
0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

1.3 A Simple OS

OS Structure

Processes, Address Spaces, & Threads

Managing Processes

Loading Program Into Processes

Files

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple OS

source license available to universities in 1975 from Bell Labs

occasionally, we will talk about the more advanced topics

Sixth-Edition Unix

had major influence on modern OSes

Linux

MacOS X

Windows

single executable, completely stored in a single file

Fits into 64KB of momory

loaded into memory as the OS boots

monolithic OS

since this is an intro class, we will focus on the fundamentals

The main focus of this class is on how to build an OS

this is not a "tech" class

Solaris

most computers have at least two modes of execution

Processor modes: part of the processor state (recall from your

computer organization/architecture class regarding "processor")

privileged mode: most privileges

the whole OS run in the privileged mode

For Sixth-Edition Unix

everything else is an application and run in the user mode

major subsystems providing OS functionality may run in the

user mode

For other systems

We use the word "kernel" to mean the portion of the OS that

runs in privileged mode

sometimes, a subset of this

the only code that runs in this mode is part of the OS

user mode: fewest privileges

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Hardware Support - User vs. Privileged Modes

executes interrupt service routine

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple OS Structure

Application programs call upon the OS via traps

External devices call upon the OS via interrupts

Traps

Interrupts

OS

I/O completion interrupt

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple OS Structure

Review of "Computer Organization"

EIP

ESP

EBP

...

idx regs gen regs

EAX

...

CS

SS

...

seg regs other

x86 Processor

32

A0-A31

D0-D31

32

RD

WR

INT

LOCK

processor

mode

flags

...

interrupt

enabled

Memory

Device

Controller

Bus

Device

Controller

EBX

bus architecture
Read Bus Cycle

A[0..31] &x

D[0..31]

RD

data

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple OS Structure

Review of "Computer Organization"

EIP

ESP

EBP

...

idx regs gen regs

EAX

...

CS

SS

...

seg regs other

x86 Processor

32

A0-A31

D0-D31

32

RD

WR

INT

LOCK

processor

mode

flags

...

interrupt

enabled

Memory

Device

Controller

Bus

Device

Controller

EBX

bus architecture
Write Bus Cycle

A[0..31]

D[0..31]

WR

&y

data

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple OS Structure

EIP

ESP

EBP

...

idx regs gen regs

EAX

...

CS

SS

...

seg regs other

x86 Processor

32

A0-A31

D0-D31

32

RD

WR

INT

LOCK

processor

mode

flags

...

interrupt

enabled

Memory

Device

Controller

Bus

Address Space

data

text
(code)

dynamic
(heap)

stackEBX

Review of "Computer Organization"

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple OS Structure

EIP

ESP

EBP

...

idx regs gen regs

EAX

...

CS

SS

...

seg regs other

x86 Processor

32

A0-A31

D0-D31

32

RD

WR

INT

LOCK

processor

mode

flags

...

interrupt

enabled

Memory

Device

Controller

Bus

Address Space

data

text
(code)

dynamic
(heap)

stackEBX

Review of "Computer Organization"

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple OS Structure

EIP

ESP

EBP

...

idx regs gen regs

EAX

...

CS

SS

...

seg regs other

x86 Processor

32

A0-A31

D0-D31

32

RD

WR

INT

LOCK

processor

mode

flags

...

interrupt

enabled

Memory

Device

Controller

Bus

Address Space

data

text
(code)

dynamic
(heap)

stackEBX

Review of "Computer Organization"

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple OS Structure

EIP

ESP

EBP

...

idx regs gen regs

EAX

...

CS

SS

...

seg regs other

x86 Processor

32

A0-A31

D0-D31

32

RD

WR

INT

LOCK

processor

mode

flags

...

interrupt

enabled

Memory

Device

Controller

Bus

Address Space

data

text
(code)

dynamic
(heap)

stackEBX

Review of "Computer Organization"

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple OS Structure

EIP

ESP

EBP

...

idx regs gen regs

EAX

...

