
0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

2.2.4 Thread Safety

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Safety

Unix libraries were built without threads in mind

Unix was developed way before threads were commonly used

running code using these library functions with threads became

unsafe

to make these library functions safe to run under multithreading

is known as Thread Safety

global variables, e.g., errno

General problems with the old Unix API

shared data, e.g., printf()

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Safety vs. Reentrancy

reentrant: enter twice (even if you have only one thread)

Strictly speaking, making a function thread-safe is not the same as

making it reentrant

how do you enter a function twice if you are not running

multiple threads?

for a kernel function, you can get interrupted and call the

same funciton inside an interrupt service routine

for a user space function, you can get interrupted and the

kernel makes an upcall that calls the same funciton

most of the time, making a function thread-safe and making

it reentrant ends up to be the same thing

thread-safe: multiple threads can call the function in parallel or

concurrently

but you need to be careful

you can google "reentrancy" to see the difference between

reentrant code and thread-safe code and see examples

we focus on multi-threading (and "no signal handlers")

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Global Variables

int IOfunc(int fd) {
 extern int errno;
 ...
 if (write(fd, buffer, size) == -1) {
 if (errno == EIO)
 fprintf(stderr, "IO problems ...\n");
 ...
 return(0);
 }
 ...
}

errno is a system-call level global variable

if 2 threads call this function and both failed, how do you

guarantee that a thread would get the right errno?

Unix system-call library was implemented before

multi-threading was a common practice

the code is not "thread safe"

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Coping

Fix Unix’s C/system-call interface

Make errno refer to a different location in each thread

e.g.,

#define errno __errno(thread_ID)

__errno(thread_ID) will return the thread-specific errno

need a place to store this thread-specific errno

POSIX threads provides a general mechanism to store

thread-specific data

Win32 has something similar called thread-local storage

POSIX does not specify how this private storage is

allocated and organized

done with an array of (void*)

then errno would be at a fixed index into this array

want backwards compatibility

TCB

errno

thread data

don’t need to change application, just recompile

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Add "Reentrant" Version Of System Call

gethostbyname() system call is not "thread safe"

it returns a pointer to a global variable

struct hostent *gethostbyname(const char *name)

POSIX’s fix for this problem is to add a function to the

system library

(what a terrible idea!)

int gethostbyname_r(const char *name,
 struct hostent *ret,
 char *buf,
 size_t buflen,
 struct hostent **result,
 int *h_errnop)

caller of this function must provide the buffer to hold the

return data

(a good idea in general)

caller is aware of thread-safety

(a more educated programmer is desirable)

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Shared Data

Thread 1:

Thread 2:

printf("goto statement reached");

printf("Hello World\n");

Printed on display:

goto Hello Wostatement reachedrld

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Coping

Wrap library calls with synchronization constructs

Fix the libraries

Application can use a mutex

If application is using the (FILE*) object in <stdio.h>, can wrap

functions like printf() around these functions

void flockfile(FILE *filehandle)
int ftrylockfile(FILE *filehandle)
void funlockfile(FILE *filehandle)

basically, flockfile() would block until lockcount is 0

then it increments the lockcount

funlockfile() decrements the lockcount

The right way to sleep is to say when you want to wake up, e.g.,

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Killing Time ...

struct timespec timeout, remaining_time;

timeout.tv_sec = 3; // seconds
timeout.tv_nsec = 1000; // nanoseconds
nanosleep(&timeout, &remaining_time);

you need to calculate abstime carefully and correctly

int pthread_cond_timedwait(
 pthread_cond_t *cond,
 pthread_mutex_t *mutex,
 struct timespec *abstime)

