
0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Handling Signals

handling it asynchronously

Two ways to handle signals

handling it synchronously

using signal handlers

using sigwait() in a signal-catching thread

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Handling Signals Asynchronously

#include <signal.h>

typedef void (*sighandler_t)(int);

sighandler_t sigset(int signo, sighandler_t handler);
sighandler_t signal(int signo, sighandler_t handler);

sighandler_t OldHandler = sigset(SIGINT, NewHandler);

each signal in a process can have at most one handler

Signal handler

to specify a signal handler of a process, use:

sigset/signal()

sigaction()

returns the current handler (which could be the "default

handler")

more functionality

signal handler is part of the context of a process

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Special Handlers

ignore the signal

SIG_IGN

sigset/signal(SIGINT, SIG_IGN);

use the default handler

SIG_DFL

sigset/signal(SIGINT, SIG_DFL);

usually terminates the process

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

#include <signal.h>

int main() {
 void handler(int);

 sigset(SIGINT, handler);
 while(1)
 ;
 return 1;
}

void handler(int signo) {
 printf("I received signal %d. Whoopee!!\n", signo);
}

but how do you kill this program from your console?

SIGINT is blocked inside handler()

can use the "kill" shell command, e.g., "kill -15 <pid>"

instead of using sigset(), you can also use sigaction()

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

#include <signal.h>

int main() {
 void handler(int);

 sigset(SIGINT, handler);
 while(1)
 ;
 return 1;
}

void handler(int signo) {
 printf("I received signal %d. Whoopee!!\n", signo);
 sigset(SIGINT, handler);
}

in some systems, you may have to

re-establish the signal handler inside

the signal handler if you want to receive

the same signal more than once

sigaction() allows

for more complex

behavior

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

sigaction

int sigaction(int sig,
 const struct sigaction *new,
 struct sigaction *old);

struct sigaction {
 void (*sa_handler)(int);
 void (*sa_sigaction)(int, siginfo_t *, void *);
 sigset_t sa_mask;
 int sa_flags;
};

e.g., block additional

signals (specified by

sa_mask) when

handler is called

int main() {
 struct sigaction act;
 void sighandler(int);
 sigemptyset(&act.sa_mask);
 act.sa_flags = 0;
 act.sa_handler = sighandler;
 sigaction(SIGINT, &act, NULL);
 ...
}

The general rule to provide async-signal safety:

any data structure the signal handler accesses must be

async-signal safe

i.e., an async signal must not corrupt data structures

An alternative is to make async-signal synchronous

use a signal-catching thread to receive a particular signal

Async-Signal Safety: Make your code safe when working with

asynchronous signals

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Async-Signal Safety

The problem with asynchronous signal is that you have to

worry about async-signal safety

if you don’t take care of it just right, bad things can happen

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example 1: Waiting for a Signal

sigset(SIGALRM, DoSomethingInteresting);
...
struct timeval waitperiod = {0, 1000};
 /* seconds, microseconds */
struct timeval interval = {0, 0};
struct itimerval timerval;

timerval.it_value = waitperiod;
timerval.it_interval = interval;

setitimer(ITIMER_REAL, &timerval, 0);
 /* SIGALRM sent in ~one millisecond */

pause(); /* wait for it */

can SIGALRM occur before pause() is called?

Note: strickly speaking, this is not a deadlock

it has a race condition

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example 2: Status Update

#include <signal.h>

computation_state_t state;

int main() {
 void handler(int);
 sigset(SIGINT, handler);
 long_running_proc();
 return 0;
}

long-running job that can take days to complete

the handler() can be used to print a progress report

void long_running_proc() {
 while (a_long_time) {
 update_state(&state);
 compute_more();
 }
}

void handler(int signo) {
 display(&state);
}

need to make sure that state is in a consistent state

our handler() is not async-signal safe

this is a synchronization issue

Note: this is not a deadlock and really not a race condition

this is the case where the code is not async signal safe

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example 2: Status Update

void long_running_proc() {
 while (a_long_time) {
 pthread_mutex_lock(&m);
 update_state(&state);
 pthread_mutex_unlock(&m);
 compute_more();
 }
}

void handler(int signo) {
 pthread_mutex_lock(&m);
 display(&state);
 pthread_mutex_unlock(&m);
}

no (this code is not reentrant)

Does this work?

it may get stuck in handler()

signal handler gets executed till completion

in general, keep it simple and brief

yes, you can deadlock with

yourself even if you only

have one thread

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Masking (Blocking) Signals

Solution: control signal delivery by masking/blocking the signal

don’t mask/block all signals, just the ones you want

a set of signals is represented as a set of bits called
sigset_t

if a mask bit is 1, the corresponding signal is

blocked; otherwise, the corresponding signal is unblocked

which is just an unsigned int
signal mask

TCB

110100110...

when a child thread is created, it inherits signal mask from the

parent thread

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Masking (Blocking) Signals

how is one of three commands:

To examine or change the signal mask of the calling process

SIG_BLOCK: the new signal mask is the union of the current

signal mask and (*set)

#include <signal.h>
int sigprocmask(
 int how,
 const sigset_t *set,
 sigset_t *old);

SIG_UNBLOCK: the new signal mask is the intersection of

the current signal mask and the complement of (*set)

SIG_SETMASK: the new signal mask is (*set)

signal mask

TCB

110100110...

