Operating Systems - CSCI 402

1.3 A Simple OS

ﬁ} OS Structure
ﬁ} Processes, Address Spaces, & Threads
_,> Managing Processes

_, Loading Program Into Processes

_ Files

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Simple OS

> The main focus of this class is on how to build an OS
= since this is an intro class, we will focus on the fundamentals
Q occasionally, we will talk about the more advanced topics
= this is not a "tech"” class

_) Sixth-Edition Unix
= source license available to universities in 1975 from Bell Labs
= had major influence on modern OSes
Q Solaris
Q Linux
Q MacOS X
Q Windows

) Fits into 64KB of momory
= single executable, completely stored in a single file
= Joaded into memory as the OS boots
= monolithic OS

Copyright © William C. Cheng

Operating Systems - CSCI 402

Hardware Support - User vs. Privileged Modes

ﬁ} Processor modes: part of the processor state (recall from your
computer organization/architecture class regarding "processor")
= most computers have at least two modes of execution

Q user mode: fewest privileges
Q privileged mode: most privileges
& the only code that runs in this mode is part of the OS

) For Sixth-Edition Unix
= the whole OS run in the privileged mode
= everything else is an application and run in the user mode

) For other systems
= major subsystems providing OS functionality may run in the
user mode

ﬁ} We use the word "kernel” to mean the portion of the OS that
runs in privileged mode

= sometimes, a subset of this (A

By

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Simple OS Structure
ﬁ} Application programs call upon the OS via traps Traps
_, External devices call upon the OS via interrupts l
= 1/0 completion interrupt [)
Q executes interrupt service routine 0S
Interrupts

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Simple OS Structure

_) Review of "Computer Organization" f

Read Bus Cycle
= bus architecture

A0.31] — &x Y—
D[0..31]

x86 Processor Bus RO | |___
() L
idx regs segregs genregs other
EIP CS EAX flags ¢
ESP ss[_\] EBX A Memory]
EBP
: 32
interrupt :
processor 32 Controller
mode D0-D31 <> .
RD[—> °
WR—> 1
L0|(r\:1$ ’ Device]
-—
Controller |
G 7 ‘@

Copyright © William C. Cheng

A Simple OS Structure

_) Review of "Computer Organization"
= bus architecture

x86 Processor

()
idx regs segregs genregs other
EIP CS EAX flags ¢
ESP SS EBX v
EBP

interrupt
enabled A0-A31

processor

e D0-D31
RD
WR
LOCK
INT
_ J

Copyright © William C. Cheng

e

Bus

Operating Systems - CSCI 402

r

Write Bus Cycle

AD.31] — &y)—
D[0..31] — data »—

WR ___ [|

Memory]

Device
Controller

Device
Controller

x86 Processor

A Simple OS Structure

_) Review of "Computer Organization"

Operating Systems - CSCI 402

Address Space

text
(code)

data

dynamic
(heap)

Copyright © William C. Cheng

Bus +
()
idx regs segregs genregs other *
EIP CS EAX flags ¢
ESP SS EBX (stack
EBP
: 32
interrupt
enabled A0-A31 3’2'
processor Memory
mode D0-D31 |«
RD—>»
WR—>]
LOCK |—» Device
L IN.E . Controller

Operating Systems - CSCI 402

A Simple OS Structure
Address Space
ﬁ> Review of "Computer Organization™ text
(code)
data
dynamic
(heap)
x86 Processor Bus +
()
idx regs se S genregs other *
EIP| @] CS EAX flags ¢
ESP Ss EBX A stack
EBP
: 32
interrupt
enabled A0-A31 3’2']
processor Memory
mode D0-D31 |«
RD[—>
WR[—>]
LOCK —» Device
L IN.E , Controller

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Simple OS Structure
Address Space
_) Review of "Computer Organization" text
(code)
data
dynamic
(heap)
x86 Processor Bus +
()
idx regs segregs genregs other *
EIP cs[],] EAx flags —
ESP ssf_\| EBX A stack
EBP
: 32
interrupt
enabled A0-A31 3’2']
processor Memory
mode D0-D31 |«
RD—>»
WR—>]
LOCK |—» Device
L IN.E . Controller

Copyright © William C. Cheng

A Simple OS Structure

_) Review of "Computer Organization"

x86 Processor

()
idx regs segregs genregs other
EIP CS EAX flags ¢
ESP SS EBX| | | |
EBP| @

interrupt
enabled A0-A31
processor
e D0-D31
RD
WR
LOCK
INT
_ J

Copyright © William C. Cheng

Bus

Operating Systems - CSCI 402

Address Space

text
(code)

data

dynamic
(heap)

Memory]