To suspend your thread for a certain duration

Unix/Linux is "best-effort"

okay to do this in warmup2 since it only has to run on Ubuntu

after abstime, give up waiting for an event and return

with an error code

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Timeouts

struct timespec relative_timeout, absolute_timeout;
struct timeval now;
relative_timeout.tv_sec = 3; // seconds
relative_timeout.tv_nsec = 1000; // nanoseconds
gettimeofday(&now, 0);
absolute_timeout.tv_sec = now.tv_sec +
 relative_timeout.tv_sec;
absolute_timeout.tv_nsec = 1000*now.tv_usec +
 relative_timeout.tv_nsec;
if (absolute_timeout.tv_nsec >= 1000000000) {
 // deal with the carry
 absolute_timeout.tv_nsec -= 1000000000;
 absolute_timeout.tv_sec++;
}
pthread_mutex_lock(&m);
while (!may_continue)
 pthread_cond_timedwait(&cv, &m, &absolute_timeout);
pthread_mutex_unlock(&m);

must check return code of pthread_cond_timedwait()

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

2.2.5 Deviations

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Deviations

How do you ask another thread to deviate from its normal

execution path?

How do you force another thread to terminate cleanly

Unix’s signal mechanism

POSIX cancellation mechanism

int x, y;

x = 0;
...
y = 16/x;

for (;;)
 keep_on_trying();

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Signals

the original intent of Unix signals was to force the graceful

termination of a process

e.g., <Ctrl+C>

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The OS to the Rescue

generated (by OS) in response to

Signals

effect on process (i.e., when the signal is "delivered"):

exceptions (e.g., arithmetic errors, addressing problems)

external events (e.g., timer expiration, certain keystrokes,

actions of other processes such as to terminate or pause

the process)

termination (possibly after producing a core dump)

invocation of a procedure that has been set up to be a

signal handler (requires an upcall)

suspension of execution

resumption of execution

some would call a signal a software interrupt

user defined events

but it’s really not

it’s a "callback mechanism"

implemented in the OS by performing an upcall

time

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Terminology

signal
 generation

signal
delivery

When a signal is generated, it is delivered as soon as possible if the

signal is not "blocked"

Ex: <Ctrl+C>

 signal not blocked

time

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Terminology

signal
 pending

signal
 generation

signal
 delivery

A signal is pending if it’s generated but blocked

signal unblocked

 signal blocked

Ex: <Ctrl+C>

when the signal becomes unblocked, it will be delievered

If you replaced the word "signal" with "interrupt" and

"blocked/unblocked" with "disabled/enabled", everything

would be correct for a hardware interrupt

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Signal Types

SIGABRT

SIGALRM

SIGCHLD

SIGCONT

SIGFPE

SIGHUP

SIGILL

SIGINT

SIGKILL

SIGPIPE

SIGQUIT

SIGSEGV

SIGSTOP

SIGTERM

SIGTSTP

SIGTTIN

SIGTTOU

SIGUSR1

SIGUSR2

abort called

alarm clock

death of a child

continue after stop

erroneous arithmetic operation

hangup on controlling terminal

illegal instruction

interrupt from keyboard

kill

write on pipe with no one to read

quit

invalid memory reference

stop process

software termination signal

stop signal from keyboard

background read attempted

background write attempted

application-defined signal 1

application-defined signal 2

term, core

term

ignore

cont

term, core

term

term, core

term

forced term

term

term, core

term, core

forced stop

term

stop

stop

stop

stop

stop

Name Description Default Action

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Sending a Signal

send signal sig to process pid

int kill(pid_t pid, int sig)

(not always) terminate with extreme prejudice

kill shell command

Also

type Ctrl-c (or <Ctrl+C>)

do something illegal

bad address, bad arithmetic, etc.

sends signal 2 (SIGINT) to current process

send SIGINT to process with pid=12345: "kill -2 12345"

int pthread_kill(pthread_t thr, int sig)

send signal sig to thread thr (in the same process as the calling

thread)

avoid using this and use pthread cancellation mechanism

instead if you want to "kill a thread"

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Handling Signals

handling it asynchronously

Two ways to handle signals

handling it synchronously

using signal handlers

using sigwait() in a signal-catching thread

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Handling Signals Asynchronously

