Operating Systems - CSCI 402

Signals and Blocking System Calls

ﬁ} What if a signal is generated while a process is blocked in a
system call?
1) deal with it when the system call completes
2) interrupt the system call, deal with signal, resume system
call
3) interrupt system call, deal with signal, return from system
call with indication that something happened
= most systems choose (3)
Q errno sets to EINTR to mean that the system call was
not completed because it was interrupted by a signal
& this is the errno for the thread that was "deviated” to
execute the signal handler
Q this may be the reason why pthread_cond_wait () may
return "spontaneously” even when the CV has not been
sighaled/broadcasted
& what if this thread was borrowed to deliver a signal? (\
0 —

3

WO

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupted System Calls

while (read (fd, buffer, buf_size) == -1) {
if (errno == EINTR) {
/* interrupted system call; try again */
continue;

}

/* the error is more serious */
perror ("big trouble");
exit (1) ;

—= heed to check the return value of read () because read () can
return when less than buf_size bytes have been read

= can use similar code for write ()
Q same consideration as read ()

—= please note that the above code is incomplete, it needs to
handle the case where read () return 0 to mean end-of-input

Copyright © William C. Cheng

Operating Systems - CSCI 402
Interrupted While Underway

remaining = total_count; /* write this many bytes */
bptr = buf; /* starting from here */
for (; ;) {

num_xfrd = write(fd, bptr, remaining);

if (num_xfrd == -1) {
if (errno == EINTR) {
/* interrupted early */
continue;

}

perror ("big trouble");
exit (1) ;
}
if (num_xfrd < remaining) {
/* interrupted in the middle of write() */

remaining —= num_xfrd;
bptr += num_xfrd;
continue;

}

/* success! */
break;

}

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupted System Calls

ﬁ} If a thread can "see" signal delivery (i.e., "deviated to execute a
signal handler"), every read () and write () call in that thread
needs to look like the previous slides
= much easier if you use a signal-catching thread

Q and block all appropriate signals in all "regular” threads
Q for warmup2, it is strongly encouraged that you do it this way
to catch <Ctrl+C> and avoid using a signal handler
& when sigwait () returns, lock mutex, set global flag,
cancel packet arrival and token depositing threads,
broadcast CV, unlock mutex, and self-terminate
& according to spec, you must not cancel server threads
& will talk about cancellation shortly

Copyright © William C. Cheng

Operating Systems - CSCI 402

Inside A Signal Handler

ﬁ} Which library routines are safe to use within signal handlers?

access dup2 getgroups rename sigprocmask time
aio_error dup getpgrp rmdir sigqueue timer_getoverrun
aio_suspend execle getpid sem_post sigsuspend timer_gettime
alarm execve getppid setgid sleep timer_settime
cfgetispeed _exit getuid setpgid stat times
cfgetospeed fcntl kill setsid sysconf umask
cfsetispeed fdatasync link setuid tcdrain uname
cfsetospeed fork Iseek sigaction tcflow unlink

chdir fstat mkdir sigaddset tcflush utime

chmod fsync mkfifo sigdelset tcgetattr wait

chown getegid open sigemptyset tcgetpgrp waitpid
clock_gettime (geteuid pathconf sigfillset tcsendbreak write

close getgid pause sigismember tcsetattr

creat getoverrun pipe sigpending tcsetpgrp

_, Note: in general, you should only do what’s absolutely
necessary inside a signal handler (and figure out where to |
do the rest) (9}

Copyright © William C. Cheng

Operating Systems - CSCI 402

Cancellation

) The user pressed <Ctrl+C>
= Or a request is generated to terminate the process
= the chores being performed by the remaining threads are no
longer needed
= in general, we may just want to cancel a bunch of threads
and not the entire process

ﬁ} Concerns
= getting cancelled at an inopportune moment
Q a mutex left locked
Q a data structure is left in an inconsistent state
& e.g., you get a cancellation request when you are in the
middle of a insert () operation into a doubly-linked list
and insert () is protected by a mutex
= cleaning up (free up resources that only this thread can free up)
Q memory leaks

Q unlocking mutex if locked 3(\

Copyright © William C. Cheng

Operating Systems - CSCI 402

Cancellation State & Type

) Send cancellation request to a thread (this is a non-blocking call)
pthread_cancel (thread)

ﬁ} Cancels enabled or disabled

int pthread_setcancelstate (
{ PTHREAD_ CANCEL_DISABLE,
PTHREAD_ CANCEL_ENABLE},
&oldstate)

) Asynchronous vs. deferred cancels

int pthread_setcanceltype (
{ PTHREAD_CANCEL_ASYNCHRONOUS,
PTHREAD CANCEIL_DEFERRED},
&oldtype)

) By default, a thread has cancellation enabled and deferred
= [t’s for a good reason
= if you are going to change it, you must ask yourself, "Why?"
and "Are you sure this is really a good idea?"

