Operating Systems - CSCI 402

2.2.4 Thread Safety

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread Safety

ﬁ} Unix was developed way before threads were commonly used
= Unix libraries were built without threads in mind
= running code using these library functions with threads became
unsafe
— to make these library functions safe to run under multithreading
is known as Thread Safety

ﬁ} General problems with the old Unix API
= global variables, e.g., errno
— shared data, e.g., print £ ()

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread Safety vs. Reentrancy

ﬁ} Strictly speaking, making a function thread-safe is not the same as

making it reentrant
= thread-safe: multiple threads can call the function in parallel or

concurrently
= reentrant: enter twice (even if you have only one thread)
QO how do you enter a function twice if you are not running
multiple threads?
<& for a kernel function, you can get interrupted and call the
same funciton inside an interrupt service routine
<& for a user space function, you can get interrupted and the
kernel makes an upcall that calls the same funciton
—= most of the time, making a function thread-safe and making

it reentrant ends up to be the same thing

Q but you need to be careful
Q you can google "reentrancy” to see the difference between

reentrant code and thread-safe code and see examples
= we focus on multi-threading (and "no signal handlers™) 4

Copyright © William C. Cheng

Operating Systems - CSCI 402

Global Variables

int IOfunc(int £d) {
extern int errno;

if (write(fd, buffer, size) == -1) {
if (errno == EIO)
fprintf (stderr, "IO problems ...\n");

return (0) ;

}

= if 2 threads call this function and both failed, how do you
guarantee that a thread would get the right errno?
Q the code is not "thread safe"
—= errno is a system-call level global variable
Q Unix system-call library was implemented before
multi-threading was a common practice / @J

Copyright © William C. Cheng

Coping

_, Fix Unix’s C/system-call interface
= want backwards compatibility

ﬁ} Make errno refer to a different location in each thread
= e.g.,

#define errno __errno (thread_ID)

TCB

Operating Systems - CSCI 402

thread data

errno

= __errno (thread_1ID) Wwill return the thread-specific errno

Q need a place to store this thread-specific errno

Q POSIX threads provides a general mechanism to store

thread-specific data

& Win32 has something similar called thread-local storage

Q POSIX does not specify how this private storage is
allocated and organized
& done with an array of (void*)

& then errno would be at a fixed index into this array

= don’t need to change application, just recompile

Copyright © William C. Cheng

Operating Systems - CSCI 402

Add "Reentrant” Version Of System Call
_) gethostbyname () system call is not "thread safe"

struct hostent *gethostbyname (const char *name)

= [t returns a pointer to a global variable
Q (what a terrible idea!)

= POSIX’s fix for this problem is to add a function to the
system library

int gethostbyname_r (const char *name,
struct hostent *ret,
char *buf,
size_t buflen,
struct hostent **result,
int *h_errnop)

Q caller of this function must provide the buffer to hold the
return data
& (a good idea in general)
Q caller is aware of thread-safety |
& (a more educated programmer is desirable) 3 @
Copyright © William C. Cheng

Operating Systems - CSCI 402

Shared Data
ﬁ} Thread 1:

printf ("goto statement reached");

) Thread 2:
printf ("Hello World\n");

) Printed on display:
goto Hello Wostatement reachedrld

Copyright © William C. Cheng

Operating Systems - CSCI 402

Coping

Wrap library calls with synchronization constructs

Fix the libraries

Application can use a mutex

VR VEVEV

If application is using the (FILE*) object in <stdio.h>, can wrap
functions like print £ () around these functions

void flockfile (FILE *filehandle)
int ftrylockfile(FILE *filehandle)
void funlockfile (FILE *filehandle)

— basically, flockfile () would block until lockcount is 0
Q then it increments the lockcount
= funlockfile () decrements the lockcount

Copyright © William C. Cheng

Operating Systems - CSCI 402

Killing Time ...