Device
Controller

A Simple OS Structure

_) Review of "Computer Organization"

mov &x — eax
Z=x+y |:> mov &y — ebx
add (eax, ebx)
mov eax — &z

Operating Systems - CSCI 402

Address Space

text
(code)

data

dynamic
(heap)

x86 Processor Bus +
()
idx regs segregs genregs other *
EIP CS EAX flags ¢
ESP SS EBX A stack
EBP
: 32
interrupt
enabled A0-A31 3’2 '
processor Memory
mode D0-D31 |«
RD—>»
WR—>]
LOCK |—» Device
L IN.E . Controller

Copyright © William C. Cheng

x86 Processor

A Simple OS Structure

_) Review of "Computer Organization"

Operating Systems - CSCI 402

Address Space

text
(code)

data

dynamic
(heap)

Copyright © William C. Cheng

Bus +
()
idx regs segregs genregs other *
EIP CS EAX flags ¢
ESP SS EBX (stack
EBP
: 32
interrupt
enabled A0-A31 3’2'
processor Memory
mode D0-D31 |«
RD—>»
WR—>]
LOCK |—» Device
L IN.E . Controller

A Simple OS Structure

) Some important terms:
= [nterrupt pending
= [nterrupt delivery

x86 Processor

= [nterrupt context
= thread context

Operating Systems - CSCI 402

Memory]

Bus
()
idx regs segregs genregs other
EIP CS EAX flags ¢
ESP SS EBX [
EBP
: 32
interrupt
enabled A0-A31 3’2'
processor
mode D0-D31 |«
RD—>»
WR—>»>
LOCK[—>
INT|<—
_ J

Copyright © William C. Cheng

Device
Controller

Operating Systems - CSCI 402
Traps Appl.

ﬁ> Traps are the general means for invoking the * oS

kernel from user code
= although we usually think of traps as errors

Q divide by zero, segmentation fault, bus error, etc.
= but they don’t have to be

Q system calls, page fault, etc.

HW

ﬁ} Traps always elicit some sort of response
= for programming errors, the default action is to terminate

the user program
= for system calls, the OS is asked to perform some service

= for page faults, the OS need to fix the virtual memory map

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Special Kind Of Trap - System Calls

ﬁ} Invoking OS functionality in the kernel is more complex
= but we want to make it look simple to applications
= must be done carefully and correctly
Q really cannot trust the application programmers to do the
right thing every time

ﬁ} Provide system calls through which user code can access the
kernel in a controlled manner
= any necessary checking on whether the request should be
permitted can be done in the system call
Q all done in user mode
= if all goes well
Q sets things up
Q traps into the kernel by executing a special machine
instruction, i.e., the "trap" machine instruction
Q the kernel figures out why it was invoked and handles
the trap

= motre in Ch 3
Copyright © William C. Cheng

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupts

Appl.
_) An interruptis a request from an external device 0S
for a response from the processor -1—
= most hardware interrupts are /O completion HW

interrupts

Q an I/O device is telling the CPU, "l am done" (and "what do
you want me to do next?")

Q /O devices are also hardware, they can run in parallel
with the CPU, don’t keep them idle unless you have
nothing for them to work on

= interrupts are handled independently of any user program

Q unlike a trap, which is handled as part of the program that
caused the trap where response to a trap directly affects
that program

= response to an interrupt may or may not indirectly affect the
currently running program

Q often has no direct effect on the currently running

|
program 3 2.?2;

Operating Systems - CSCI 402

Interrupts Appl.

ﬁ} An interruptis an asynchronous event 0S
= it’s asynchronous with respect to the executing -1—
entity (threads or OS) HW

ﬁ> A trap occurs synchronously with respect to the executing entity
= when your thread executes a divide-by-zero instruction, we
know exactly where it happens and we know when it will happen

Copyright © William C. Cheng

Operating Systems - CSCI 402

Software Interrupt Appl.

ﬁ} There’s also something called software interrupt * 0S

= generated programmatically (i.e., not by a
device) when executing a machine instruction HW
Q e.g., executing an "interrupt” machine instruction
Q x86 CPU uses a software interrupt (i.e., "int 0x2e") to
implement the "trap” machine instruction
& other CPUs may have a separate "trap" machine instruction
= this is very different from a hardware interrupt
Q although the mechanisms of handling interrupts are all very
similar as we will see in Ch 3

Copyright © William C. Cheng

Operating Systems - CSCI 402

Upcall Appl. |

_) A program may establish a handler 0S
(i.e., a signal handler) to be invoked
in response to the error HW

= the handler might clean up after the error and then terminate
the program, or it might perform corrective action and continue
with normal execution

= motre in Ch 2

_) The upcall mechanism
= signals allow the kernel to invoke code that’s part of user
program
Q for example, you can set a timer to expire at a certain time,
when it expires, the OS can use the upcall mechanism to
call a specified user function on behalf of the user program