CS

SS

...

seg regs other

x86 Processor

32

A0-A31

D0-D31

32

RD

WR

INT

LOCK

processor

mode

flags

...

interrupt

enabled

Memory

Device

Controller

Bus

Address Space

data

text
(code)

dynamic
(heap)

stackEBX

Review of "Computer Organization"

z = x + y

mov &x → eax
mov &y → ebx
add(eax,ebx)

mov eax → &z

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple OS Structure

EIP

ESP

EBP

...

idx regs gen regs

EAX

...

CS

SS

...

seg regs other

x86 Processor

32

A0-A31

D0-D31

32

RD

WR

INT

LOCK

processor

mode

flags

...

interrupt

enabled

Memory

Device

Controller

Bus

Address Space

data

text
(code)

dynamic
(heap)

stackEBX

Review of "Computer Organization"

interrupt pending

interrupt delivery

interrupt context

thread context

Some important terms:

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple OS Structure

EIP

ESP

EBP

...

idx regs gen regs

EAX

...

CS

SS

...

seg regs other

x86 Processor

32

A0-A31

D0-D31

32

RD

WR

INT

LOCK

processor

mode

flags

...

interrupt

enabled

Memory

Device

Controller

Bus

EBX

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Traps

although we usually think of traps as errors

Traps are the general means for invoking the

kernel from user code

divide by zero, segmentation fault, bus error, etc.

but they don’t have to be

system calls, page fault, etc.

for programming errors, the default action is to terminate

the user program

Traps always elicit some sort of response

for system calls, the OS is asked to perform some service

for page faults, the OS need to fix the virtual memory map

Appl.

OS

HW

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Special Kind Of Trap - System Calls

must be done carefully and correctly

Invoking OS functionality in the kernel is more complex

but we want to make it look simple to applications

really cannot trust the application programmers to do the

right thing every time

Provide system calls through which user code can access the

kernel in a controlled manner

any necessary checking on whether the request should be

permitted can be done in the system call

if all goes well

all done in user mode

sets things up

traps into the kernel by executing a special machine

instruction, i.e., the "trap" machine instruction

the kernel figures out why it was invoked and handles

the trap

more in Ch 3

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupts

An interrupt is a request from an external device

for a response from the processor

interrupts are handled independently of any user program

unlike a trap, which is handled as part of the program that

caused the trap where response to a trap directly affects

that program

response to an interrupt may or may not indirectly affect the

currently running program

often has no direct effect on the currently running

program

Appl.

OS

HWmost hardware interrupts are I/O completion

interrupts

an I/O device is telling the CPU, "I am done" (and "what do

you want me to do next?")

I/O devices are also hardware, they can run in parallel

with the CPU, don’t keep them idle unless you have

nothing for them to work on

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupts

An interrupt is an asynchronous event

Appl.

OS

HW
it’s asynchronous with respect to the executing

entity (threads or OS)

A trap occurs synchronously with respect to the executing entity

when your thread executes a divide-by-zero instruction, we

know exactly where it happens and we know when it will happen

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Software Interrupt

There’s also something called software interrupt

generated programmatically (i.e., not by a

device) when executing a machine instruction

this is very different from a hardware interrupt

x86 CPU uses a software interrupt (i.e., "int 0x2e") to

implement the "trap" machine instruction

Appl.

OS

HW

although the mechanisms of handling interrupts are all very

similar as we will see in Ch 3

e.g., executing an "interrupt" machine instruction

other CPUs may have a separate "trap" machine instruction

the handler might clean up after the error and then terminate

the program, or it might perform corrective action and continue

with normal execution

A program may establish a handler

(i.e., a signal handler) to be invoked

in response to the error

signals allow the kernel to invoke code that’s part of user

program

The upcall mechanism

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Upcall

for example, you can set a timer to expire at a certain time,

when it expires, the OS can use the upcall mechanism to

call a specified user function on behalf of the user program

more in Ch 2

Appl.