) To suspend your thread for a certain duration

struct timespec timeout, remaining_time;

timeout.tv_sec = 3; // seconds
timeout .tv_nsec = 1000; // nanoseconds
nanosleep (&timeout, &remaining_time);

= Unix/Linux is "best-effort"
= okay to do this in warmup2 since it only has to run on Ubuntu

ﬁ> The right way to sleep is to say when you want to wake up, e.g.,

int pthread_cond_timedwait (
pthread_cond_t *cond,
pthread_mutex_t *mutex,
struct timespec *abstime)

Q after abstime, give up waiting for an event and return

with an error code
= Yyou need to calculate abstime carefully and correctly

Copyright © William C. Cheng

Copyright © William C. Cheng

Operating Systems - CSCI 402

Timeouts

struct timespec relative_timeout, absolute_timeout;
struct timeval now;

relative_timeout.tv_sec = 3; // seconds

relative_timeout.tv_nsec = 1000; // nanoseconds

gettimeofday (&now, 0);

absolute_timeout.tv_sec = now.tv_sec +
relative_timeout.tv_sec;

absolute_timeout.tv_nsec = 1000*now.tv_usec +

relative_timeout.tv_nsec;
if (absolute_timeout.tv_nsec >= 1000000000) {
// deal with the carry
absolute_timeout.tv_nsec —= 1000000000;
absolute_timeout.tv_sec++;
}
pthread_mutex_lock (&m) ;
while (!may_continue)
pthread_cond_timedwait (&cv, &m, &absolute_timeout);
pthread_mutex_unlock (&m) ;

= must check return code of pthread_cond_timedwait () | @!,}_
NN

Operating Systems - CSCI 402

2.2.5 Deviations

Copyright © William C. Cheng

Operating Systems - CSCI 402

Deviations

ﬁ} How do you ask another thread to deviate from its normal
execution path?
= Unix’s signal mechanism

ﬁ> How do you force another thread to terminate cleanly
= POSIX cancellation mechanism

Copyright © William C. Cheng

Operating Systems - CSCI 402

Signals

int x, y;

x = 0;
y = 16/x;
for (;;)

keep_on_t\rying();

= the original intent of Unix signals was to force the graceful
termination of a process |
Q e.g., <Ctrl+C> 3 @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

The OS to the Rescue

_) Signals
= some would call a signal a software interrupt

Q but it’s really not
& it’s a "callback mechanism”
& implemented in the OS by performing an upcall
= generated (by OS) in response to
Q exceptions (e.g., arithmetic errors, addressing problems)
Q external events (e.g., timer expiration, certain keystrokes,
actions of other processes such as to terminate or pause
the process)
Q user defined events
= effect on process (i.e., when the signal is "delivered”):
Q termination (possibly after producing a core dump)
Q Invocation of a procedure that has been set up to be a
sighal handler (requires an upcall)
Q suspension of execution |
QO resumption of execution 3 @;
Copyright © William C. Cheng

Operating Systems - CSCI 402

Terminology

-<— signal not blocked —>
sighal signal
generation delivery

|| time
N >

I:> Ex: <Ctrl+C>

ﬁ> When a signal is generated, it is delivered as soon as possible if the
signal is not "blocked"

B

Copyright © William C. Cheng

Operating Systems - CSCI 402

Terminology

signhal unblocked

-<«—— signal blocked —

signal signal
: Y / _
geneTatlon delllvery Jlme
| - Signal __ |
pending

I:> Ex: <Ctrl+C>

) Asignal is pending if it's generated but blocked
= when the signal becomes unblocked, it will be delievered

ﬁ> If you replaced the word "signal” with "interrupt” and
"blocked/unblocked" with "disabled/enabled", everything |
would be correct for a hardware interrupt 4

16
Copyright © William C. Cheng

Signal Types

Name Description Default Action
SIGABRT abort called term, core
SIGALRM alarm clock term
SIGCHLD death of a child ighore
SIGCONT continue after stop cont
SIGFPE erroneous arithmetic operation term, core
SIGHUP hangup on controlling terminal term
SIGILL illegal instruction term, core
SIGINT interrupt from keyboard term
SIGKILL kill forced term
SIGPIPE write on pipe with no one to read term
SIGQUIT quit term, core
SIGSEGV invalid memory reference term, core
SIGSTOP stop process forced stop
SIGTERM software termination signal term
SIGTSTP stop signal from keyboard stop
SIGTTIN background read attempted stop
SIGTTOU background write attempted stop
SIGUSR1 application-defined signal 1 stop
SIGUSR2 application-defined signal 2 stop

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Sending a Signal

_) int kill(pid_t pid, int sig)
= send signal sig to process pid
= (not always) terminate with extreme prejudice

_) Also

= type Ctrl-c (or <Ctrl+C>)

Q sends signal 2 (SIGINT) to current process
— kill shell command

Q send SIGINT to process with pid=12345: "kill -2 12345"
= do something illegal

QO bad address, bad arithmetic, etc.

