Operating Systems - CSCI 402

3.5 Booting

Copyright © William C. Cheng

Operating Systems - CSCI 402

Boot

ﬁ} Came from the idiomatic expression, "to pull yourself up by your
bootstraps”
= without the help of others
= it’s a difficult situation

|:> In OS

= load its OS into memory
Q which kind of means that you need an OS in memory to do it

ﬁ} Solution

= |oad a tiny OS into memory
Q known as the bootstrap loader
Q then again, who loads this tiny OS into memory?
<& how about first loading a tiny bootstrap loader?

Copyright © William C. Cheng

Operating Systems - CSCI 402

toggle
switches

ﬁ} How about manually put into memory a simple bootstrap loader?
= approach taken by PDP-8
Q "toggles in” the program
= read OS from paper tape

Copyright © William C. Cheng

07756
07757
07760
07761
07762
07763
07764
07765
07766
07767
07770
07771
07772
07773
07774
07775
07776
07777

6032
6031
5357
6036
7106
7006
7510
5357
7006
6031
5367
6034
7420
3776
3376
5356
0000
5301

Copyright © William C. Cheng

KCC
KSF

CLL
RTL
SPA

RTL
KSF

KRS
SNL
DCA
DCA

AND

PDP-8 Boot Code

Operating Systems - CSCI 402

VAX-1

E0%0080 vax nmo

[—

Copyright © William C. Cheng

Operating Systems - CSCI 402

1/780

u||||||||u|||||u|u|mH| i |
R |

Operating Systems - CSCI 402

VAX-11/780 Boot

) Separate "console computer"
= LSI-11
= hard-wired to always run the code contained in its on-board
read-only memory
= then read boot code (i.e., the bootstrap loader) from floppy disk
= then load OS from root directory of first file system on primary

disk

ﬁ> Code on floppy disk (the bootstrap loader) would handle:

= disk device
= on-disk file system
= |t needs the right device driver
= It needs to know how the disk is setup

Q what sort of file system is on the disk

Q how the disk is partitioned

<& a disk may hold multiple and different file systems,

each in a separate partition (A

Copyright © William C. Cheng

Operating Systems - CSCI 402

Configuring the OS

) Early Unix
= QS statically linked to contain all needed device drivers

Q device drivers were statically linked to the OS
= all device-specific info included with drivers
= disk drivers contained partitioning description
—= therefore, the following actions may all require compiling a new
version of the OS:
Q adding a new device
Q replacing a device
QO modifying disk-partitioning information

Copyright © William C. Cheng

Operating Systems - CSCI 402

Configuring the OS

) Later Unix
= QS statically linked to contain all needed device drivers

= at boot time, OS would probe to see which devices were present

and discover device-specific info
= partition table in first sector of each disk

) Even later Unix
— allowed device drivers to be dynamically loaded into a running

system

Copyright © William C. Cheng

Operating Systems - CSCI 402

Copyright © William C. Cheng

Operating Systems - CSCI 402

Issues

) Open architecture
= although MS-DOS was distributed in binary form only
= large market for peripherals, most requiring special drivers
= how to access boot device?
= how does OS get drivers for new devices?

Copyright © William C. Cheng

Operating Systems - CSCI 402

The Answer: BIOS

) Basic Input-Output System (BIOS)

= code stored in read-only memory (ROM)

= configuration data in non-volatile RAM (NVRAM)
Q such as CMOS
Q Including set of boot-device hames

= the BIOS provides three primary functions
Q power-on self test (POST)

& so it knows where to load the boot program

Q load and transfer control to boot program
Q provide drivers for all devices

—, Main BIOS on motherboard
= supplied as a chip on the "motherboard”
= contains everything necessary to perfrom the above 3 functions
= additional BIOSes on other boards
Q provide access to additional devices

Copyright © William C. Cheng

Operating Systems - CSCI 402

POST

> On power-on, CPU executes BIOS code
= located in last 64KB of first megabyte of address space
Q starting at location 0xf0000
Q CPU is hard-wired to start executing at Oxffff0 on startup
& the last 16 bytes of this region
< jump to POST

_) POST

= [nitializes hardware
= counts memory locations
Q by testing for working memory

) Next step is to find a boot device
= the CMOS is configured with a boot order

ﬁ} Next step is to load the Master Boot Record (MBR) from the
first sector of the boot device, if it’s a floppy/diskette

= or cylinder 0, head 0, sector 1 of a hard disk (Ch 6) ' }«!’ \

-’

Copyright © William C. Cheng

64 bytes -

446 bytes -

2 bytes {

Operating Systems - CSCI 402

Getting the Boot Program

T Partition 1

Partition Table

Magic Number

Partition 2
Partition 3
~~~~~~~~~ Partition 4

= the BIOS program loads and
jumps to the boot program
Q the rest, of course,
depends on what’s in the
boot program
& e.g., MS-DOS, Linux

Master Boot Record (MBR)

Copyright © William C. Cheng




Operating Systems - CSCI 402

MS-DOS Boot Program

ﬁ} One of the hard drive partitions is labeled as the active partition

_> The MS-DOS boot program finds the active partition
= loads the first sector from it
Q which contains the "volume boot program”
= pass control to that program
Q which then load the OS from that partition

Copyright © William C. Cheng



Operating Systems - CSCI 402

Linux Booting (1)

> Two stages of booting provided by one of:
= lilo (Linux Loader)
Q uses sector numbers of kernel image
Q therefore, must be modified if a kernel image moves
= grub (Grand Unified Boot Manager)
Q understands various file systems
Q can find a kernel image given a file system path name
= both allow dual (or greater) booting
= select which system to boot from menu
Q perhaps choice of Linux or Windows

ﬁ> The next step is for the kernel to configure itself

Copyright © William C. Cheng



Operating Systems - CSCI 402

Linux Booting (2)

' ) Kernel image is compressed
assembler code = step 1: set up stack, clear BSS,

(startup_32) uncompress kernel, then
transfer control to it

.

[ ) Process 0is created

assembler code = step 2: set up initial page tables,
(different - turn on address translation (Ch 7)
startup_32) = process 0 knows how to handle some

aspects of paging

.

( ﬁ} Do further initialization
= step 3: initialize rest of kernel, create the
"init" process (i.e., process 1, which is the
ancestor of all other user processes)
= invoke the scheduler

C code )
(start_kernel)

.

ﬁ> Your kernel 1 assignment starts at step 3 above / @’_

= NOTE: weenix is not exactly Linux 16
Copyright © William C. Cheng



Operating Systems - CSCI 402

BIOS Device Drivers

ﬁ} Originally, the BIO provided drivers for all devices
= OS would call BIOS-provided code whenever it required services

of a device driver

ﬁ> These drivers sat in low memory and provided minimal functionality
= later systems would copy them into primary memory
= even later systems would provide their own drivers
= nevertheless, BIO drivers are still used for booting
Q how else can you do it?

X

Copyright © William C. Cheng




Operating Systems - CSCI 402

Beyond BIOS

ﬁ} BIOS

= designed for 16-bit x86 of mid 1980s
= hot readily extensible to other architectures

ﬁ> Open Firmware
= designhed by Sun
= portable
= drivers, boot code in Forth
Q compiled into bytecode

ﬁ> Intel developed a replacement for BIOS called EFI (Extensible
Firmware Interface)

= also uses bytecode

X

Copyright © William C. Cheng