OS

HW

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

1.3 A Simple OS

OS Structure

Processes, Address Spaces, & Threads

Managing Processes

Loading Program Into Processes

Files

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Program Execution

memory

Fundamental abstraction of program execution

processor(s)

recall that thread is an abstraction of processor

address space

in Sixth-Edition Unix, processes do not share address space

"execution context"

represents exactly "where you are" in the program

a thread needs some sort of a context to execute

things that are addressable by the program are kept

together here

recall that process is an abstraction of memory

which represents the state of a process and its threads

save (execution) context and restore (execution) context

Note: multiple meanings of the word "context" in this class

thread context vs. interrupt context

reserved words at

in blue

My color codes for code

numeric and string

constants are in red

comments in green

black otherwise

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Program

const int nprimes = 100;
int prime[nprimes];
int main() {
 int i;
 int current = 2;
 prime[0] = current;
 for (i=1; i<nprimes; i++) {
 int j;
 NewCandidate:
 current++;
 for (j=0; prime[j]*prime[j] <= current; j++) {
 if (current % prime[j] == 0)
 goto NewCandidate;
 }
 prime[i] = current;
 }
 return(0);
}

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Turing Machine Model of Computation

an infinite tape which is divided

into cells, one next to the other

(i.e., infinite storage)

one symbol in each cell (or can

be a blank symbol)

A Turing Machine consists of

a head that can read and write

symbols on the tape and move the tape left and right one (and

only one) cell at a time

a finite table of instructions that, given the state the machine

is currently in and the symbol it is reading on the tape tells

the machine to do the following in sequence

either erase or write a symbol

a state register that stores the state of the Turing machine,

one of finitely many (i,e., finite state)

move the head

assume the same or a new state as prescribed

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The Unix Address Space

stack

bss

data

text
low memory

address

dynamic

high memory

address

This is part of the tape of the Turing Machine

executable code

initialized data

uninitialized data

(block started by symbols)

the rest of the tape of the Turing Machine can be reached

by using the "extended address space"

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Note About Naming Objects

"objects" is the word we use to mean any

data types (primitive, data structures, pointers)

How do you name objects in an address space

Variables

name each object

stack

text

dynamic

bss

adam

betty

chad

deb

eve

fred

a variable refers to a memory location

need pointers

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Note About Naming Objects

"objects" is the word we use to mean any

data types (primitive, data structures, pointers)

How do you name objects in an address space

name each object

Variables

name an object with a base and an index

Arrays

Dynamically create objects do not have names

no variable can have a "heap address"

stack

text

dynamic

bss

a variable refers to a memory location

child (adam)

(chad)

(fred)

(betty)

(deb)
(eve)

no variable can have a "heap address"

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Note About Naming Objects

"objects" is the word we use to mean any

data types (primitive, data structures, pointers)

How do you name objects in an address space

name each object

Variables

name an object with a base and an index

Arrays

need pointers

Dynamically create objects do not have names

function arguments and local variables

For objects that lives in the

stack, same name is used

for different object instances

text

dynamic

bss

data

main()stack frame for main()

family_tree(child)stack frame for family_tree()

family_tree(child)stack frame for family_tree()

a variable refers to a memory location

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Modified Program

int nprimes; // in bss region
int *prime; // in bss region
int main(int argc, char *argv[]) { // in stack
 int i; // in stack
 int current = 2; // in stack
 nprimes = atoi(argv[1]);
 prime = (int*)malloc(nprimes*sizeof(int));
 prime[0] = current;
 for (i=1; i<nprimes; i++) {
 ...
 }
 return(0);
}

what is argv[1] and why atoi()?

what is sizeof()?

what does malloc() do?

where do all the variables reside?

stack

text

dynamic

bss

data

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

1.3 A Simple OS

OS Structure

Processes, Address Spaces, & Threads

Managing Processes

Loading Program Into Processes

Files

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Program Execution

for processes

With abstraction, comes an interface / API

fork(), exit(), wait(), exec()

it’s very important to understand what they do exactly

because you will implement them in kernel assignments

Example: relationship between a shell (i.e., a command

interpreter, such as /bin/tcsh) and /bin/ls 0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Creating a Process

make a copy of a process (the parent process)