#include <signal.h>

typedef void (*sighandler_t)(int);

sighandler_t sigset(int signo, sighandler_t handler);
sighandler_t signal(int signo, sighandler_t handler);

sighandler_t OldHandler = sigset(SIGINT, NewHandler);

each signal in a process can have at most one handler

Signal handler

to specify a signal handler of a process, use:

sigset/signal()

sigaction()

returns the current handler (which could be the "default

handler")

more functionality

signal handler is part of the context of a process

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Special Handlers

ignore the signal

SIG_IGN

sigset/signal(SIGINT, SIG_IGN);

use the default handler

SIG_DFL

sigset/signal(SIGINT, SIG_DFL);

usually terminates the process

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

#include <signal.h>

int main() {
 void handler(int);

 sigset(SIGINT, handler);
 while(1)
 ;
 return 1;
}

void handler(int signo) {
 printf("I received signal %d. Whoopee!!\n", signo);
}

but how do you kill this program from your console?

SIGINT is blocked inside handler()

can use the "kill" shell command, e.g., "kill -15 <pid>"

instead of using sigset(), you can also use sigaction()

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

#include <signal.h>

int main() {
 void handler(int);

 sigset(SIGINT, handler);
 while(1)
 ;
 return 1;
}

void handler(int signo) {
 printf("I received signal %d. Whoopee!!\n", signo);
 sigset(SIGINT, handler);
}

in some systems, you may have to

re-establish the signal handler inside

the signal handler if you want to receive

the same signal more than once

sigaction() allows

for more complex

behavior

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

sigaction

int sigaction(int sig,
 const struct sigaction *new,
 struct sigaction *old);

struct sigaction {
 void (*sa_handler)(int);
 void (*sa_sigaction)(int, siginfo_t *, void *);
 sigset_t sa_mask;
 int sa_flags;
};

e.g., block additional

signals (specified by

sa_mask) when

handler is called

int main() {
 struct sigaction act;
 void sighandler(int);
 sigemptyset(&act.sa_mask);
 act.sa_flags = 0;
 act.sa_handler = sighandler;
 sigaction(SIGINT, &act, NULL);
 ...
}

The general rule to provide async-signal safety:

any data structure the signal handler accesses must be

async-signal safe

i.e., an async signal must not corrupt data structures

An alternative is to make async-signal synchronous

use a signal-catching thread to receive a particular signal

Async-Signal Safety: Make your code safe when working with

asynchronous signals

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Async-Signal Safety

The problem with asynchronous signal is that you have to

worry about async-signal safety

if you don’t take care of it just right, bad things can happen

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example 1: Waiting for a Signal

sigset(SIGALRM, DoSomethingInteresting);
...
struct timeval waitperiod = {0, 1000};
 /* seconds, microseconds */
struct timeval interval = {0, 0};
struct itimerval timerval;

timerval.it_value = waitperiod;
timerval.it_interval = interval;

setitimer(ITIMER_REAL, &timerval, 0);
 /* SIGALRM sent in ~one millisecond */

pause(); /* wait for it */

can SIGALRM occur before pause() is called?

Note: strickly speaking, this is not a deadlock

it has a race condition

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example 2: Status Update

#include <signal.h>

computation_state_t state;

int main() {
 void handler(int);
 sigset(SIGINT, handler);
 long_running_proc();
 return 0;
}

long-running job that can take days to complete

the handler() can be used to print a progress report

void long_running_proc() {
 while (a_long_time) {
 update_state(&state);
 compute_more();
 }
}

void handler(int signo) {
 display(&state);
}

need to make sure that state is in a consistent state

our handler() is not async-signal safe

this is a synchronization issue

Note: this is not a deadlock and really not a race condition

this is the case where the code is not async signal safe

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example 2: Status Update

void long_running_proc() {
 while (a_long_time) {
 pthread_mutex_lock(&m);
 update_state(&state);
 pthread_mutex_unlock(&m);
 compute_more();
 }
}

void handler(int signo) {
 pthread_mutex_lock(&m);
 display(&state);
 pthread_mutex_unlock(&m);
}

no (this code is not reentrant)