Copyright © William C. Cheng

Operating Systems - CSCI 402

POSIX Cancellation Rules

_, POSIX threads cancellation rules (part 1):
= when pthread_cancel () gets called, the target thread is
marked as having a pending cancel
Q the thread that called pthread_cancel () does not wait for
the cancel to take effect
= if the target thread has cancellation disabled, the target
thread stays in the pending cancel state
= if the target thread has cancellation enabled ...
Q if the cancellation type is asynchronous, the target
thread immediately acts on cancel (i.e., cancellation is
"delivered” by "deviating" the thread to call pthread_exit ())
Q if the cancellation type is deferred, cancellation is
delayed until it reaches a cancellation point in its execution
<& cancellation points correspond to points in the thread’s
execution at which it is safe to act on cancel

B

Copyright © William C. Cheng

Operating Systems - CSCI 402

Cancellation Points

aio_suspend

close

creat

fentl (when F_SETLCKW
is the command)

fsync

mqg_receive

mqg_send

msync

nanosleep

open

pause

pthread_cond_wait

pthread_cond_timedwait

pthread_join
pthread_testcancel
read
sem_wait
sigsuspend
sigtimedwait
sigwait
sigwaitinfo
sleep

system
tcdrain

wait

waitpid
write

= pthread_mutex_lock () is not on the list!
— pthread_testcancel () creates a cancellation point

Q useful if a thread contains no other cancellation point

Copyright © William C. Cheng

Operating Systems - CSCI 402

POSIX Cancellation Rules

_, POSIX threads cancellation rules (part 2):
= when a thread acts on cancel

Q it calls pthread_exit ()

Q inpthread_exit (), it first walks through a stack of cleanup
handlers
& when stack is empty, the thread goes into the zombie state

QO remember that the thread that called pthread_cancel ()
does not wait for the cancel to take effect
<& 1t may join and wait for the target thread to terminate

pthread_cleanup_push (
(void) (*routine) (void *),
void *arq)
pthread_cleanup_pop (int execute)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example

list_item_t 1list_head;

void *GatherData (void *arg) ({

}

list_item_t *item;
item = (list_item_t*)malloc(sizeof(list_item_t));

// GetDataItem() contains many cancellation points
GetDatalItem(&item—>value);

insert (item); // add item to a global list
printf ("Done.\n");
return O;

ﬁ> How can this thread control when it acts on cancel?

Copyright © William C. Cheng

—= s0 it doesn’t leak memory

Operating Systems - CSCI 402

Example

list_item_t 1list_head;

void *GatherData (void *arg) ({

}

Copyright © William C. Cheng

list_item_t *item;

item = (list_item_t*)malloc(sizeof(list_item_t));
pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, 0);
// GetDataItem() contains many cancellation points

GetDatalItem(&item—>value);
pthread_setcancelstate (PTHREAD_CANCEL_ENABLE, O0);

insert (item); // add item to a global list
printf ("Done.\n");
return O;

ﬁ> How can this thread control when it acts on cancel?

—= s0 it doesn’t leak memory
= although this implementation is technically "correct”, long delay

may not be acceptable

Q need to respond in a timely manner (AR
P y 5 (\

Operating Systems - CSCI 402

Example

list_item_t 1list_head;

void *GatherData (void *arg) ({

}

list_item_t *item;

item = (list_item_t*)malloc(sizeof(list_item_t));
pthread_cleanup_push (free, item);

// GetDataItem() contains many cancellation points
GetDatalItem(&item—>value);

insert (item); // add item to a global list
printf ("Done.\n");
return O;

ﬁ> Can act on cancel inside GetDataItem ()

Copyright © William C. Cheng

= in this case, will invoke free (item)
= In C library, free () is defined as: void free(void *ptr);

Q perfectly matches the argument types for
pthread_cleanup_push ()

Operating Systems - CSCI 402

Example

list_item_t 1list_head;

void *GatherData (void *arg) ({
list_item_t *item;
item = (list_item_t*)malloc(sizeof(list_item_t));
pthread_cleanup_push (free, item);
// GetDataItem() contains many cancellation points
GetDatalItem(&item—>value);

insert (item); // add item to a global list
printf ("Done.\n");
return O;