Copyright © William C. Cheng

Operating Systems - CSCI 402

1.3 A Simple OS

) OS Structure
_) Processes, Address Spaces, & Threads
_,> Managing Processes

_, Loading Program Into Processes

_ Files

Copyright © William C. Cheng

Operating Systems - CSCI 402

Program Execution

ﬁ} Fundamental abstraction of program execution

= memory

Q address space
& things that are addressable by the program are kept
together here

Q In Sixth-Edition Unix, processes do not share address space
Q recall that process is an abstraction of memory

= processor(s)
Q recall that thread is an abstraction of processor

= "'execution context”
Q which represents the sfate of a process and its threads
Q represents exactly "where you are" in the program
Q athread needs some sort of a context to execute

ﬁ} Note: multiple meanings of the word "context" in this class
= save (execution) context and restore (execution) context

= thread context vs. interrupt context N

2

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Program

100;

const int nprimes
int prime[nprimes];
int main() {

int 1i;

int current = 2;

prime[0] = current;

for (i=1; i<nprimes; i++) {

int j;
NewCandidate:
current++;

p
> My color codes for code
= reserved words at
in blue
= humeric and string
constants are in red
comments in green

[

[

black otherwise

.

N

for (j=0; prime[j]*prime[j] <= current; Jj++) {
== 0)

if (current % prime[j]
goto NewCandidate;

}

prime[i] = current;

}

return (0) ;

}

Copyright © William C. Cheng

ﬁ} A Turing Machine consists of
= an infinite tape which is divided

Copyright © William C. Cheng

Operating Systems - CSCI 402

Turing Machine Model of Computation

into cells, one next to the other

(i.e., infinite storage)

Q one symbol in each cell (or can
be a blank symbol)

a head that can read and write

symbols on the tape and move the tape left and right one (and

only one) cell at a time

a state register that stores the state of the Turing machine,

one of finitely many (i,e., finite state)

a finite table of instructions that, given the state the machine

is currently in and the symbol it is reading on the tape tells

the machine to do the following in sequence

Q either erase or write a symbol

Q move the head

Q assume the same or a new state as prescribed

Operating Systems - CSCI 402

The Unix Address Space

low memory
address text executable code

data } initialized data

uninitialized data

bss (block started by symbols)

dynamic

l

A

high memory

address stack

) This is part of the tape of the Turing Machine
= the rest of the tape of the Turing Machine can be reached [@’_

using the "extended address space”
Copyrlght©W| iam C. Cheng

Operating Systems - CSCI 402

Note About Naming Objects

ﬁ} How do you name objects in an address space
= "objects" is the word we use to mean any
data types (primitive, data structures, pointers)

_) Variables
= nhame each object
= a variable refers to a memory location

text

Copyright © William C. Cheng

Operating Systems - CSCI 402

Note About Naming Objects

ﬁ} How do you name objects in an address space
= "objects" is the word we use to mean any

data types (primitive, data structures, pointers) text
. child| (adam)
|:> Variables (betty)
. (chad)
= name each object -
. . eve
— a variable refers to a memory location (fred)
_) Arrays
= nhame an object with a base and an index .

SS
> Dynamically create objects do not have names dynamic
= ho variable can have a "heap address" +

= nheed pointers

Copyright © William C. Cheng

Operating Systems - CSCI 402

Note About Naming Objects

ﬁ} How do you name objects in an address space
= "objects" is the word we use to mean any

data types (primitive, data structures, pointers) text
_) Variables data
= nhame each object bss
= a variable refers to a memory location :
dynamic

_) Arrays Y

= nhame an object with a base and an index

> Dynamically create objects do not have names
= no variable can have a "heap address" A
= need pointers stack frame for family_tree() —»=| family_tree(child)

stack frame for family_tree() —®{ family_tree(child)

) For objects that lives in the
stack, same name is used
for different object instances

|
= function arguments and local variables y ..’
Copyright © William C. Cheng

stack frame for main() —»{ main()

Operating Systems - CSCI 402

Modified Program

int nprimes; // in bss region
int *prime; // in bss region
int main(int argc, char *argv[]) { // in stack
int i; // in stack
int current = 2; // in stack
nprimes = atoi (argv[l]);
prime = (int*)malloc (nprimes*sizeof (int));
prime[0] = current;
for (i=1l; i<nprimes; i++) { text
) data
return (0) ; bss
} dynamic
= where do all the variables reside? +
= what is argv[1] and why atoi () ?
= what is sizeof () ? *
= what does malloc () do? stack

Copyright © William C. Cheng

Operating Systems - CSCI 402

1.3 A Simple OS

) OS Structure
ﬁ} Processes, Address Spaces, & Threads
_) Managing Processes

_, Loading Program Into Processes

_ Files

Copyright © William C. Cheng

Operating Systems - CSCI 402

Program Execution

) With abstraction, comes an interface / API
= for processes
Q fork(),exit (), wait (), exec()
& it’s very important to understand what they do exactly
because you will implement them in kernel assignments