Does this work?

it may get stuck in handler()

signal handler gets executed till completion

in general, keep it simple and brief

yes, you can deadlock with

yourself even if you only

have one thread

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Masking (Blocking) Signals

Solution: control signal delivery by masking/blocking the signal

don’t mask/block all signals, just the ones you want

a set of signals is represented as a set of bits called
sigset_t

if a mask bit is 1, the corresponding signal is

blocked; otherwise, the corresponding signal is unblocked

which is just an unsigned int
signal mask

TCB

110100110...

when a child thread is created, it inherits signal mask from the

parent thread

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Masking (Blocking) Signals

how is one of three commands:

To examine or change the signal mask of the calling process

SIG_BLOCK: the new signal mask is the union of the current

signal mask and (*set)

#include <signal.h>
int sigprocmask(
 int how,
 const sigset_t *set,
 sigset_t *old);

SIG_UNBLOCK: the new signal mask is the intersection of

the current signal mask and the complement of (*set)

SIG_SETMASK: the new signal mask is (*set)

signal mask

TCB

110100110...

To clear a set:

int sigemptyset(sigset_t *set);

To add or remove a signal from the set:

int sigaddset(sigset_t *set, int signo);
int sigdelset(sigset_t *set, int signo);

Example: to refer to both SIGHUP and SIGINT:

sigset_t set;

sigemptyset(&set);
sigaddset(&set, SIGHUP);
sigaddset(&set, SIGINT);

There are bunch of functions to manipulate sigset_t

be careful, with some APIs, 1 means to

allowed/unblock a signal, and with other APIs,

1 means to blocked a signal

sigset_t set;

sigfillset(&set);
sigdelset(&set, SIGHUP);
sigdelset(&set, SIGINT);

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

sigset_t

signal mask

TCB

110100110...

0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example 1: Correct Way of Waiting for a Signal

sigset_t set, oldset;
sigemptyset(&set);
sigaddset(&set, SIGALRM);
sigprocmask(SIG_BLOCK, &set, &oldset);
 /* SIGALRM now masked */
setitimer(ITIMER_REAL, &timerval, 0);
 /* SIGALRM sent in ~one millisecond */
sigfillset(&set);
sigdelset(&set, SIGALRM);
sigsuspend(&set); /* wait for it safely */
 /* SIGALRM masked again */
...
sigprocmask(SIG_SETMASK, &oldset, (sigset_t *)0);
 /* SIGALRM unmasked */

sigsuspend() replaces the caller’s signal mask with the set

of signals pointed to by the argument

in the above, all signals are blocked/masked except for

SIGALRM

atomically unblocks the signal and waits for the signal

atomically unblocks

the signal and waits

for the signal
0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example 1: Correct Way of Waiting for a Signal

sigset_t set, oldset;
sigemptyset(&set);
sigaddset(&set, SIGALRM);
sigprocmask(SIG_BLOCK, &set, &oldset);
 /* SIGALRM now masked */
setitimer(ITIMER_REAL, &timerval, 0);
 /* SIGALRM sent in ~one millisecond */
sigfillset(&set);
sigdelset(&set, SIGALRM);
sigsuspend(&set); /* wait for it safely */
 /* SIGALRM masked again */
...
sigprocmask(SIG_SETMASK, &oldset, (sigset_t *)0);
 /* SIGALRM unmasked */

sigsuspend()