To clear a set:

int sigemptyset(sigset_t *set);

To add or remove a signal from the set:

int sigaddset(sigset_t *set, int signo);
int sigdelset(sigset_t *set, int signo);

Example: to refer to both SIGHUP and SIGINT:

sigset_t set;

sigemptyset(&set);
sigaddset(&set, SIGHUP);
sigaddset(&set, SIGINT);

There are bunch of functions to manipulate sigset_t

be careful, with some APIs, 1 means to

allowed/unblock a signal, and with other APIs,

1 means to blocked a signal

sigset_t set;

sigfillset(&set);
sigdelset(&set, SIGHUP);
sigdelset(&set, SIGINT);

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

sigset_t

signal mask

TCB

110100110...

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example 1: Correct Way of Waiting for a Signal

sigset_t set, oldset;
sigemptyset(&set);
sigaddset(&set, SIGALRM);
sigprocmask(SIG_BLOCK, &set, &oldset);
 /* SIGALRM now masked */
setitimer(ITIMER_REAL, &timerval, 0);
 /* SIGALRM sent in ~one millisecond */
sigfillset(&set);
sigdelset(&set, SIGALRM);
sigsuspend(&set); /* wait for it safely */
 /* SIGALRM masked again */
...
sigprocmask(SIG_SETMASK, &oldset, (sigset_t *)0);
 /* SIGALRM unmasked */

sigsuspend() replaces the caller’s signal mask with the set

of signals pointed to by the argument

in the above, all signals are blocked/masked except for

SIGALRM

atomically unblocks the signal and waits for the signal

atomically unblocks

the signal and waits

for the signal
0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example 1: Correct Way of Waiting for a Signal

sigset_t set, oldset;
sigemptyset(&set);
sigaddset(&set, SIGALRM);
sigprocmask(SIG_BLOCK, &set, &oldset);
 /* SIGALRM now masked */
setitimer(ITIMER_REAL, &timerval, 0);
 /* SIGALRM sent in ~one millisecond */
sigfillset(&set);
sigdelset(&set, SIGALRM);
sigsuspend(&set); /* wait for it safely */
 /* SIGALRM masked again */
...
sigprocmask(SIG_SETMASK, &oldset, (sigset_t *)0);
 /* SIGALRM unmasked */

sigsuspend()

Time

unblocks SIGALRM wait for SIGALRM
ATOMIC

SIGALRM delivery

OK

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Async-Signal Safety

e.g., an alarm that you wind up and wait for is an asynchronous

event you generate

There is only one correct way to wait for an asynchronous event

you generated

Step 1) block the asynchronous event

Step 2) do something that will cause the asynchronous event to

get generated

Step 3) unblock the event and wait for the event in one atomic

operation

There is only one correct way to wait for an asynchronous event

someone else generated

Step 1) block the asynchronous event

Step 2) check if the event has been generated, if not, unblock the

event and wait for the event in one atomic operation

e.g., wait for a guard to become true in a guarded command

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example 2: Correct Way to Handle Status Update

#include <signal.h>

computation_state_t state;
sigset_t set;

int main() {
 void handler(int);
 sigemptyset(&set);
 sigaddset(&set, SIGINT);
 sigset(SIGINT, handler);
 long_running_proc();
 return 0;
}

now SIGINT cannot be

delievered in
update_state()

void long_running_proc() {
 while (a_long_time) {
 sigset_t old_set;
 sigprocmask(
 SIG_BLOCK,
 &set,
 &old_set);
 update_state(&state);
 sigprocmask(
 SIG_SETMASK,
 &old_set,
 0);
 compute_more();
 }
}

void handler(int signo) {
 display(&state);
}

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Signals and Threads

in a single-threaded process, it’s obvious which thread

would handle the signal

In Unix, signals are sent to processes, not threads!

in a multi-threaded process, it’s not so clear

in POSIX, the signal is delivered to a thread chosen at random

should one set of sigmask affect all threads in a process?

What about the signal mask (i.e., blocked/enabled signals)?

or should each thread gets it own sigmask?

this certainly makes more sense

the thread that is to receive the signal is chosen randomly

from the set of threads that do not have the signal blocked

POSIX rules for a multithreaded process:

if all threads have the signal blocked, then the signal

remains pending until some thread unblocks it

at which point the signal is delivered to that thread

child thread inherits signal mask from parent thread

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Synchronizing Asynchrony

some_state_t state;
sigset_t set;

main() {
 pthread_t thread;
 sigemptyset(&set);
 sigaddset(&set,
 SIGINT);
 sigprocmask(
 SIG_BLOCK,
 &set, 0);
 // main thread
 // blocks SIGINT
 pthread_create(
 &thread, 0,
 monitor, 0);
 long_running_proc();
}

void long_running_proc() {
 while (a_long_time) {
 pthread_mutex_lock(&m);
 update_state(&state);
 pthread_mutex_unlock(&m);
 compute_more();
 }
}

void *monitor() {
 int sig;
 while (1) {
 sigwait(&set, &sig);
 pthread_mutex_lock(&m);
 display(&state);
 pthread_mutex_unlock(&m);
 }
 return(0);
}

this is PREFERRED, no need for signal handler!

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

sigwait

int sigwait(sigset_t *set, int *sig)

return which signal caused it to return in sig

sigwait() blocks until a signal specified in set is received

this way, when sigwait() is called, the calling thread

temporarily becomes the only thread in the process who can

receive the signal

You should make sure that all the threads in your process have

these signals blocked!

if you have a signal handler specified for sig, it will not get

invoked when the signal is delivered

instead, sigwait() will return

sigwait(set) atomically

unblocks signals specified

in set and waits for signal

delivery
Time

unblocks signals wait for signal
ATOMIC

signal delivery

OK