Copyright © William C. Cheng

Operating Systems - CSCI 402

Creating a Process

) Creating a process is deceptively simple

— make a copy of a process (the parent process)

Q pid_t fork (void)
the process where fork () is called is the parent process
the copy is the child process
in a way, fork () returns twice
<& once in the parent, the returned value is the
process ID (PID) of the child process

<& once in the child, the returned value is 0
<& aPID is 16-bit long
= this is the only way to create a process

O O O

ﬁ> Making a copy of the entire address space can be expensive
= Ch 7 shows speed up tricks
= e.(g., text segment is read-only so parent and child can share it

ﬁ} Example: relationship between a shell (i.e., a command |
interpreter, such as /bin/tcsh) and /bin/1s 3134

Copyright © William C. Cheng

Operating Systems - CSCI 402

Creating a Process: Before

fork ()

parent proces

Copyright © William C. Cheng

Operating Systems - CSCI 402

Creating a Process: After

fork () fork ()
// returns p // retuns O

parent proces child proces

(pid = p) 3

Copyright © William C. Cheng

Operating Systems - CSCI 402

Process Control Blocks

Parent
PID

Return code
Link = ?

Process
Control Block

ﬁ> Process Control Block (PCB) is a kernel data structure
= pretty much every field is unsigned
= return code (when a process dies) is 8-bit long
Q so that the parent process can know what happened to child
= the "Link" field points to the next PCB
Q but, the next PCB in what list?

)

Copyright © William C. Cheng

Process Control Blocks

Parent

PID

Return code

Link

..»?

Terminated children 1

Copyright © William C. Cheng

Process
Control Block

Operating Systems - CSCI 402

Dead Child Dead Child
PID —> PID
Return code Return code
Link Link
Terminated children 1% ? Terminated children -

= pretty much every field is unsigned
= return code (when a process dies) is 8-bit long
Q so that the parent process can know what happened to child
= the "Link" field points to the next PCB
Q but, the next PCB in what list?

ﬁ> Process Control Block (PCB) is a kernel data structure

ﬁ} Above is not a real implementation (just an example)

B

The exit () System Calls

) The exit () system call

void exit (int status)

= your process can call exit (n) to self-terminate
Q set n to be the "exit/return code” of this process
Q this sytem call does not return (your process will die inside

the kernel)

Parent

PID

Return code

Link

..»?

Terminated children 1

Copyright © William C. Cheng

Process
Control Block

Operating Systems - CSCI 402

Dead Child Dead Child
PID —> PID
Return code Return code
Link Link
Terminated children 1% ? Terminated children -

Operating Systems - CSCI 402

The exit () System Calls
) The exit () system call

void exit (int status)

= your process can call exit (n) to self-terminate
Q set n to be the "exit/return code” of this process
Q this sytem call does not return (your process will die inside
the kernel)

ﬁ> Where does the "primes” program go after it executes the
"return (0)"?
= [t returns to a "startup” function
—= the code of the "startup” function is simply:

exit (main());

Copyright © William C. Cheng

The wait () System Calls

_) The wait () system call

pid_t wait (int *status)

Operating Systems - CSCI 402

= your process can call wait () to wait for any child process to die
Q returns the PID of a dead child process where (*status)
Is the exit/return code of the corresponding child process
<& if there are more than one dead child processes, one of
them will be chosen at random

Parent
PID
Return code
Link 1> Dead Child Dead Child
Terminated children T—» PID —> PID
Return code Return code
Link Link
Terminated children 1% ? Terminated children -

Copyright © William C. Cheng

Process
Control Block

The wait () System Calls

_) The wait () system call

pid_t wait (int *status)

Operating Systems - CSCI 402

= your process can call wait () to wait for any child process to die
Q it’s a blocking call, i.e., the calling process gets suspended
inside the kernel if this call cannot return yet

Parent
PID
Return code
Link 1> Dead Child Dead Child
Terminated children T—» PID —> PID
Return code Return code
Link Link
Terminated children 1% ? Terminated children -

Copyright © William C. Cheng

Process
Control Block

Operating Systems - CSCI 402

Fork and Wait

short pid;

if ((pid = fork()) == 0) {
/* some code is here for the child to execute */
exit (n);

} else {
int ReturnCode;

while (pid != wait (&ReturnCode))

4

/* the child has terminated with ReturnCode as
its return code */

= e.g., this is the first step when /bin/tcsh forks /bin/1s
what does exit (n) do other than copying n into PCB?
Q least significant 8-bits of n
= what happens when main () calls return(n)?

