motherboard

contains everything necessary to perfrom the above 3 functions

so it knows where to load the boot program

including set of boot-device names

Next step is to load the Master Boot Record (MBR) from the

first sector of the boot device, if it’s a floppy/diskette

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

POST

located in last 64KB of first megabyte of address space

On power-on, CPU executes BIOS code

initializes hardware

counts memory locations

starting at location 0xf0000

CPU is hard-wired to start executing at 0xffff0 on startup

the last 16 bytes of this region

by testing for working memory

jump to POST

POST

the CMOS is configured with a boot order

Next step is to find a boot device

or cylinder 0, head 0, sector 1 of a hard disk (Ch 6)

446 bytes

Partition Table

Boot Program

64 bytes

Partition 4

Partition 3

Partition 2

Partition 1

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Getting the Boot Program

Master Boot Record (MBR)

the BIOS program loads and

jumps to the boot program

the rest, of course,

depends on what’s in the

boot program

e.g., MS-DOS, Linux

Magic Number2 bytes

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

MS-DOS Boot Program

One of the hard drive partitions is labeled as the active partition

loads the first sector from it

The MS-DOS boot program finds the active partition

which contains the "volume boot program"

pass control to that program

which then load the OS from that partition

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Linux Booting (1)

lilo (Linux Loader)

Two stages of booting provided by one of:

grub (Grand Unified Boot Manager)

both allow dual (or greater) booting

select which system to boot from menu

perhaps choice of Linux or Windows

uses sector numbers of kernel image

understands various file systems

therefore, must be modified if a kernel image moves

can find a kernel image given a file system path name

The next step is for the kernel to configure itself

Your kernel 1 assignment starts at step 3 above
0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Linux Booting (2)

step 1: set up stack, clear BSS,

uncompress kernel, then

transfer control to it

Kernel image is compressed

step 2: set up initial page tables,

turn on address translation (Ch 7)

Process 0 is created

step 3: initialize rest of kernel, create the

"init" process (i.e., process 1, which is the

ancestor of all other user processes)

Do further initialization

invoke the scheduler

assembler code

(startup_32)

assembler code

(different

startup_32)

C code

(start_kernel)

process 0 knows how to handle some

aspects of paging

NOTE: weenix is not exactly Linux

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

BIOS Device Drivers

OS would call BIOS-provided code whenever it required services

of a device driver

Originally, the BIO provided drivers for all devices

nevertheless, BIO drivers are still used for booting

how else can you do it?

These drivers sat in low memory and provided minimal functionality

even later systems would provide their own drivers

later systems would copy them into primary memory

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Beyond BIOS

designed for 16-bit x86 of mid 1980s

BIOS

drivers, boot code in Forth

compiled into bytecode

Open Firmware

Intel developed a replacement for BIOS called EFI (Extensible

Firmware Interface)

portable

designed by Sun

also uses bytecode

not readily extensible to other architectures