I:> int pthread_kill (pthread_t thr, int sig)
= send signal sig to thread thr (in the same process as the calling
thread)

= avoid using this and use pthread cancellation mechanism

instead if you want to "kill a thread" i
S

Copyright © William C. Cheng

Operating Systems - CSCI 402

Handling Signals

—, Two ways to handle signals
= handling it asynchronously
Q using signal handlers
= handling it synchronously
Q using sigwait () in a signal-catching thread

Copyright © William C. Cheng

Operating Systems - CSCI 402

Handling Signals Asynchronously

ﬁ} Signal handler
= each signal in a process can have at most one handler
— to specify a signal handler of a process, use:
Q sigset/signal ()
& returns the current handler (which could be the "default
handler™)

Q sigaction()
& more functionality

#include <signal.h>
typedef void (*sighandler_t) (int);

sighandler_t sigset (int signo, sighandler_t handler);
sighandler_t signal (int signo, sighandler_t handler);

sighandler_t OldHandler = sigset (SIGINT, NewHandler);

|
= signal handler is part of the context of a process 3 @;
Copyright © William C. Cheng

Special Handlers

) SIG_DFL
= use the default handler
= usually terminates the process
—= sigset/signal (SIGINT, SIG_DFL);

_) SIG_IGN
= ignhore the signal

—= sigset/signal (SIGINT, SIG_IGN);

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Example

#include <signal.h>

int main() {
void handler (int) ;

sigset (SIGINT, handler);
while (1)

4

return 1;

}

void handler (int signo) {
printf ("I received signal %d. Whoopee!!\n", signo);

}

= SIGINT is blocked inside handler ()
= but how do you kill this program from your console?
Q can use the "kill" shell command, e.g., "kill -15 <pid>"

= Instead of using sigset (), you can also use sigaction () (i\
2;;&5%

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example

#include <signal.h>

int main() {
void handler (int) ;

sigset (SIGINT, handler);
while (1)

4

return 1;

}

void handler (int signo) {
printf ("I received signal %d. Whoopee!!\n", signo);
sigset (SIGINT, handler); <-— in some systems, you may have to
} re-establish the signal handler inside
the signal handler if you want to receive
the same signal more than once

Copyright © William C. Cheng

Operating Systems - CSCI 402

sigaction

int sigaction(int sig,
const struct sigaction *new,
struct sigaction *old);

struct sigaction {
void (*sa_handler) (int);
void (*sa_sigaction) (int, siginfo_t *, wvoid ¥*);
sigset_t sa_mask;
int sa_flags;
};
int main() {

|:> sigaction () allows struct sigaction act;
for more complex void sighandler (int);
i sigemptyset (&act.sa_mask);
behavior

- act.sa_flags = O;
= e.g., block additional act.sa_handler = sighandler;
signals (specified by sigaction (SIGINT, &act, NULL);

sa_mask) when

: }
handler is called &!,
%)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Async-Signal Safety

) The problem with asynchronous signal is that you have to
worry about async-signal safety
= If you don’t take care of it just right, bad things can happen

_) Async-Signal Safety: Make your code safe when working with
asynchronous signals

ﬁ> The general rule to provide async-signal safety:
= any data structure the signal handler accesses must be
async-signal safe
Q I.e., an async sighal must not corrupt data structures

ﬁ> An alternative is to make async-signhal synchronous
— use a signal-catching thread to receive a particular signal

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example 1: Waiting for a Signal

sigset (SIGALRM, DoSomethingInteresting);

struct timeval waitperiod = {0, 1000};

/* seconds, microseconds */
struct timeval interval = {0, 0};
struct itimerwval timerval;

timerval.it_value = waitperiod;
timerval.it_interval = interval;

setitimer (ITIMER_REAL, &timerval, O0);
/* SIGALRM sent in ~one millisecond */

pause(); /* wait for it */

= can SIGALRM occur before pause () is called?