Time

unblocks SIGALRM wait for SIGALRM
ATOMIC

SIGALRM delivery

OK

0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Async-Signal Safety

e.g., an alarm that you wind up and wait for is an asynchronous

event you generate

There is only one correct way to wait for an asynchronous event

caused by your thread

Step 1) block the asynchronous event

Step 2) do something that will cause the asynchronous event to

get generated

Step 3) unblock the event and wait for the event in one atomic

operation

There is only one correct way to wait for an asynchronous event

caused by another thread

Step 1) block the asynchronous event

Step 2) check if the event has been generated, if not, unblock the

event and wait for the event in one atomic operation

e.g., wait for a guard to become true in a guarded command

0123

35

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example 2: Correct Way to Handle Status Update

#include <signal.h>

computation_state_t state;
sigset_t set;

int main() {
 void handler(int);
 sigemptyset(&set);
 sigaddset(&set, SIGINT);
 sigset(SIGINT, handler);
 long_running_proc();
 return 0;
}

now SIGINT cannot be

delievered in
update_state()

void long_running_proc() {
 while (a_long_time) {
 sigset_t old_set;
 sigprocmask(
 SIG_BLOCK,
 &set,
 &old_set);
 update_state(&state);
 sigprocmask(
 SIG_SETMASK,
 &old_set,
 0);
 compute_more();
 }
}

void handler(int signo) {
 display(&state);
}

0123

36

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Signals and Threads

in a single-threaded process, it’s obvious which thread

would handle the signal

In Unix, signals are sent to processes, not threads!

in a multi-threaded process, it’s not so clear

in POSIX, the signal is delivered to a thread chosen at random

should one set of sigmask affect all threads in a process?

What about the signal mask (i.e., blocked/enabled signals)?

or should each thread gets it own sigmask?

this certainly makes more sense

the thread that is to receive the signal is chosen randomly

from the set of threads that do not have the signal blocked

POSIX rules for a multithreaded process:

if all threads have the signal blocked, then the signal

remains pending until some thread unblocks it

at which point the signal is delivered to that thread

child thread inherits signal mask from parent thread

0123

37

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Synchronizing Asynchrony

some_state_t state;
sigset_t set;

main() {
 pthread_t thread;
 sigemptyset(&set);
 sigaddset(&set,
 SIGINT);
 sigprocmask(
 SIG_BLOCK,
 &set, 0);
 // main thread
 // blocks SIGINT
 pthread_create(
 &thread, 0,
 monitor, 0);
 long_running_proc();
}

void long_running_proc() {
 while (a_long_time) {
 pthread_mutex_lock(&m);
 update_state(&state);
 pthread_mutex_unlock(&m);
 compute_more();
 }
}

void *monitor() {
 int sig;
 while (1) {
 sigwait(&set, &sig);
 pthread_mutex_lock(&m);
 display(&state);
 pthread_mutex_unlock(&m);
 }
 return(0);
}

this is PREFERRED, no need for signal handler!

0123

38

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

sigwait

int sigwait(sigset_t *set, int *sig)

return which signal caused it to return in sig

sigwait() blocks until a signal specified in set is received

this way, when sigwait() is called, the calling thread

temporarily becomes the only thread in the process who can

receive the signal

You should make sure that all the threads in your process have

these signals blocked!

if you have a signal handler specified for sig, it will not get

invoked when the signal is delivered

instead, sigwait() will return

sigwait(set) atomically

unblocks signals specified

in set and waits for signal

delivery
Time

unblocks signals wait for signal
ATOMIC

signal delivery

OK

1)

What if a signal is generated while a process is blocked in a

system call?

deal with it when the system call completes

2) interrupt the system call, deal with signal, resume system

call

3) interrupt system call, deal with signal, return from system

call with indication that something happened

0123

39

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Signals and Blocking System Calls

most systems choose (3)

errno sets to EINTR to mean that the system call was

not completed because it was interrupted by a signal

this may be the reason why pthread_cond_wait() may

return "spontaneously" even when the CV has not been

signaled/broadcasted

this is the errno for the thread that was "deviated" to

execute the signal handler

what if this thread was borrowed to deliver a signal?