Q eventually, exit (n) will be invoked
= pid_t wait (int *status) is a blocking call

Q It reaps dead child processes one at a time

|
= parent and child are the same "program™ here! Y l,y
Copyright © William C. Cheng

[

Operating Systems - CSCI 402

Fork and Wait

short pid;
if ((pid = fork()) == 0) {
/* some code is here for the child to execute */
exit (n);
} else {
int ReturnCode;
while (pid != wait (&ReturnCode))

4

/* the child has terminated with ReturnCode as
its return code */

Parent
PID
Return code _]
Link 12 Dead Child Dead Child
Terminated children T—» PID — PID
Return code Return code
Link Link
Terminated children % ? Terminated children % ? %
Process
Control Block @
=/

Copyright © William C. Cheng

Operating Systems - CSCI 402

Fork and Wait

short pid;

if ((pid = fork()) == 0) {
/* some code is here for the child to execute */
exit (n);

} else {
int ReturnCode;

while (pid != wait (&ReturnCode))

4

/* the child has terminated with ReturnCode as
its return code */

}

> What if you don’t want to write your code this way?
= you can write any code you want, you just shouldn’t expect your
code to work if you write weird code
= you need to understand exactly what these system calls do
and use them appropriately
Q if you do something weird, the OS will try to satisfy your

request, but may end up with results you don’t expect (/AN
q y p y p | @

Copyright © William C. Cheng

Operating Systems - CSCI 402

Process Termination Issues

) PID is only 16-bits long
= OS must not reuse PID too quickly or there may be ambiguity

> When exit () is called, the OS must not free up PCB too quickly
= parent needs to get the return code
= [t’s okay to free up everything else (such as address space)

ﬁ> Solutions for both is for the terminated child process to go into
a zombie state
= only after wait () returned with the child’s PID can the PID
be reused and the PCB can be freed up
= but what if the parent calls exit () while the child is in the
zombie state?
Q process 1 (the process with PID=1) inherits all the children of
this parent process
& this is known as "reparenting”

Q process 1 keeps calling wait () to reap the zombies |
S

Copyright © William C. Cheng

Operating Systems - CSCI 402

1.3 A Simple OS

) OS Structure
ﬁ} Processes, Address Spaces, & Threads
_,> Managing Processes

_) Loading Program Into Processes

_ Files

Copyright © William C. Cheng

Operating Systems - CSCI 402

Loading Programs Into Processes

_, How do you run a program?
— make a copy of a process
Q any process
= replace the child process with a hew one
Q wipe out the child process
& not everything, some stuff survives this (i.e., won’t get
destroyed)
& definitely need a new address space since we will be
running a different program
Q using a family of system calls known as exec
= kind of a waste to make a copy in the first place
Q but it’s the only way
Q also, the OS does not know if the reason the parent process
calls fork () is to run a new program or not

Copyright © William C. Cheng

Operating Systems - CSCI 402

Exec

int pid;
if ((pid = fork()) == 0) {
/* we’ll discuss what might take place before
exec is called */
execl ("/home/bec/bin/primes", "primes", "300", 0);
exit (1) ;
}

/* parent continues here */
while (pid != wait(0)) /* ignore the return code */

4

= what does execl () do?
Q "man execl” says:
int execl (const char *path,
const char *arg, ...);
Q isn’t "primes" in the 2nd argument kind of redundent?
Q what’s up with "..."?
& this is called "varargs" (similar to print£ ())

Copyright © William C. Cheng

Loading a New Image

fork () exec (prog,
// returns p args)

parent proces child process
Before

Copyright © William C. Cheng

Operating Systems - CSCI 402

fork ()
// returns p

Loading a New Image

exec (prog,
args)

prog’s text

prog’s data

prog’s bss

Copyright © William C. Cheng

parent proces

l

T

child process
Before

args

child process
After

48

Operating Systems - CSCI 402

@

Operating Systems - CSCI 402

Exec
int pid;
if ((pid = fork()) == 0) {
execl ("/home/bec/bin/primes", "primes", "300", 0);
exit (1) ;
}
while (pid !'= wait (0)) /* ignore the return code */

% primes 300

ﬁ> Your login shell forks off a child process, load the primes
program on top of it, wait for the child to terminate

— the same code as before
= exit (1) would get called if somehow execl () returned
Q if execl () is successful, it cannot return since the code is
gone (i.e., the code segment has been replaced by the

code segment of "primes") @!’}

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent e oid
int pid;
((shell) . =P if ((pid = fork()) == 0) {
execl (" /home/bec/bin/primes",
fork () "primesll , "300" , 0) ;
exit(1l);
}
while (pid !'= wait (0))
. J . .
Applications
0S
() ()
Process Files ©c o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent e oid
int pid;
) (shell) . =P if ((pid = fork()) == 0) {
fork execl (" /home/bec/bin/primes",
oxr () "primes" , "300" , 0) ;
exit(1l);
}
while (pid !'= wait (0))
. J . .
trap Applications

context(P)