> Note: strickly speaking, this is not a deadlock |
= it has a race condition \ @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example 2: Status Update

#include <signal.h> void long_running_ proc () {
while (a_long_time) ({
computation_state_t state; update_state (&state);
compute_more () ;
int main() { }
void handler (int); }
sigset (SIGINT, handler);
long_running_proc(); void handler (int signo) {
return O; display (&state);

} }

= |ong-running job that can take days to complete
Q the handler () can be used to print a progress report
Q need to make sure that state is in a consistent state
Q this is a synchronization issue
Q our handler () is not async-signal safe

ﬁ> Note: this is not a deadlock and really not a race condition
= this is the case where the code is not async signhal safe '

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example 2: Status Update

void long_running_proc() {

}

while (a_long_time) {

pthread_mutex_lock (&m) ;
update_state (&state);
pthread_mutex_unlock (&m) ;
compute_more () ;

void handler (int signo) {

}

pthread_mutex_lock (&m) ;

display (&state);
pthread_mutex_unlock (&m) ;

) Does this work?

Copyright © William C. Cheng

= Nho (this code is not reentrant)

= it may get stuck in handler ()

= signal handler gets executed till completion
Q in general, keep it simple and brief

r

= yes, you can deadlock witt
yourself even if you only
have one thread

Masking (Blocking) Signals

Operating Systems - CSCI 402

ﬁ} Solution: control signal delivery by masking/blocking the signal

= don’t mask/block all signals, just the ones you want
— a set of signals is represented as a set of bits called
sigset_t
Q which is just an unsigned int
Q if a mask bit is 1, the corresponding signal is

TCB

signal mask
[110100110. .|

blocked; otherwise, the corresponding signal is unblocked
= when a child thread is created, it inherits signal mask from the

parent thread

Copyright © William C. Cheng

Operating Systems - CSCI 402

Masking (Blocking) Signals

ﬁ} To examine or change the signal mask of the calling process
#include <signal.h>

int sigprocmask (TCB
int how,
const sigset_t *set, signal mask
sigset_t *Old) . [110100110. .|

) how is one of three commands:
= SIG_BLOCK: the new signal mask is the union of the current
signal mask and (*set)
= SIG_UNBLOCK: the new signal mask is the intersection of
the current signal mask and the complement of (*set)
= SIG_SETMASK: the new sighal mask is (*set)

Copyright © William C. Cheng

Operating Systems - CSCI 402

sigset_t

ﬁ} There are bunch of functions to manipulate sigset_t
= be careful, with some APIs, 1 means to
allowed/unblock a signal, and with other APIs,
1 means to blocked a signal

_) To clear a set:
int sigemptyset (sigset_t *set);

TCB

signal mask
[110100110. .|

_, To add or remove a signal from the set:

int sigaddset (sigset_t *set, int signo);
int sigdelset (sigset_t *set, int signo);

) Example: to refer to both SIGHUP and SIGINT:

sigset_t set; sigset_t set;

sigemptyset (&set); sigfillset (&set);
sigaddset (&set, SIGHUP); sigdelset (&set, SIGHUP);
sigaddset (&set, SIGINT); sigdelset (&set, SIGINT);

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example 1: Correct Way of Waiting for a Signal

sigset_t set, oldset;
sigemptyset (&set) ;
sigaddset (&set, SIGALRM);
sigprocmask (SIG_BLOCK, &set, &oldset);
/* SIGALRM now masked */
setitimer (ITIMER_REAL, &timerval, 0);
/* SIGALRM sent in ~one millisecond */
sigfillset (&set);
sigdelset (&set, SIGALRM);
sigsuspend(&set); /* wait for it safely */
/* SIGALRM masked again */

sigprocmask (SIG_SETMASK, &oldset, (sigset_t *)0);
/* SIGALRM unmasked */

— sigsuspend () replaces the caller’s signal mask with the set
of signals pointed to by the argument
Q iIn the above, all signals are blocked/masked except for
SIGALRM

|
Q atomically unblocks the signal and waits for the signal 323 2.?2;
Copyright © William C. Cheng

Operating Systems - CSCI 402

Example 1: Correct Way of Waiting for a Signal

sigset_t set, oldset;
sigemptyset (&set) ;
sigaddset (&set, SIGALRM);
sigprocmask (SIG_BLOCK, &set, &oldset);
/* SIGALRM now masked */
setitimer (ITIMER_REAL, &timerval, 0);
/* SIGALRM sent in ~one millisecond */
sigfillset (&set);
sigdelset (&set, SIGALRM);
sigsuspend(&set); /* wait for it safely */
/* SIGALRM masked again */

sigprocmask (SIG_SETMASK, &oldset, (sigset_t *)0);
/* SIGALRM unmasked */

= sigsuspend() SIGALRM delivery
Q atomically unblocks WOK
the signal and waits T T o
for the signal unblocks SIGALRM

wait for SIGALRM
ATOMIC 3 ;2!)2—

Copyright © William C. Cheng

Operating Systems - CSCI 402

Async-Signal Safety

ﬁ} There is only one correct way to wait for an asynchronous event
caused by your thread
= e.g., an alarm that you wind up and wait for is an asynchronous
event you generate