0123

40

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupted System Calls

while(read(fd, buffer, buf_size) == -1) {
 if (errno == EINTR) {
 /* interrupted system call; try again */
 continue;
 }
 /* the error is more serious */
 perror("big trouble");
 exit(1);
}

need to check the return value of read() because read() can

return when less than buf_size bytes have been read

same consideration as read()

can use similar code for write()

please note that the above code is incomplete, it needs to

handle the case where read() return 0 to mean end-of-input

0123

41

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupted While Underway

remaining = total_count; /* write this many bytes */
bptr = buf; /* starting from here */
for (; ;) {
 num_xfrd = write(fd, bptr, remaining);
 if (num_xfrd == -1) {
 if (errno == EINTR) {
 /* interrupted early */
 continue;
 }
 perror("big trouble");
 exit(1);
 }
 if (num_xfrd < remaining) {
 /* interrupted in the middle of write() */
 remaining -= num_xfrd;
 bptr += num_xfrd;
 continue;
 }
 /* success! */
 break;
}

0123

42

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupted System Calls

and block all appropriate signals in all "regular" threads

If a thread can "see" signal delivery (i.e., "deviated to execute a

signal handler"), every read() and write() call in that thread

needs to look like the previous slides

much easier if you use a signal-catching thread

for warmup2, it is strongly encouraged that you do it this way

to catch <Ctrl+C> and avoid using a signal handler

when sigwait() returns, lock mutex, set global flag,

cancel packet arrival and token depositing threads,

broadcast CV, unlock mutex, and self-terminate

according to spec, you must not cancel server threads

will talk about cancellation shortly

Which library routines are safe to use within signal handlers?

Note: in general, you should only do what’s absolutely

necessary inside a signal handler (and figure out where to

do the rest)

access

aio_error

aio_suspend

alarm

cfgetispeed

cfgetospeed

cfsetispeed

cfsetospeed

chdir

chmod

chown

clock_gettime

close

creat

dup2

dup

execle

execve

_exit

fcntl

fdatasync

fork

fstat

fsync

getegid

geteuid

getgid

getoverrun

getgroups

getpgrp

getpid

getppid

getuid

kill

link

lseek

mkdir

mkfifo

open

pathconf

pause

pipe

rename

rmdir

sem_post

setgid

setpgid

setsid

setuid

sigaction

sigaddset

sigdelset

sigemptyset

sigfillset

sigismember

sigpending

sigprocmask

sigqueue

sigsuspend

sleep

stat

sysconf

tcdrain

tcflow

tcflush

tcgetattr

tcgetpgrp

tcsendbreak

tcsetattr

tcsetpgrp

time

timer_getoverrun

timer_gettime

timer_settime

times

umask

uname

unlink

utime

wait

waitpid

write

0123

43

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Inside A Signal Handler

0123

44

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Cancellation

The user pressed <Ctrl+C>

or a request is generated to terminate the process

the chores being performed by the remaining threads are no

longer needed

Concerns

getting cancelled at an inopportune moment

cleaning up (free up resources that only this thread can free up)

a mutex left locked

in general, we may just want to cancel a bunch of threads

and not the entire process

a data structure is left in an inconsistent state

e.g., you get a cancellation request when you are in the

middle of a insert() operation into a doubly-linked list

and insert() is protected by a mutex

memory leaks

unlocking mutex if locked

0123

45

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Cancellation State & Type

Send cancellation request to a thread (this is a non-blocking call)

pthread_cancel(thread)

Cancels enabled or disabled

int pthread_setcancelstate(
 { PTHREAD_CANCEL_DISABLE,
 PTHREAD_CANCEL_ENABLE},
 &oldstate)

Asynchronous vs. deferred cancels

int pthread_setcanceltype(
 { PTHREAD_CANCEL_ASYNCHRONOUS,
 PTHREAD_CANCEL_DEFERRED},
 &oldtype)

By default, a thread has cancellation enabled and deferred

it’s for a good reason

if you are going to change it, you must ask yourself, "Why?"

and "Are you sure this is really a good idea?"