Process Files e o o
Subsystem | [Subsystem

_> Where do you keep "context"?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child _ »
) (shell) . (shell) . S izt (I.()::;ic,i = fork()) == 0) {
fork (S e
exit (1) ;
ihile(pid 1= wait (0))
|))

Applications

context(P) context(C)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child _ "
) (shell) . (shell) . S izt (1?;151 = fork()) == 0) {
fork () O i, 30t 57
exit (1) ;
pid v}while (pid !'= wait (0))
L J _ J

Applications

?

context(P) context(C)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child e big
int pid;
) (shell) . (shell) . =P if ((pid = fork()) == 0) {
execl (" /home/bec/bin/primes",
fork () "primes" , n300n , 0) ;
exit(1l);
}
pid 0 while (pid !'= wait (0))
. J . J . .
Applications

(\) ()
? ?
context(P) context(C)
Process Files o o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child e big
int piq;
) (shell) . (shell) . if ((pid = fork()) == 0) {
o execl (" /home/bec/bin/primes",
fork () "primes" , 1130011 , 0) ;
exit(1l);
}
pid 0 while (pid !'= wait (0))
. y, . J . -
Applications

(\ {) ()
? ?
context(P) context(C)
Process Files o o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child e oiq
int pid;
) (shell) . (shell) . >if ((pid = fork()) == 0) {
- execl (" /home/bec/bin/primes",
fork () execl () nprimes", "300", 0);
exit(1l);
}
while (pid !'= wait (0))
\ J \ J . .
Applications
0S
() ()
? ?
context(P) context(C)
Process Files ©c o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child e oiq

int pid;

) (shell) . (shell) . if ((pid = fork()) == 0) {

= execl (" /home/bec/bin/primes",
fork () execl () nprimes", "300", 0);
exit(1l);

}
while (pid !'= wait (0))

\ J \ y, . .

trap Applications

?

context(P) context(C)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child e bid
. int pid;
) (shell) . (primes) . _ if ((pi == 0) {
- execl ("Noome /fc/bin/primes",
fork() "pr s", "300", 0);
exit(1l);
}
while (p#d !'= wait¥%0))
_ J . } J . .
tra Applications

?

context(P) context(C)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child

(shell) (primes)
fork () main ()
wait ()

int pid;
if ((pid = fork()) == 0) {
execl (" /home/bec/bin/primes",
"primes", "300", 0);
exit(1l);
}
while (pid !'= wait (0))

14

Applications

?

context(P)

Process

Subsystem

?

context(C)

Copyright © William C. Cheng

Files

| Subsystem |

Operating Systems - CSCI 402

Put It All Together

Parent Child it ooia
. int pid;
) (shell) - (primes) . if ((pid = fork()) == 0) {
execl (" /home/bec/bin/primes",
fO?k () "primeS" , "300" , 0) ;
wait () exit (1) ;
}
=P while (pid != wait (0))
. v, . V, . .
Applications
0S
() ()
? ?
context(P) context(C)
Process Files ©c o o
Subsystem] | Subsystem |

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child e big
. int pid;
) (shell) _ (primes) . if ((pid = fork()) == 0) {
execl (" /home/bec/bin/primes",
fO?k () "primesll , "300" , 0) ;
wait () exit (1) ;
}
=P while (pid != wait (0))
. J . J . .
trap Applications

?

context(P) context(C)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child e oiq
. int pid;
) (shell) - (primes) . if ((pid = fork()) == 0) {
. execl (" /home/bec/bin/primes",
fo:_:k() exit () nprimes", "300", 0);
wait () exit (1) ;
}
while (pid !'= wait (0))
\ \ J - J i .
tra Applications

?

context(P) context(C)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child e oiq
. int pid;
) (shell) - (primes) . if ((pid = fork()) == 0) {
. execl (" /home/bec/bin/primes",
fo:_:k() exit () nprimes", "300", 0);
wait () exit (1) ;
}
while (pid !'= wait (0))
\ \ J \ J . .
tra trap Applications

context(P) context(C)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child e oiq
. int pid;
) (shell) . (primes) if ((pid = fork()) == 0) {
. execl (" /home/bec/bin/primes",
fo:_:k() it () nprimes", "300", 0);
wait () exit (1) ;
}
=P while (pid != wait (0))
_ \ J - -
tra tra Applications

(* ‘) 4)
4 Y 4
LI 4
N
context(P) cpfitexf(Q)
Y 2 £ -
Process Files o o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child e big
. int pid;
) (shell) . (primes) if ((pid = fork()) == 0) {
. execl (" /home/bec/bin/primes",
fo:_:k() it () nprimes", "300", 0);
wait () exit (1) ;
}
pid =P while (pid != wait (0))
. J . .
tra Applications

?

context(P)

Process Files e o o
Subsystem | Subsystem |

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child e big
. int pid;
) (shell) . (primes) if ((pid = fork()) == 0) {
. execl (" /home/bec/bin/primes",
fo:_:k() it () nprimes", "300", 0);
wait () exit (1); /* never here */
}
pid while (pid !'= wait (0))
_ J/ . .
tra Applications