Creating a process is deceptively simple

this is the only way to create a process

pid_t fork(void)

the process where fork() is called is the parent process

the copy is the child process

in a way, fork() returns twice

once in the parent, the returned value is the

process ID (PID) of the child process

once in the child, the returned value is 0

a PID is 16-bit long

Ch 7 shows speed up tricks

Making a copy of the entire address space can be expensive

e.g., text segment is read-only so parent and child can share it

0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Creating a Process: Before

fork()

parent proces

0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Creating a Process: After

fork()

// returns p

parent proces

fork()

// retuns 0

child proces
(pid = p)

0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Process Control Blocks

return code (when a process dies) is 8-bit long

Process Control Block (PCB) is a kernel data structure

pretty much every field is unsigned

the "Link" field points to the next PCB

but, the next PCB in what list?

so that the parent process can know what happened to child

Return code

PID

Process

Control Block

Link

Parent

?

0123

35

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Process Control Blocks

return code (when a process dies) is 8-bit long

Process Control Block (PCB) is a kernel data structure

pretty much every field is unsigned

the "Link" field points to the next PCB

but, the next PCB in what list?

so that the parent process can know what happened to child

Above is not a real implementation (just an example)

Return code

Return code Return code

PID

Terminated children

Link

PID

Process

Control Block

Terminated children

Link

PID

Terminated children

Link

Parent

Dead Child Dead Child?

? ?

0123

36

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The exit() System Calls

void exit(int status)

The exit() system call

your process can call exit(n) to self-terminate

set n to be the "exit/return code" of this process

this sytem call does not return (your process will die inside

the kernel)

Return code

Return code Return code

PID

Terminated children

Link

PID

Process

Control Block

Terminated children

Link

PID

Terminated children

Link

Parent

Dead Child Dead Child?

? ?

0123

37

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The exit() System Calls

void exit(int status)

The exit() system call

your process can call exit(n) to self-terminate

set n to be the "exit/return code" of this process

this sytem call does not return (your process will die inside

the kernel)

Where does the "primes" program go after it executes the

"return(0)"?

it returns to a "startup" function

the code of the "startup" function is simply:

exit(main());

returns the PID of a dead child process where (*status)

is the exit/return code of the corresponding child process

0123

38

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The wait() System Calls

pid_t wait(int *status)

The wait() system call

your process can call wait() to wait for any child process to die

if there are more than one dead child processes, one of

them will be chosen at random

Return code

Return code Return code

PID

Terminated children

Link

PID

Process

Control Block

Terminated children

Link

PID

Terminated children

Link

Parent

Dead Child Dead Child?

? ?

Return code

Return code Return code

PID

Terminated children

Link

PID

Process

Control Block

Terminated children

Link

PID

Terminated children

Link

Parent

Dead Child Dead Child?

? ?

0123

39

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The wait() System Calls

pid_t wait(int *status)

The wait() system call

your process can call wait() to wait for any child process to die

it’s a blocking call, i.e., the calling process gets suspended

inside the kernel if this call cannot return yet

what does exit(n) do other than copying n into PCB?

least significant 8-bits of n

what happens when main() calls return(n)?

eventually, exit(n) will be invoked

pid_t wait(int *status) is a blocking call

it reaps dead child processes one at a time

e.g., this is the first step when /bin/tcsh forks /bin/ls

0123

40

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Fork and Wait
short pid;
if ((pid = fork()) == 0) {
 /* some code is here for the child to execute */
 exit(n);
} else {
 int ReturnCode;
 while(pid != wait(&ReturnCode))
 ;
 /* the child has terminated with ReturnCode as
 its return code */
}

parent and child are the same "program" here!

0123

41

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Fork and Wait
short pid;
if ((pid = fork()) == 0) {
 /* some code is here for the child to execute */
 exit(n);
} else {
 int ReturnCode;
 while(pid != wait(&ReturnCode))
 ;
 /* the child has terminated with ReturnCode as
 its return code */
}

Return code

Return code Return code

PID

Terminated children

Link

PID

Process

Control Block

Terminated children

Link

PID

Terminated children

Link

Parent

Dead Child Dead Child?

