Operating Systems - CSCI 402

Handling Signals

—, Two ways to handle signals
= handling it asynchronously
Q using signal handlers
= handling it synchronously
Q using sigwait () in a signal-catching thread

Copyright © William C. Cheng

Operating Systems - CSCI 402

Handling Signals Asynchronously

ﬁ} Signal handler
= each signal in a process can have at most one handler
— to specify a signal handler of a process, use:
Q sigset/signal ()
& returns the current handler (which could be the "default
handler™)

Q sigaction()
& more functionality

#include <signal.h>
typedef void (*sighandler_t) (int);

sighandler_t sigset (int signo, sighandler_t handler);
sighandler_t signal (int signo, sighandler_t handler);

sighandler_t OldHandler = sigset (SIGINT, NewHandler);

|
= signal handler is part of the context of a process 3 @;
Copyright © William C. Cheng

Special Handlers

) SIG_DFL
= use the default handler
= usually terminates the process
—= sigset/signal (SIGINT, SIG_DFL);

_) SIG_IGN
= ignhore the signal

—= sigset/signal (SIGINT, SIG_IGN);

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Example

#include <signal.h>

int main() {
void handler (int) ;

sigset (SIGINT, handler);
while (1)

4

return 1;

}

void handler (int signo) {
printf ("I received signal %d. Whoopee!!\n", signo);

}

= SIGINT is blocked inside handler ()
= but how do you kill this program from your console?
Q can use the "kill" shell command, e.g., "kill -15 <pid>"

= instead of using sigset (), you can also use sigaction () (i\
&

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example

#include <signal.h>

int main() {
void handler (int) ;

sigset (SIGINT, handler);
while (1)

4

return 1;

}

void handler (int signo) {
printf ("I received signal %d. Whoopee!!\n", signo);
sigset (SIGINT, handler); <-— in some systems, you may have to
} re-establish the signal handler inside
the signal handler if you want to receive
the same signal more than once

Copyright © William C. Cheng

Operating Systems - CSCI 402

sigaction

int sigaction(int sig,
const struct sigaction *new,
struct sigaction *old);

struct sigaction {
void (*sa_handler) (int);
void (*sa_sigaction) (int, siginfo_t *, wvoid ¥*);
sigset_t sa_mask;
int sa_flags;
};
int main() {

|:> sigaction () allows struct sigaction act;
for more complex void sighandler (int);
i sigemptyset (&act.sa_mask);
behavior

- act.sa_flags = O;
= e.g., block additional act.sa_handler = sighandler;
signals (specified by sigaction (SIGINT, &act, NULL);

sa_mask) when

: }
handler is called &!,
%)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Async-Signal Safety

) The problem with asynchronous signal is that you have to
worry about async-signal safety
= If you don’t take care of it just right, bad things can happen

_) Async-Signal Safety: Make your code safe when working with
asynchronous signals

ﬁ> The general rule to provide async-signal safety:
= any data structure the signal handler accesses must be
async-signal safe
Q I.e., an async sighal must not corrupt data structures

ﬁ> An alternative is to make async-signhal synchronous
— use a signal-catching thread to receive a particular signal

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example 1: Waiting for a Signal

sigset (SIGALRM, DoSomethingInteresting);

struct timeval waitperiod = {0, 1000};

/* seconds, microseconds */
struct timeval interval = {0, 0};
struct itimerwval timerval;

timerval.it_value = waitperiod;
timerval.it_interval = interval;

setitimer (ITIMER_REAL, &timerval, O0);
/* SIGALRM sent in ~one millisecond */

pause(); /* wait for it */

= can SIGALRM occur before pause () is called?

> Note: strickly speaking, this is not a deadlock |
= it has a race condition \ @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example 2: Status Update

#include <signal.h> void long_running_ proc () {
while (a_long_time) ({
computation_state_t state; update_state (&state);
compute_more () ;
int main() { }
void handler (int); }
sigset (SIGINT, handler);
long_running_proc(); void handler (int signo) {
return O; display (&state);

} }

= |ong-running job that can take days to complete
Q the handler () can be used to print a progress report
Q need to make sure that state is in a consistent state
Q this is a synchronization issue
Q our handler () is not async-signal safe

ﬁ> Note: this is not a deadlock and really not a race condition
= this is the case where the code is not async signhal safe '

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example 2: Status Update

void long_running_proc() {

}

while (a_long_time) {

pthread_mutex_lock (&m) ;
update_state (&state);
pthread_mutex_unlock (&m) ;
compute_more () ;

void handler (int signo) {

}

pthread_mutex_lock (&m) ;

display (&state);
pthread_mutex_unlock (&m) ;

) Does this work?