Step 1) block the asynchronous event

Step 2) do something that will cause the asynchronous event to
get generated

Step 3) unblock the event and wait for the event in one atomic
operation

ﬁ> There is only one correct way to wait for an asynchronous event
caused by another thread
= e.g., wait for a guard to become true in a guarded command

Step 1) block the asynchronous event
Step 2) check if the event has been generated, if not, unblock the
event and wait for the event in one atomic operation ([/b\

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example 2: Correct Way to Handle Status Update

#include <signal.h> void long_running_proc() {
while (a_long_time) ({
computation_state_t state; sigset_t old_set;
sigset_t set; sigprocmask (
SIG_BLOCK,
int main() { &set,
void handler (int) ; &old_set);
sigemptyset (&set) ; update_state (&state);
sigaddset (&set, SIGINT); sigprocmask (
sigset (SIGINT, handler); SIG_SETMASK,
long_running_proc(); &old_set,
return O; 0);
} compute_more () ;

}
}

void handler (int signo) {

= now SIGINT cannot be display (&state);
delievered in }
N
update_state () 35§:>

Copyright © William C. Cheng

Operating Systems - CSCI 402

Signals and Threads

ﬁ} In Unix, signals are sent to processes, not threads!
= in a single-threaded process, it’s obvious which thread
would handle the signal
= In a multi-threaded process, it’s not so clear
Q in POSIX, the signal is delivered to a thread chosen at random

> What about the signal mask (i.e., blocked/enabled signals)?
= should one set of sigmask affect all threads in a process?
= or should each thread gets it own sigmask?
Q this certainly makes more sense

_, POSIX rules for a multithreaded process:
= the thread that is to receive the signal is chosen randomly
from the set of threads that do not have the signal blocked
Q if all threads have the signal blocked, then the signal
remains pending until some thread unblocks it
& at which point the signal is delivered to that thread |
= child thread inherits signal mask from parent thread 3
Copyright © William C. Cheng

Operating Systems - CSCI 402

Synchronizing Asynchrony

some_state_t state; void long_running_proc() {
sigset_t set; while (a_long_time) {
pthread_mutex_lock (&m) ;
main () { update_state (&state);
pthread_t thread; pthread_mutex_unlock (&m) ;
sigemptyset (&set) ; compute_more () ;
sigaddset (&set, }
SIGINT) ; }
sigprocmask (
SIG_BLOCK, void *monitor () {
&set, 0); int sig;
// main thread while (1) {
// blocks SIGINT sigwait (&set, &siqg);
pthread_create (pthread_mutex_lock (&m) ;
&thread, O, display (&state);
monitor, 0); pthread_mutex_unlock (&m) ;
long_running_proc(); }
} return (0) ;
}
= this is PREFERRED, no need for signhal handler! ALY

Copyright © William C. Cheng

Operating Systems - CSCI 402

sigwait

int sigwait (sigset_t *set, int *sig)

ﬁ> sigwait () blocks until a signal specified in set is received
= return which signal caused it to return in sig
= if you have a sighal handler specified for sig, it will not get
invoked when the signal is delivered
Q instead, sigwait () will return

ﬁ> You should make sure that all the threads in your process have
these signals blocked!
= this way, when sigwait () is called, the calling thread
temporarily becomes the only thread in the process who can
receive the signal

unblocks signals specified
in set and waits for signal

>Time |
delivery unblocks signals T T 3

wait for signal 38
Copyright © William C. Cheng ATOMIC

ﬁ> sigwait (set) atomically msignal delivery
OK

Operating Systems - CSCI 402

Signals and Blocking System Calls

ﬁ} What if a signal is generated while a process is blocked in a
system call?
1) deal with it when the system call completes
2) interrupt the system call, deal with signal, resume system
call
3) interrupt system call, deal with signal, return from system
call with indication that something happened
= most systems choose (3)
Q errno sets to EINTR to mean that the system call was
not completed because it was interrupted by a signal
& this is the errno for the thread that was "deviated” to
execute the signal handler
Q this may be the reason why pthread_cond_wait () may
return "spontaneously” even when the CV has not been
sighaled/broadcasted
& what if this thread was borrowed to deliver a signal? (\
0 —