?

context(P)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

More On System Calls

_) Sole interface between user and kernel
= this interface (definition of system calls) is what distinguishes
one OS from another
Q in this class, we focus on Sixth-Edition Unix

ﬁ> Implemented as library routines that execute "trap’ machine
instructions to enter kernel

_, Errors indicated by returning an invalid value
= error code is in a global variable named errno

if (write(fd, buffer, bufsize) == -1) {
// error!
printf ("error %d\n", errno);
// see perror

}

= oh Ubuntu: "man 2 write'" Oor 'man -s 2 write"

= search man pages in all sections: "'man -k ...

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

System Calls

write (fd, buf, len)

User portion of
address space

CPU \
mode U/ 4
Ep| o S —
esp[o]
EBP
Kernel portion of

_, Inreality, a user address space
program cannot use the
entire address space

Copyright © William C. Cheng

System Calls

- J write (fd, buf, len)

L

Y
A

§~A

kernel text

A

kernel stack

_, Inreality, a user

other stuff

program cannot use the
entire address space

) Is this the same "thread of execution"?

= is this the same process?

Copyright © William C. Cheng

Operating Systems - CSCI 402

. User portion of
address space

J\\

Kernel portion of
address space

System Calls

- J write (fd, buf, len)

L

cpy trap |nto‘kernel Y
‘ A
mode | P/K “
) 2
EIP | &— .
ESP o—_| | t‘ kwrite (£fd, buf, 1len)
EBP 4

_, Inreality, a user

other stuff

program cannot use the
entire address space

) Is this the same "thread of execution"?

= is this the same process?
Copyright © William C. Cheng

J\\

-

Operating Systems - CSCI 402

User portion of
address space

Kernel portion of
address space

Operating Systems - CSCI 402

Multiple Processes

—= the same kernel
spans across all
user processes
Q although there

are kernel-only
processes as

kernil fext well (and they
kernel stack don’t make
°t“er45‘—“” system calls)
kernel stack = process is just
other stuff g

A an abstraction
kernel stack i
other sttt QO the kernel is

A very powerful

kernel stack
other stuff

Copyright © William C. Cheng

Operating Systems - CSCI 402

1.3 A Simple OS

) OS Structure
ﬁ} Processes, Address Spaces, & Threads
_,> Managing Processes

_, Loading Program Into Processes

_) Files

Copyright © William C. Cheng

Operating Systems - CSCI 402

Files

) Our "primes" program wasn’t too interesting
= it has no output!
= cannot even verify that it's doing the right thing
= other program cannot use its resulit
= how does a process write to someplace outside the process?

_) Files

= abstraction of persistent data storage
—= means for fetching and storing data outside a process
Q Including disks, another process, keyboard, display, etc.
Q need to name these different places
<& hierarchical naming structure
Q part of a process’s extended address space
& file "cursor position” is part of "execution context”

ﬁ> The notion of a file is our Unix system’s sole abstraction for this
concept of "someplace outside the process” |
= modern Unix systems have additional abstractions 3 @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Naming Files

) Directory system
= shared by all processes running on a computer
Q although each process can have a different view
Q Unix provides a means to restrict a process to a subtree
& by redefining what "root"” means for the process
— name space is outside the processes
Q a user process provides the name of a file to the OS
Q the OS returns a handle to be used to access the file
& after it has verified that the process is allowed access
along the entire path, starting from root
Q user process uses the handle to read/write the file
& avoid subsequent access checks

ﬁ} Using a handle (which can be an index into a kernel array) to refer
to an object managed by the kernel is an important concept
= handles are essentially an extension to the process’s

address space 3 @!,2_
=

Q cah even survive execs!
Copyright © William C. Cheng

Operating Systems - CSCI 402

The File Abstraction
_) Afile is a simple array of bytes

ﬁ> Files are made larger by writing beyond their current end
= although you cannot read past the current end

ﬁ} Files are named by paths in a naming tree

) File API

= open (), read(), write (), close()
= e.(., cat

G> System calls on files are synchronous (unfortunately, Computer
Science likes to use the same word to mean different things)
= here, it means that the system call will not return until the
operation is considered completed

Copyright © William C. Cheng

Operating Systems - CSCI 402

File Handles (File Descriptors)

int £d;

char buffer[1024];

int count;

if ((fd = open("/home/bc/file", O_RDWR)
// the file couldn’t be opened
perror (" /home/bec/£file") ;
exit (1) ;

-1) {

}

if ((count = read(fd, buffer, 1024)) == -1) {
// the read failed
perror ("read") ;
exit (1) ;

}

// buffer now contains count bytes read from the file

= what is O_ RDWR?

= what does perror () do?