? ?

0123

42

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Fork and Wait
short pid;
if ((pid = fork()) == 0) {
 /* some code is here for the child to execute */
 exit(n);
} else {
 int ReturnCode;
 while(pid != wait(&ReturnCode))
 ;
 /* the child has terminated with ReturnCode as
 its return code */
}

you can write any code you want, you just shouldn’t expect your

code to work if you write weird code

What if you don’t want to write your code this way?

you need to understand exactly what these system calls do

and use them appropriately

if you do something weird, the OS will try to satisfy your

request, but may end up with results you don’t expect

0123

43

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Process Termination Issues

OS must not reuse PID too quickly or there may be ambiguity

PID is only 16-bits long

parent needs to get the return code

When exit() is called, the OS must not free up PCB too quickly

Solutions for both is for the terminated child process to go into

a zombie state

only after wait() returned with the child’s PID can the PID

be reused and the PCB can be freed up

it’s okay to free up everything else (such as address space)

but what if the parent calls exit() while the child is in the

zombie state?

process 1 (the process with PID=1) inherits all the children of

this parent process

process 1 keeps calling wait() to reap the zombies

this is known as "reparenting"

0123

44

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

1.3 A Simple OS

OS Structure

Processes, Address Spaces, & Threads

Managing Processes

Loading Program Into Processes

Files

0123

45

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Loading Programs Into Processes

make a copy of a process

any process

How do you run a program?

replace the child process with a new one

using a family of system calls known as exec

kind of a waste to make a copy in the first place

but it’s the only way

wipe out the child process

also, the OS does not know if the reason the parent process

calls fork() is to run a new program or not

not everything, some stuff survives this (i.e., won’t get

destroyed)

definitely need a new address space since we will be

running a different program

int execl(const char *path,
 const char *arg, ...);

0123

46

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Exec

int pid;
if ((pid = fork()) == 0) {
 /* we’ll discuss what might take place before
 exec is called */
 execl("/home/bc/bin/primes", "primes", "300", 0);
 exit(1);
}
/* parent continues here */
while(pid != wait(0)) /* ignore the return code */
 ;

what does execl() do?

"man execl" says:

what’s up with "..."?

this is called "varargs" (similar to printf())

isn’t "primes" in the 2nd argument kind of redundent?

fork()

// returns p

parent proces

0123

47

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Loading a New Image

exec(prog,

args)

child process

Before

fork()

// returns p

parent proces

0123

48

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Loading a New Image

exec(prog,

args)

child process

Before

child process

After

prog’s data

prog’s text

prog’s bss

args

0123

49

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Exec

the same code as before

Your login shell forks off a child process, load the primes

program on top of it, wait for the child to terminate

% primes 300

exit(1) would get called if somehow execl() returned

if execl() is successful, it cannot return since the code is

gone (i.e., the code segment has been replaced by the

code segment of "primes")

int pid;
if ((pid = fork()) == 0) {
 execl("/home/bc/bin/primes", "primes", "300", 0);
 exit(1);
}
while(pid != wait(0)) /* ignore the return code */
 ;

Process
Subsystem

Files
Subsystem

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

50

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Process
Subsystem

Files
Subsystem

context(P)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

51

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

trap

Where do you keep "context"?

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

52

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(shell)

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

53

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(shell)

pid

?

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

54

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(shell)

pid 0

??

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

55

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(shell)

pid 0

??

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

56

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(shell)

execl()

??

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

57

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(shell)

trap

execl()

?

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

58

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

trap

?

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

59

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

wait()

?

main()

?

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

60

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

wait()

? ?

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

61

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

trap

wait()

?

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

62

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

trap

wait()
exit()

?

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

63

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

trap

wait()

trap

exit()

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

64

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

trap

wait()

trap

exit()

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

65

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

wait()

trap

pid

?

exit()

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1); /* never here */

}

while(pid != wait(0))

 ;

0123

66

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Process
Subsystem

Files
Subsystem

Applications

Parent
(shell)

fork()

OS

Child
(primes)

exit()
wait()

trap

pid

context(P) context(C)

?