3

39

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupted System Calls

while (read (fd, buffer, buf_size) == -1) {
if (errno == EINTR) {
/* interrupted system call; try again */
continue;

}

/* the error is more serious */
perror ("big trouble");
exit (1) ;

—= heed to check the return value of read () because read () can
return when less than buf_size bytes have been read

= can use similar code for write ()
Q same consideration as read ()

—= please note that the above code is incomplete, it needs to
handle the case where read () return 0 to mean end-of-input

Copyright © William C. Cheng

Operating Systems - CSCI 402
Interrupted While Underway

remaining = total_count; /* write this many bytes */
bptr = buf; /* starting from here */
for (; ;) {

num_xfrd = write(fd, bptr, remaining);

if (num_xfrd == -1) {
if (errno == EINTR) {
/* interrupted early */
continue;

}

perror ("big trouble");
exit (1) ;
}
if (num_xfrd < remaining) {
/* interrupted in the middle of write() */

remaining —= num_xfrd;
bptr += num_xfrd;
continue;

}

/* success! */
break;

}

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupted System Calls

ﬁ} If a thread can "see" signal delivery (i.e., "deviated to execute a
signal handler"), every read () and write () call in that thread
needs to look like the previous slides
= much easier if you use a signal-catching thread

Q and block all appropriate signals in all "regular” threads
Q for warmup2, it is strongly encouraged that you do it this way
to catch <Ctrl+C> and avoid using a signal handler
& when sigwait () returns, lock mutex, set global flag,
cancel packet arrival and token depositing threads,
broadcast CV, unlock mutex, and self-terminate
& according to spec, you must not cancel server threads
& will talk about cancellation shortly

Copyright © William C. Cheng

Operating Systems - CSCI 402

Inside A Signal Handler

ﬁ} Which library routines are safe to use within signal handlers?

access dup2 getgroups rename sigprocmask time
aio_error dup getpgrp rmdir sigqueue timer_getoverrun
aio_suspend execle getpid sem_post sigsuspend timer_gettime
alarm execve getppid setgid sleep timer_settime
cfgetispeed _exit getuid setpgid stat times
cfgetospeed fcntl kill setsid sysconf umask
cfsetispeed fdatasync link setuid tcdrain uname
cfsetospeed fork Iseek sigaction tcflow unlink

chdir fstat mkdir sigaddset tcflush utime

chmod fsync mkfifo sigdelset tcgetattr wait

chown getegid open sigemptyset tcgetpgrp waitpid
clock_gettime (geteuid pathconf sigfillset tcsendbreak write

close getgid pause sigismember tcsetattr

creat getoverrun pipe sigpending tcsetpgrp

_, Note: in general, you should only do what’s absolutely
necessary inside a signal handler (and figure out where to |
do the rest) (9}

Copyright © William C. Cheng

Operating Systems - CSCI 402

Cancellation

) The user pressed <Ctrl+C>
= Or a request is generated to terminate the process
= the chores being performed by the remaining threads are no
longer needed
= in general, we may just want to cancel a bunch of threads
and not the entire process

ﬁ} Concerns
= getting cancelled at an inopportune moment
Q a mutex left locked
Q a data structure is left in an inconsistent state
& e.g., you get a cancellation request when you are in the
middle of a insert () operation into a doubly-linked list
and insert () is protected by a mutex
= cleaning up (free up resources that only this thread can free up)
Q memory leaks

Q unlocking mutex if locked 3(\
| 44 @’

Copyright © William C. Cheng

Operating Systems - CSCI 402

Cancellation State & Type

) Send cancellation request to a thread (this is a non-blocking call)
pthread_cancel (thread)

ﬁ} Cancels enabled or disabled

int pthread_setcancelstate (
{ PTHREAD_ CANCEL_DISABLE,
PTHREAD_ CANCEL_ENABLE},
&oldstate)

) Asynchronous vs. deferred cancels

int pthread_setcanceltype (
{ PTHREAD_CANCEL_ASYNCHRONOUS,
PTHREAD CANCEIL_DEFERRED},
&oldtype)

) By default, a thread has cancellation enabled and deferred
= [t’s for a good reason
= if you are going to change it, you must ask yourself, "Why?"
and "Are you sure this is really a good idea?"