= cursor position in an opened file depends on what
functions/system calls you use |
O what about C++? 3 2?2;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Standard File Descriptors

_, Standard File Descriptors
= 0 is stdin (by default, "map/connect” to the keyboard)
= 1 is stdout (by default, "'map/connect” to the display)
= 2 is stderr (by default, "'map/connect” to the display)

main () {
char buf[BUFSIZE];
int n;
const char *note = "Write failed\n";

while ((n = read (0, buf, sizeof(buf))) > 0)
if (write(l, buf, n) !'= n) {
(void)write (2, note, strlen(note));
exit (EXIT_FAILURE);

}
return (EXIT_SUCCESS) ;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Back to Primes

ﬁ} Have our primes program write out the solution, i.e., the primes|[]
array

int nprimes;
int *prime;
int main(int argc, char *argv[]) {

for (i=1; i<nprimes; i++) {

}

if (write(l, prime, nprimes*sizeof(int)) == -1) {
perror ("primes output");
exit (1) ;

}

return (0) ;

}

= the output is not readable by human

Copyright © William C. Cheng

Operating Systems - CSCI 402

Human-Readable Output

int nprimes;
int *prime;
int main(int argc, char *argv[]) {

for (i=1; i<nprimes; i++) {

}
for (i=0; i<nprimes; i++) {

fprintf (stdout, "%d\n", primel[il]);
}

return (0) ;

_) fprintf(stdout, ...) isthe same as printf(...)
—= stdout is a pre-defined file pointer
= please see the Programming FAQ regarding the difference
between a file descriptor and a file pointer

Copyright © William C. Cheng

>

>

>

Copyright © William C. Cheng

Operating Systems - CSCI 402

Allocation of File Descriptors

For each process, the kernel maintains a file descriptor table, which
is an array of pointers to "file objects”

— a file object represents an opened file

= a file descriptor is simply an index to this array

Whenever a process requests a new file descriptor, the lowest
numbered file descriptor not already associated with an open
file is selected; thus

#include <fcntl.h>
#include <unistd.h>

close (0);
fd = open("file", O_RDONLY);

—= the above will always associate "file” with file descriptor 0
(assuming that open () succeeds)

You will need to implement the above rule in the kernel 2
assighment

Operating Systems - CSCI 402

Running It

if (fork() == 0) {
/* set up file descriptor 1 in the child process */
close(1l);
if (open("/home/bc/Output”", O_WRONLY) == -1) {
perror (" /home/bc/Output") ;
exit (1) ;
}

execl ("/home/be/bin/primes", "primes", "300", 0);
exit (1) ;
}

/* parent continues here */
while (pid '= wait (0)) /* ignore the return code */

= close (1) removes file descriptor 1 from extended address

space

file descriptors are allocated /owest first on open ()

extended address space survives execs

new code is same as running |
% primes 300 > /home/bc/Output ﬂgg?

Copyright © William C. Cheng

[

[

[

Operating Systems - CSCI 402

/O Redirection

% primes 300 > /home/bc/Output

ﬁ> The ">" parameter in a shell command that instructs the command
shell to redirect the output to the given file
= [If ">" weren’t there, the output would go to the display

G> Can also redirect input
% cat < /home/bc/Output
—= when the "cat"” program reads from file descriptor 0, it would
get the data bytes from the file "/home/bc/Output”

Copyright © William C. Cheng

Operating Systems - CSCI 402

File Descriptor Table

_) Afile descriptor refers not just to a file
= [t also refers to the process’s current context for that file

Q includes how the file is to be accessed (how open () was
invoked)

Q cursor position / file position
<& next location (zero-based array index) to read/write

<% Initialized to 0 when a file is opened

Copyright © William C. Cheng

Operating Systems - CSCI 402

File Object

ﬁ} Context (or "execution context"”) information must be maintained by

the OS and not directly by the user program
= In this class, we will say that a file object is used to maintain the

context information about an opened file
= [n addition to cursor position, a file object must also remember

how a file was opened

ﬁ} Let’s say a user program opened a file with O_RDONLY

= later on it calls write () using the opened file descriptor

= how does the OS knows that it doesn’t have write access?
Q stores O RDONLY in context

= if the user program can manipulate the context, it can
change O _RDONLY to O_ RDWR

= therefore, user program must not have access to context!
Q all it can see is the handle
Q the file handle is an index into an array maintained for

the process in kernel’s address space (A

Copyright © William C. Cheng

Operating Systems - CSCI 402

File-Descriptor Table

File-descriptor thLS is yet
table (per process) another pointer
0

"cursor"

File

descriptor
P \» ref access file inode

count | mode |location| pointer

1
2
3
-

User
address space

=

a file object

system file table (system-wide
User Kernel y (sy)

= contextis not stored directly into the file-descriptor table |
Q one-level of indirection 4

Copyright © William C. Cheng