0123

67

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

More On System Calls

Sole interface between user and kernel

Implemented as library routines that execute "trap" machine

instructions to enter kernel

Errors indicated by returning an invalid value

if (write(fd, buffer, bufsize) == -1) {
 // error!
 printf("error %d\n", errno);
 // see perror
}

error code is in a global variable named errno

this interface (definition of system calls) is what distinguishes

one OS from another

in this class, we focus on Sixth-Edition Unix

on Ubuntu: "man 2 write" or "man -s 2 write"

search man pages in all sections: "man -k ..."

write(fd, buf, len)

0123

68

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

System Calls

Kernel portion of

address space

User portion of

address space

EIP

ESP

EBP

CPU

mode U

In reality, a user

program cannot use the

entire address space

Is this the same "thread of execution"?

In reality, a user

program cannot use the

entire address space

is this the same process?

other stuff

0123

69

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

System Calls

write(fd, buf, len)

kernel text

Kernel portion of

address space

User portion of

address spacetrap into kernel

kernel stack

other stuff

0123

70

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

System Calls

write(fd, buf, len)

Kernel portion of

address space

User portion of

address spacetrap into kernel

Is this the same "thread of execution"?

In reality, a user

program cannot use the

entire address space

EIP

ESP

EBP

CPU

mode P/K

is this the same process?

kwrite(fd, buf, len)

process is just

an abstraction

0123

71

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Multiple Processes

kernel stack
other stuff

kernel text

kernel stack
other stuff

kernel stack
other stuff

kernel stack
other stuff

the same kernel

spans across all

user processes

although there

are kernel-only

processes as

well (and they

don’t make

system calls)

the kernel is

very powerful

0123

72

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

1.3 A Simple OS

OS Structure

Processes, Address Spaces, & Threads

Managing Processes

Loading Program Into Processes

Files

it has no output!

Our "primes" program wasn’t too interesting

cannot even verify that it’s doing the right thing

other program cannot use its result

0123

73

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Files

how does a process write to someplace outside the process?

abstraction of persistent data storage

Files

means for fetching and storing data outside a process

including disks, another process, keyboard, display, etc.

need to name these different places

hierarchical naming structure

part of a process’s extended address space

file "cursor position" is part of "execution context"

The notion of a file is our Unix system’s sole abstraction for this

concept of "someplace outside the process"

modern Unix systems have additional abstractions

shared by all processes running on a computer

Directory system

0123

74

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Naming Files

although each process can have a different view

by redefining what "root" means for the process

Unix provides a means to restrict a process to a subtree

name space is outside the processes

a user process provides the name of a file to the OS

the OS returns a handle to be used to access the file

after it has verified that the process is allowed access

along the entire path, starting from root

user process uses the handle to read/write the file

avoid subsequent access checks

Using a handle (which can be an index into a kernel array) to refer

to an object managed by the kernel is an important concept

handles are essentially an extension to the process’s

address space

can even survive execs!

0123

75

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The File Abstraction

A file is a simple array of bytes

Files are made larger by writing beyond their current end

Files are named by paths in a naming tree

System calls on files are synchronous (unfortunately, Computer

Science likes to use the same word to mean different things)

File API

open(), read(), write(), close()

e.g., cat

here, it means that the system call will not return until the

operation is considered completed

although you cannot read past the current end

0123

76

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File Handles (File Descriptors)

int fd;
char buffer[1024];
int count;
if ((fd = open("/home/bc/file", O_RDWR) == -1) {
 // the file couldn’t be opened
 perror("/home/bc/file");
 exit(1);
}
if ((count = read(fd, buffer, 1024)) == -1) {
 // the read failed
 perror("read");
 exit(1);
}
// buffer now contains count bytes read from the file

what is O_RDWR?

what does perror() do?

cursor position in an opened file depends on what

functions/system calls you use

what about C++?

