
1)

What if a signal is generated while a process is blocked in a

system call?

deal with it when the system call completes

2) interrupt the system call, deal with signal, resume system

call

3) interrupt system call, deal with signal, return from system

call with indication that something happened

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Signals and Blocking System Calls

most systems choose (3)

errno sets to EINTR to mean that the system call was

not completed because it was interrupted by a signal

this may be the reason why pthread_cond_wait() may

return "spontaneously" even when the CV has not been

signaled/broadcasted

this is the errno for the thread that was "deviated" to

execute the signal handler

what if this thread was borrowed to deliver a signal?

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupted System Calls

while(read(fd, buffer, buf_size) == -1) {
 if (errno == EINTR) {
 /* interrupted system call; try again */
 continue;
 }
 /* the error is more serious */
 perror("big trouble");
 exit(1);
}

need to check the return value of read() because read() can

return when less than buf_size bytes have been read

same consideration as read()

can use similar code for write()

please note that the above code is incomplete, it needs to

handle the case where read() return 0 to mean end-of-input

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupted While Underway

remaining = total_count; /* write this many bytes */
bptr = buf; /* starting from here */
for (; ;) {
 num_xfrd = write(fd, bptr, remaining);
 if (num_xfrd == -1) {
 if (errno == EINTR) {
 /* interrupted early */
 continue;
 }
 perror("big trouble");
 exit(1);
 }
 if (num_xfrd < remaining) {
 /* interrupted in the middle of write() */
 remaining -= num_xfrd;
 bptr += num_xfrd;
 continue;
 }
 /* success! */
 break;
}

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupted System Calls

and block all appropriate signals in all "regular" threads

If a thread can "see" signal delivery (i.e., "deviated to execute a

signal handler"), every read() and write() call in that thread

needs to look like the previous slides

much easier if you use a signal-catching thread

for warmup2, it is strongly encouraged that you do it this way

to catch <Ctrl+C> and avoid using a signal handler

when sigwait() returns, lock mutex, set global flag,

cancel packet arrival and token depositing threads,

broadcast CV, unlock mutex, and self-terminate

according to spec, you must not cancel server threads

will talk about cancellation shortly

Which library routines are safe to use within signal handlers?

Note: in general, you should only do what’s absolutely

necessary inside a signal handler (and figure out where to

do the rest)

access

aio_error

aio_suspend

alarm

cfgetispeed

cfgetospeed

cfsetispeed

cfsetospeed

chdir

chmod

chown

clock_gettime

close

creat

dup2

dup

execle

execve

_exit

fcntl

fdatasync

fork

fstat

fsync

getegid

geteuid

getgid

getoverrun

getgroups

getpgrp

getpid

getppid

getuid

kill

link

lseek

mkdir

mkfifo

open

pathconf

pause

pipe

rename

rmdir

sem_post

setgid

setpgid

setsid

setuid

sigaction

sigaddset

sigdelset

sigemptyset

sigfillset

sigismember

sigpending

sigprocmask

sigqueue

sigsuspend

sleep

stat

sysconf

tcdrain

tcflow

tcflush

tcgetattr

tcgetpgrp

tcsendbreak

tcsetattr

tcsetpgrp

time

timer_getoverrun

timer_gettime

timer_settime

times

umask

uname

unlink

utime

wait

waitpid

write

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Inside A Signal Handler

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Cancellation

The user pressed <Ctrl+C>

or a request is generated to terminate the process

the chores being performed by the remaining threads are no

longer needed

Concerns

getting cancelled at an inopportune moment

cleaning up (free up resources that only this thread can free up)

a mutex left locked

in general, we may just want to cancel a bunch of threads

and not the entire process

a data structure is left in an inconsistent state

e.g., you get a cancellation request when you are in the

middle of a insert() operation into a doubly-linked list

and insert() is protected by a mutex

memory leaks

unlocking mutex if locked

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Cancellation State & Type

Send cancellation request to a thread (this is a non-blocking call)

pthread_cancel(thread)

Cancels enabled or disabled

int pthread_setcancelstate(
 { PTHREAD_CANCEL_DISABLE,
 PTHREAD_CANCEL_ENABLE},
 &oldstate)

Asynchronous vs. deferred cancels

int pthread_setcanceltype(
 { PTHREAD_CANCEL_ASYNCHRONOUS,
 PTHREAD_CANCEL_DEFERRED},
 &oldtype)

By default, a thread has cancellation enabled and deferred

it’s for a good reason

if you are going to change it, you must ask yourself, "Why?"

and "Are you sure this is really a good idea?"