}

_, What if it acts on cancel inside print £ ()
= Will end up calling free (item) twice
Q can cause segmentation fault later

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example

list_item_t 1list_head;

void *GatherData (void *arg) ({
list_item_t *item;
item = (list_item_t*)malloc(sizeof(list_item_t));
pthread_cleanup_push (free, item);
// GetDataItem() contains many cancellation points
GetDatalItem(&item—>value);

pthread_cleanup_pop (0);
insert (item); // add item to a global list

printf ("Done.\n");
return O;

}

_, What if it acts on cancel inside print £ ()
= Will end up calling free (item) twice
Q can cause segmentation fault later

= pop free (item) Off the cleanup stack

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example

list_item_t 1list_head;

void *GatherData (void *arg) ({

}

list_item_t *item;

item = (list_item_t*)malloc(sizeof(list_item_t));

pthread_cleanup_push(free, item); // {

// GetDataItem() contains manytcancellation points
GetDatalItem(&item—>value);

pthread_cleanup_pop (0); / }

insert (item); // add ite;%\{ lobal list

printf ("Done.\n"); must match up (like a
return 0; pair of brackets)

I:> pthread_cleanup_push () and the corresponding

Copyright © William C. Cheng

pthread_cleanup_pop () must match up (like a pair of brackets)
= must not call pthread_cleanup_push () in one function and
call the corresponding pthread_cleanup_pop () In another

Q compile-time error NN
" B

Operating Systems - CSCI 402

Cancellation and Cleanup

void close_file(int £d) {
close (£d) ;
}

fd = open(file, O_RDONLY);
pthread_cleanup_push (close_file,
while (1) {

read (fd, buffer, buf_size);

//

}
pthread_cleanup_pop (0);

£d) ;

= should close any opened files when you clean up
—= int is compatible with void*

Q well, sort of
Q wvoid* can be a 64-bit quantity, so may need to be careful

(best to be explicit)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Cancellation and Conditions

pthread_mutex_lock (&m) ;
pthread_cleanup_push (CleanupHandler, argument);

while (should_wait)
pthread_cond_wait (&cv, &m);
// ... (code containing other cancellation points)
pthread_cleanup_pop (0) ;
pthread_mutex_unlock (&m) ;

= should CleanupHandler () call pthread_mutex_unlock () ?
Q remember, if the thread is canceled between push () and
pop (), we heed to ensure that the mutex is /locked
QO pthread_cond_wait () is a cancellation point
& must not unlock the mutex twice!
= should CleanupHandler () call pthread_mutex_lock () then
call pthread_mutex_unlock () ?
Q what if the mutex is locked?
= application cannot solve this problem since there is no way (

to check if a mutex is locked or not 38
Copyright © William C. Cheng

Operating Systems - CSCI 402

Cancellation and Conditions

pthread_mutex_lock (&m) ;
pthread_cleanup_push (pthread_mutex_unlock, &m);

while (should_wait)
pthread_cond_wait (&cv, &m);
// ... (code containing other cancellation points)

pthread_cleanup_pop(1l);

= pthreads library implementation ensures that a thread, when
acting on a cancel inside pthread_cond_wait (), would first
lock the mutex, before calling the cleanup routines
Q this way, the above code would work correctly

Copyright © William C. Cheng

Operating Systems - CSCI 402

Warmup2 Cancellation

ﬁ} Only packet arrival and token depositing threads are allowed
to be canceled
= use a <Ctrl+C>-catching thread (i.e., use sigwait ())
—= make cancellation requests only when mutex is locked
Q this makes it impossible for those threads to act on cancel
when they have the mutex locked
= can make the following simplification for these two threads:
Q at the start of their first procedures, disable cancellation
right before calling usleep (), enable cancellation
when usleep () returns, disable cancellation again
this way, during the time the mutex is locked, cancellation
is always disabled
& therefore, don’t have to worry about using cleanup
routines to unlock mutex
Q but didn’t we just say that it’s not a good idea to disable
cancellation?
Q also, need to take care of a race condition
Copyright © William C. Cheng

© O O

Cancellation & C++

void tcode () {
A al;
pthread_cleanup_push (handler, 0);
foo();
pthread_cleanup_pop (0);

}

void foo () {
A a2;
pthread_testcancel () ;

}

= are the destructors of a1 and a2 getting called?
Q not sure
Q they should get called
Q some C++ implementation does not do this correctly!

ﬁ> Note: current C++ standard also does not support thread

cancellation
= sStandard C++ threads must self-terminate!
Copyright © William C. Cheng

Operating Systems - CSCI 402