Copyright © William C. Cheng

Operating Systems - CSCI 402

POSIX Cancellation Rules

_, POSIX threads cancellation rules (part 1):
= when pthread_cancel () gets called, the target thread is
marked as having a pending cancel
Q the thread that called pthread_cancel () does not wait for
the cancel to take effect
= if the target thread has cancellation disabled, the target
thread stays in the pending cancel state
= if the target thread has cancellation enabled ...
Q if the cancellation type is asynchronous, the target
thread immediately acts on cancel (i.e., cancellation is
"delivered” by "deviating" the thread to call pthread_exit ())
Q if the cancellation type is deferred, cancellation is
delayed until it reaches a cancellation point in its execution
<& cancellation points correspond to points in the thread’s
execution at which it is safe to act on cancel

B

Copyright © William C. Cheng

Operating Systems - CSCI 402

Cancellation Points

aio_suspend

close

creat

fentl (when F_SETLCKW
is the command)

fsync

mqg_receive

mqg_send

msync

nanosleep

open

pause

pthread_cond_wait

pthread_cond_timedwait

pthread_join
pthread_testcancel
read
sem_wait
sigsuspend
sigtimedwait
sigwait
sigwaitinfo
sleep

system
tcdrain

wait

waitpid
write

= pthread_mutex_lock () is not on the list!
— pthread_testcancel () creates a cancellation point

Q useful if a thread contains no other cancellation point

Copyright © William C. Cheng

Operating Systems - CSCI 402

POSIX Cancellation Rules

_, POSIX threads cancellation rules (part 2):
= when a thread acts on cancel

Q it calls pthread_exit ()

Q inpthread_exit (), it first walks through a stack of cleanup
handlers
& when stack is empty, the thread goes into the zombie state

QO remember that the thread that called pthread_cancel ()
does not wait for the cancel to take effect
<& 1t may join and wait for the target thread to terminate

pthread_cleanup_push (
(void) (*routine) (void *),
void *arq)
pthread_cleanup_pop (int execute)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example

list_item_t 1list_head;

void *GatherData (void *arg) ({

}

list_item_t *item;
item = (list_item_t*)malloc(sizeof(list_item_t));

// GetDataItem() contains many cancellation points
GetDatalItem(&item—>value);

insert (item); // add item to a global list
printf ("Done.\n");
return O;

ﬁ> How can this thread control when it acts on cancel?

Copyright © William C. Cheng

—= s0 it doesn’t leak memory

Operating Systems - CSCI 402

Example

list_item_t 1list_head;

void *GatherData (void *arg) ({

}

Copyright © William C. Cheng

list_item_t *item;

item = (list_item_t*)malloc(sizeof(list_item_t));
pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, 0);
// GetDataItem() contains many cancellation points

GetDatalItem(&item—>value);
pthread_setcancelstate (PTHREAD_CANCEL_ENABLE, O0);

insert (item); // add item to a global list
printf ("Done.\n");
return O;

ﬁ> How can this thread control when it acts on cancel?

—= s0 it doesn’t leak memory
= although this implementation is technically "correct”, long delay

may not be acceptable

Q need to respond in a timely manner (AR

Operating Systems - CSCI 402

Example

list_item_t 1list_head;

void *GatherData (void *arg) ({

}

list_item_t *item;

item = (list_item_t*)malloc(sizeof(list_item_t));
pthread_cleanup_push (free, item);

// GetDataItem() contains many cancellation points
GetDatalItem(&item—>value);

insert (item); // add item to a global list
printf ("Done.\n");
return O;

ﬁ> Can act on cancel inside GetDataItem ()

Copyright © William C. Cheng

= in this case, will invoke free (item)
= In C library, free () is defined as: void free(void *ptr);

Q perfectly matches the argument types for
pthread_cleanup_push ()

Operating Systems - CSCI 402

Example

list_item_t 1list_head;

void *GatherData (void *arg) ({
list_item_t *item;
item = (list_item_t*)malloc(sizeof(list_item_t));
pthread_cleanup_push (free, item);
// GetDataItem() contains many cancellation points
GetDatalItem(&item—>value);

insert (item); // add item to a global list
printf ("Done.\n");
return O;

}

_, What if it acts on cancel inside print £ ()
= Will end up calling free (item) twice
Q can cause segmentation fault later