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

POSIX Cancellation Rules

POSIX threads cancellation rules (part 1):

when pthread_cancel() gets called, the target thread is

marked as having a pending cancel

if the target thread has cancellation disabled, the target

thread stays in the pending cancel state

if the target thread has cancellation enabled ...

if the cancellation type is asynchronous, the target

thread immediately acts on cancel (i.e., cancellation is

"delivered" by "deviating" the thread to call pthread_exit())

if the cancellation type is deferred, cancellation is

delayed until it reaches a cancellation point in its execution

cancellation points correspond to points in the thread’s

execution at which it is safe to act on cancel

the thread that called pthread_cancel() does not wait for

the cancel to take effect

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Cancellation Points

aio_suspend

close

creat

fcntl (when F_SETLCKW

 is the command)

fsync

mq_receive

mq_send

msync

nanosleep

open

pause

pthread_cond_wait

pthread_cond_timedwait

pthread_join

pthread_testcancel

read

sem_wait

sigsuspend

sigtimedwait

sigwait

sigwaitinfo

sleep

system

tcdrain

wait

waitpid

write

pthread_mutex_lock() is not on the list!

pthread_testcancel() creates a cancellation point

useful if a thread contains no other cancellation point

POSIX threads cancellation rules (part 2):

when a thread acts on cancel

in pthread_exit(), it first walks through a stack of cleanup

handlers

remember that the thread that called pthread_cancel()

does not wait for the cancel to take effect

it may join and wait for the target thread to terminate

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

POSIX Cancellation Rules

pthread_cleanup_push(
 (void)(*routine)(void *),
 void *arg)
pthread_cleanup_pop(int execute)

when stack is empty, the thread goes into the zombie state

it calls pthread_exit()

How can this thread control when it acts on cancel?

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

list_item_t list_head;

void *GatherData(void *arg) {
 list_item_t *item;
 item = (list_item_t*)malloc(sizeof(list_item_t));

 // GetDataItem() contains many cancellation points
 GetDataItem(&item->value);

 insert(item); // add item to a global list
 printf("Done.\n");
 return 0;
}

so it doesn’t leak memory

although this implementation is technically "correct", long delay

may not be acceptable

How can this thread control when it acts on cancel?

0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

list_item_t list_head;

void *GatherData(void *arg) {
 list_item_t *item;
 item = (list_item_t*)malloc(sizeof(list_item_t));
 pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, 0);
 // GetDataItem() contains many cancellation points
 GetDataItem(&item->value);
 pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, 0);
 insert(item); // add item to a global list
 printf("Done.\n");
 return 0;
}

so it doesn’t leak memory

need to respond in a timely manner

0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

list_item_t list_head;

void *GatherData(void *arg) {
 list_item_t *item;
 item = (list_item_t*)malloc(sizeof(list_item_t));
 pthread_cleanup_push(free, item);
 // GetDataItem() contains many cancellation points
 GetDataItem(&item->value);

 insert(item); // add item to a global list
 printf("Done.\n");
 return 0;
}

in C library, free() is defined as: void free(void *ptr);

perfectly matches the argument types for
pthread_cleanup_push()

Can act on cancel inside GetDataItem()

in this case, will invoke free(item)