0123

46

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

POSIX Cancellation Rules

POSIX threads cancellation rules (part 1):

when pthread_cancel() gets called, the target thread is

marked as having a pending cancel

if the target thread has cancellation disabled, the target

thread stays in the pending cancel state

if the target thread has cancellation enabled ...

if the cancellation type is asynchronous, the target

thread immediately acts on cancel (i.e., cancellation is

"delivered" by "deviating" the thread to call pthread_exit())

if the cancellation type is deferred, cancellation is

delayed until it reaches a cancellation point in its execution

cancellation points correspond to points in the thread’s

execution at which it is safe to act on cancel

the thread that called pthread_cancel() does not wait for

the cancel to take effect

0123

47

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Cancellation Points

aio_suspend

close

creat

fcntl (when F_SETLCKW

 is the command)

fsync

mq_receive

mq_send

msync

nanosleep

open

pause

pthread_cond_wait

pthread_cond_timedwait

pthread_join

pthread_testcancel

read

sem_wait

sigsuspend

sigtimedwait

sigwait

sigwaitinfo

sleep

system

tcdrain

wait

waitpid

write

pthread_mutex_lock() is not on the list!

pthread_testcancel() creates a cancellation point

useful if a thread contains no other cancellation point

POSIX threads cancellation rules (part 2):

when a thread acts on cancel

in pthread_exit(), it first walks through a stack of cleanup

handlers

remember that the thread that called pthread_cancel()

does not wait for the cancel to take effect

it may join and wait for the target thread to terminate

0123

48

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

POSIX Cancellation Rules

pthread_cleanup_push(
 (void)(*routine)(void *),
 void *arg)
pthread_cleanup_pop(int execute)

when stack is empty, the thread goes into the zombie state

it calls pthread_exit()

How can this thread control when it acts on cancel?

0123

49

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

list_item_t list_head;

void *GatherData(void *arg) {
 list_item_t *item;
 item = (list_item_t*)malloc(sizeof(list_item_t));

 // GetDataItem() contains many cancellation points
 GetDataItem(&item->value);

 insert(item); // add item to a global list
 printf("Done.\n");
 return 0;
}

so it doesn’t leak memory

although this implementation is technically "correct", long delay

may not be acceptable

How can this thread control when it acts on cancel?

0123

50

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

list_item_t list_head;

void *GatherData(void *arg) {
 list_item_t *item;
 item = (list_item_t*)malloc(sizeof(list_item_t));
 pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, 0);
 // GetDataItem() contains many cancellation points
 GetDataItem(&item->value);
 pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, 0);
 insert(item); // add item to a global list
 printf("Done.\n");
 return 0;
}

so it doesn’t leak memory

need to respond in a timely manner

0123

51

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

list_item_t list_head;

void *GatherData(void *arg) {
 list_item_t *item;
 item = (list_item_t*)malloc(sizeof(list_item_t));
 pthread_cleanup_push(free, item);
 // GetDataItem() contains many cancellation points
 GetDataItem(&item->value);

 insert(item); // add item to a global list
 printf("Done.\n");
 return 0;
}

in C library, free() is defined as: void free(void *ptr);

perfectly matches the argument types for
pthread_cleanup_push()

Can act on cancel inside GetDataItem()

in this case, will invoke free(item)