0123

77

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Standard File Descriptors

main() {
 char buf[BUFSIZE];
 int n;
 const char *note = "Write failed\n";

 while ((n = read(0, buf, sizeof(buf))) > 0)
 if (write(1, buf, n) != n) {
 (void)write(2, note, strlen(note));
 exit(EXIT_FAILURE);
 }
 return(EXIT_SUCCESS);
}

0 is stdin (by default, "map/connect" to the keyboard)

Standard File Descriptors

1 is stdout (by default, "map/connect" to the display)

2 is stderr (by default, "map/connect" to the display)

0123

78

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Back to Primes

int nprimes;
int *prime;
int main(int argc, char *argv[]) {
 ...
 for (i=1; i<nprimes; i++) {
 ...
 }
 if (write(1, prime, nprimes*sizeof(int)) == -1) {
 perror("primes output");
 exit(1);
 }
 return(0);
}

Have our primes program write out the solution, i.e., the primes[]

array

the output is not readable by human

0123

79

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Human-Readable Output

int nprimes;
int *prime;
int main(int argc, char *argv[]) {
 ...
 for (i=1; i<nprimes; i++) {
 ...
 }
 for (i=0; i<nprimes; i++) {
 fprintf(stdout, "%d\n", prime[i]);
 }
 return(0);
}

fprintf(stdout, ...) is the same as printf(...)

stdout is a pre-defined file pointer

please see the Programming FAQ regarding the difference

between a file descriptor and a file pointer

the above will always associate "file" with file descriptor 0

(assuming that open() succeeds)

Whenever a process requests a new file descriptor, the lowest

numbered file descriptor not already associated with an open

file is selected; thus

#include <fcntl.h>
#include <unistd.h>
...
close(0);
fd = open("file", O_RDONLY);

0123

80

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Allocation of File Descriptors

You will need to implement the above rule in the kernel 2

assignment

For each process, the kernel maintains a file descriptor table, which

is an array of pointers to "file objects"

a file object represents an opened file

a file descriptor is simply an index to this array

0123

81

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Running It

if (fork() == 0) {
 /* set up file descriptor 1 in the child process */
 close(1);
 if (open("/home/bc/Output", O_WRONLY) == -1) {
 perror("/home/bc/Output");
 exit(1);
 }
 execl("/home/bc/bin/primes", "primes", "300", 0);
 exit(1);
}
/* parent continues here */
while(pid != wait(0)) /* ignore the return code */
 ;

close(1) removes file descriptor 1 from extended address

space

file descriptors are allocated lowest first on open()

new code is same as running

% primes 300 > /home/bc/Output

extended address space survives execs

0123

82

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

I/O Redirection

If ">" weren’t there, the output would go to the display

The ">" parameter in a shell command that instructs the command

shell to redirect the output to the given file

% primes 300 > /home/bc/Output

when the "cat" program reads from file descriptor 0, it would

get the data bytes from the file "/home/bc/Output"

Can also redirect input

% cat < /home/bc/Output

0123

83

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File Descriptor Table

it also refers to the process’s current context for that file

includes how the file is to be accessed (how open() was

invoked)

A file descriptor refers not just to a file

cursor position / file position

next location (zero-based array index) to read/write

initialized to 0 when a file is opened

Let’s say a user program opened a file with O_RDONLY

0123

84

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File Object

Context (or "execution context") information must be maintained by

the OS and not directly by the user program

later on it calls write() using the opened file descriptor

how does the OS knows that it doesn’t have write access?

stores O_RDONLY in context

if the user program can manipulate the context, it can

change O_RDONLY to O_RDWR

therefore, user program must not have access to context!

all it can see is the handle

the file handle is an index into an array maintained for

the process in kernel’s address space

in this class, we will say that a file object is used to maintain the

context information about an opened file

in addition to cursor position, a file object must also remember

how a file was opened

ref
count

access
mode

file
location

inode
pointer

File-descriptor
table (per process)

this is yet

another pointer

"cursor"

0123

85

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File-Descriptor Table

Kernel

User

address space

0
1
2
3

n-1

File
descriptor

context is not stored directly into the file-descriptor table

one-level of indirection

User

a file object

system file table (system-wide)