0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

list_item_t list_head;

void *GatherData(void *arg) {
 list_item_t *item;
 item = (list_item_t*)malloc(sizeof(list_item_t));
 pthread_cleanup_push(free, item);
 // GetDataItem() contains many cancellation points
 GetDataItem(&item->value);

 insert(item); // add item to a global list
 printf("Done.\n");
 return 0;
}

can cause segmentation fault later

What if it acts on cancel inside printf()

will end up calling free(item) twice

0123

35

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

list_item_t list_head;

void *GatherData(void *arg) {
 list_item_t *item;
 item = (list_item_t*)malloc(sizeof(list_item_t));
 pthread_cleanup_push(free, item);
 // GetDataItem() contains many cancellation points
 GetDataItem(&item->value);
 pthread_cleanup_pop(0);
 insert(item); // add item to a global list
 printf("Done.\n");
 return 0;
}

can cause segmentation fault later

What if it acts on cancel inside printf()

will end up calling free(item) twice

pop free(item) off the cleanup stack

0123

36

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

list_item_t list_head;

void *GatherData(void *arg) {
 list_item_t *item;
 item = (list_item_t*)malloc(sizeof(list_item_t));
 pthread_cleanup_push(free, item); // {
 // GetDataItem() contains many cancellation points
 GetDataItem(&item->value);
 pthread_cleanup_pop(0); // }
 insert(item); // add item to a global list
 printf("Done.\n");
 return 0;
}

compile-time error

must match up (like a

pair of brackets)

pthread_cleanup_push() and the corresponding

pthread_cleanup_pop() must match up (like a pair of brackets)

must not call pthread_cleanup_push() in one function and

call the corresponding pthread_cleanup_pop() in another

0123

37

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Cancellation and Cleanup

fd = open(file, O_RDONLY);
pthread_cleanup_push(close_file, fd);
while(1) {
 read(fd, buffer, buf_size);
 // ...
}
pthread_cleanup_pop(0);

void close_file(int fd) {
 close(fd);
}

int is compatible with void*

well, sort of

void* can be a 64-bit quantity, so may need to be careful

(best to be explicit)

should close any opened files when you clean up

what if the mutex is locked?

0123

38

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Cancellation and Conditions

pthread_mutex_lock(&m);
pthread_cleanup_push(CleanupHandler, argument);

while(should_wait)
 pthread_cond_wait(&cv, &m);
// ... (code containing other cancellation points)
pthread_cleanup_pop(0);
pthread_mutex_unlock(&m);

should CleanupHandler() call pthread_mutex_unlock()?

remember, if the thread is canceled between push() and

pop(), we need to ensure that the mutex is locked

must not unlock the mutex twice!

pthread_cond_wait() is a cancellation point

should CleanupHandler() call pthread_mutex_lock() then

call pthread_mutex_unlock()?

application cannot solve this problem since there is no way

to check if a mutex is locked or not

0123

39

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Cancellation and Conditions

pthread_mutex_lock(&m);
pthread_cleanup_push(pthread_mutex_unlock, &m);

while(should_wait)
 pthread_cond_wait(&cv, &m);
// ... (code containing other cancellation points)
pthread_cleanup_pop(1);

pthreads library implementation ensures that a thread, when

acting on a cancel inside pthread_cond_wait(), would first

lock the mutex, before calling the cleanup routines

this way, the above code would work correctly

this makes it impossible for those threads to act on cancel

when they have the mutex locked

0123

40

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Warmup2 Cancellation

can make the following simplification for these two threads:

at the start of their first procedures, disable cancellation

Only packet arrival and token depositing threads are allowed

to be canceled

make cancellation requests only when mutex is locked

right before calling usleep(), enable cancellation

when usleep() returns, disable cancellation again

this way, during the time the mutex is locked, cancellation

is always disabled

therefore, don’t have to worry about using cleanup

routines to unlock mutex

but didn’t we just say that it’s not a good idea to disable

cancellation?

use a <Ctrl+C>-catching thread (i.e., use sigwait())

also, need to take care of a race condition

Note: current C++ standard also does not support thread

cancellation
0123

41

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Cancellation & C++

void tcode() {
 A a1;
 pthread_cleanup_push(handler, 0);
 foo();
 pthread_cleanup_pop(0);
}

void foo() {
 A a2;
 pthread_testcancel();
}

are the destructors of a1 and a2 getting called?

not sure

they should get called

some C++ implementation does not do this correctly!

standard C++ threads must self-terminate!