0123

52

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

list_item_t list_head;

void *GatherData(void *arg) {
 list_item_t *item;
 item = (list_item_t*)malloc(sizeof(list_item_t));
 pthread_cleanup_push(free, item);
 // GetDataItem() contains many cancellation points
 GetDataItem(&item->value);

 insert(item); // add item to a global list
 printf("Done.\n");
 return 0;
}

can cause segmentation fault later

What if it acts on cancel inside printf()

will end up calling free(item) twice

0123

53

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

list_item_t list_head;

void *GatherData(void *arg) {
 list_item_t *item;
 item = (list_item_t*)malloc(sizeof(list_item_t));
 pthread_cleanup_push(free, item);
 // GetDataItem() contains many cancellation points
 GetDataItem(&item->value);
 pthread_cleanup_pop(0);
 insert(item); // add item to a global list
 printf("Done.\n");
 return 0;
}

can cause segmentation fault later

What if it acts on cancel inside printf()

will end up calling free(item) twice

pop free(item) off the cleanup stack

0123

54

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

list_item_t list_head;

void *GatherData(void *arg) {
 list_item_t *item;
 item = (list_item_t*)malloc(sizeof(list_item_t));
 pthread_cleanup_push(free, item); // {
 // GetDataItem() contains many cancellation points
 GetDataItem(&item->value);
 pthread_cleanup_pop(0); // }
 insert(item); // add item to a global list
 printf("Done.\n");
 return 0;
}

compile-time error

must match up (like a

pair of brackets)

pthread_cleanup_push() and the corresponding

pthread_cleanup_pop() must match up (like a pair of brackets)

must not call pthread_cleanup_push() in one function and

call the corresponding pthread_cleanup_pop() in another

0123

55

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Cancellation and Cleanup

fd = open(file, O_RDONLY);
pthread_cleanup_push(close_file, fd);
while(1) {
 read(fd, buffer, buf_size);
 // ...
}
pthread_cleanup_pop(0);

void close_file(int fd) {
 close(fd);
}

int is compatible with void*

well, sort of

void* can be a 64-bit quantity, so may need to be careful

(best to be explicit)

should close any opened files when you clean up

what if the mutex is locked?

0123

56

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Cancellation and Conditions

pthread_mutex_lock(&m);
pthread_cleanup_push(CleanupHandler, argument);

while(should_wait)
 pthread_cond_wait(&cv, &m);
// ... (code containing other cancellation points)
pthread_cleanup_pop(0);
pthread_mutex_unlock(&m);

should CleanupHandler() call pthread_mutex_unlock()?

remember, if the thread is canceled between push() and

pop(), we need to ensure that the mutex is locked

must not unlock the mutex twice!

pthread_cond_wait() is a cancellation point

should CleanupHandler() call pthread_mutex_lock() then

call pthread_mutex_unlock()?

application cannot solve this problem since there is no way

to check if a mutex is locked or not

0123

57

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Cancellation and Conditions

pthread_mutex_lock(&m);
pthread_cleanup_push(pthread_mutex_unlock, &m);

while(should_wait)
 pthread_cond_wait(&cv, &m);
// ... (code containing other cancellation points)
pthread_cleanup_pop(1);

pthreads library implementation ensures that a thread, when

acting on a cancel inside pthread_cond_wait(), would first

lock the mutex, before calling the cleanup routines

this way, the above code would work correctly

this makes it impossible for those threads to act on cancel

when they have the mutex locked

0123

58

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Warmup2 Cancellation

can make the following simplification for these two threads:

at the start of their first procedures, disable cancellation

Only packet arrival and token depositing threads are allowed

to be canceled

make cancellation requests only when mutex is locked

right before calling usleep(), enable cancellation

when usleep() returns, disable cancellation again

this way, during the time the mutex is locked, cancellation

is always disabled

therefore, don’t have to worry about using cleanup

routines to unlock mutex

but didn’t we just say that it’s not a good idea to disable

cancellation?

use a <Ctrl+C>-catching thread (i.e., use sigwait())

also, need to take care of a race condition

Note: current C++ standard also does not support thread

cancellation
0123

59

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Cancellation & C++

void tcode() {
 A a1;
 pthread_cleanup_push(handler, 0);
 foo();
 pthread_cleanup_pop(0);
}

void foo() {
 A a2;
 pthread_testcancel();
}

are the destructors of a1 and a2 getting called?

not sure

they should get called

some C++ implementation does not do this correctly!

standard C++ threads must self-terminate!