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example

list_item_t 1list_head;

void *GatherData (void *arg) ({
list_item_t *item;
item = (list_item_t*)malloc(sizeof(list_item_t));
pthread_cleanup_push (free, item);
// GetDataItem() contains many cancellation points
GetDatalItem(&item—>value);

pthread_cleanup_pop (0);
insert (item); // add item to a global list

printf ("Done.\n");
return O;

}

_, What if it acts on cancel inside print £ ()
= Will end up calling free (item) twice
Q can cause segmentation fault later

= pop free (item) Off the cleanup stack

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example

list_item_t 1list_head;

void *GatherData (void *arg) ({

}

list_item_t *item;

item = (list_item_t*)malloc(sizeof(list_item_t));

pthread_cleanup_push(free, item); // {

// GetDataItem() contains manytcancellation points
GetDatalItem(&item—>value);

pthread_cleanup_pop (0); / }

insert (item); // add ite;%\{ lobal list

printf ("Done.\n"); must match up (like a
return 0; pair of brackets)

I:> pthread_cleanup_push () and the corresponding

Copyright © William C. Cheng

pthread_cleanup_pop () must match up (like a pair of brackets)
= must not call pthread_cleanup_push () in one function and
call the corresponding pthread_cleanup_pop () In another

Q compile-time error NN
" B

Operating Systems - CSCI 402

Cancellation and Cleanup

void close_file(int £d) {
close (£d) ;
}

fd = open(file, O_RDONLY);
pthread_cleanup_push (close_file,
while (1) {

read (fd, buffer, buf_size);

//

}
pthread_cleanup_pop (0);

£d) ;

= should close any opened files when you clean up
—= int is compatible with void*

Q well, sort of
Q wvoid* can be a 64-bit quantity, so may need to be careful

(best to be explicit)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Cancellation and Conditions

pthread_mutex_lock (&m) ;
pthread_cleanup_push (CleanupHandler, argument);

while (should_wait)
pthread_cond_wait (&cv, &m);
// ... (code containing other cancellation points)
pthread_cleanup_pop (0) ;
pthread_mutex_unlock (&m) ;

= should CleanupHandler () call pthread_mutex_unlock () ?
Q remember, if the thread is canceled between push () and
pop (), we heed to ensure that the mutex is /locked
QO pthread_cond_wait () is a cancellation point
& must not unlock the mutex twice!
= should CleanupHandler () call pthread_mutex_lock () then
call pthread_mutex_unlock () ?
Q what if the mutex is locked?
= application cannot solve this problem since there is no way (

to check if a mutex is locked or not 56
Copyright © William C. Cheng

Operating Systems - CSCI 402

Cancellation and Conditions

pthread_mutex_lock (&m) ;
pthread_cleanup_push (pthread_mutex_unlock, &m);

while (should_wait)
pthread_cond_wait (&cv, &m);
// ... (code containing other cancellation points)

pthread_cleanup_pop(1l);

= pthreads library implementation ensures that a thread, when
acting on a cancel inside pthread_cond_wait (), would first
lock the mutex, before calling the cleanup routines
Q this way, the above code would work correctly

Copyright © William C. Cheng

Operating Systems - CSCI 402

Warmup2 Cancellation

ﬁ} Only packet arrival and token depositing threads are allowed
to be canceled
= use a <Ctrl+C>-catching thread (i.e., use sigwait ())
—= make cancellation requests only when mutex is locked
Q this makes it impossible for those threads to act on cancel
when they have the mutex locked
= can make the following simplification for these two threads:
Q at the start of their first procedures, disable cancellation
right before calling usleep (), enable cancellation
when usleep () returns, disable cancellation again
this way, during the time the mutex is locked, cancellation
is always disabled
& therefore, don’t have to worry about using cleanup
routines to unlock mutex
Q but didn’t we just say that it’s not a good idea to disable
cancellation?
Q also, need to take care of a race condition
Copyright © William C. Cheng

© O O

Cancellation & C++

void tcode () {
A al;
pthread_cleanup_push (handler, 0);
foo();
pthread_cleanup_pop (0);

}

void foo () {
A a2;
pthread_testcancel () ;

}

= are the destructors of a1 and a2 getting called?
Q not sure
Q they should get called
Q some C++ implementation does not do this correctly!

ﬁ> Note: current C++ standard also does not support thread

cancellation
= sStandard C++ threads must self-terminate!
Copyright © William C. Cheng

Operating Systems - CSCI 402