Copyright © William C. Cheng

= Nho (this code is not reentrant)

= it may get stuck in handler ()

= signal handler gets executed till completion
Q in general, keep it simple and brief

r

= yes, you can deadlock witt
yourself even if you only
have one thread

Masking (Blocking) Signals

Operating Systems - CSCI 402

ﬁ} Solution: control signal delivery by masking/blocking the signal

= don’t mask/block all signals, just the ones you want
— a set of signals is represented as a set of bits called
sigset_t
Q which is just an unsigned int
Q if a mask bit is 1, the corresponding signal is

TCB

signal mask
[110100110. .|

blocked; otherwise, the corresponding signal is unblocked
= when a child thread is created, it inherits signal mask from the

parent thread

Copyright © William C. Cheng

Operating Systems - CSCI 402

Masking (Blocking) Signals

ﬁ} To examine or change the signal mask of the calling process
#include <signal.h>

int sigprocmask (TCB
int how,
const sigset_t *set, signal mask
sigset_t *Old) . [110100110. .|

) how is one of three commands:
= SIG_BLOCK: the new signal mask is the union of the current
signal mask and (*set)
= SIG_UNBLOCK: the new signal mask is the intersection of
the current signal mask and the complement of (*set)
= SIG_SETMASK: the new sighal mask is (*set)

Copyright © William C. Cheng

Operating Systems - CSCI 402

sigset_t

ﬁ} There are bunch of functions to manipulate sigset_t
= be careful, with some APIs, 1 means to
allowed/unblock a signal, and with other APIs,
1 means to blocked a signal

_) To clear a set:
int sigemptyset (sigset_t *set);

TCB

signal mask
[110100110. .|

_, To add or remove a signal from the set:

int sigaddset (sigset_t *set, int signo);
int sigdelset (sigset_t *set, int signo);

) Example: to refer to both SIGHUP and SIGINT:

sigset_t set; sigset_t set;

sigemptyset (&set); sigfillset (&set);
sigaddset (&set, SIGHUP); sigdelset (&set, SIGHUP);
sigaddset (&set, SIGINT); sigdelset (&set, SIGINT);

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example 1: Correct Way of Waiting for a Signal

sigset_t set, oldset;
sigemptyset (&set) ;
sigaddset (&set, SIGALRM);
sigprocmask (SIG_BLOCK, &set, &oldset);
/* SIGALRM now masked */
setitimer (ITIMER_REAL, &timerval, 0);
/* SIGALRM sent in ~one millisecond */
sigfillset (&set);
sigdelset (&set, SIGALRM);
sigsuspend(&set); /* wait for it safely */
/* SIGALRM masked again */

sigprocmask (SIG_SETMASK, &oldset, (sigset_t *)0);
/* SIGALRM unmasked */

— sigsuspend () replaces the caller’s signal mask with the set
of signals pointed to by the argument
Q iIn the above, all signals are blocked/masked except for
SIGALRM

|
Q atomically unblocks the signal and waits for the signal 143 2.?2;
Copyright © William C. Cheng

Operating Systems - CSCI 402

Example 1: Correct Way of Waiting for a Signal

sigset_t set, oldset;
sigemptyset (&set) ;
sigaddset (&set, SIGALRM);
sigprocmask (SIG_BLOCK, &set, &oldset);
/* SIGALRM now masked */
setitimer (ITIMER_REAL, &timerval, 0);
/* SIGALRM sent in ~one millisecond */
sigfillset (&set);
sigdelset (&set, SIGALRM);
sigsuspend(&set); /* wait for it safely */
/* SIGALRM masked again */

sigprocmask (SIG_SETMASK, &oldset, (sigset_t *)0);
/* SIGALRM unmasked */

= sigsuspend() SIGALRM delivery
Q atomically unblocks WOK
the signal and waits T T o
for the signal unblocks SIGALRM

wait for SIGALRM
ATOMIC 3 ;2!)2—

Copyright © William C. Cheng

Operating Systems - CSCI 402

Async-Signal Safety

ﬁ} There is only one correct way to wait for an asynchronous event
you generated
= e.g., an alarm that you wind up and wait for is an asynchronous
event you generate

Step 1) block the asynchronous event

Step 2) do something that will cause the asynchronous event to
get generated

Step 3) unblock the event and wait for the event in one atomic
operation

ﬁ> There is only one correct way to wait for an asynchronous event
someone else generated
= e.g., wait for a guard to become true in a guarded command

Step 1) block the asynchronous event
Step 2) check if the event has been generated, if not, unblock the
event and wait for the event in one atomic operation 3

16—

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example 2: Correct Way to Handle Status Update

#include <signal.h> void long_running_proc() {
while (a_long_time) ({
computation_state_t state; sigset_t old_set;
sigset_t set; sigprocmask (
SIG_BLOCK,
int main() { &set,
void handler (int) ; &old_set);
sigemptyset (&set) ; update_state (&state);
sigaddset (&set, SIGINT); sigprocmask (
sigset (SIGINT, handler); SIG_SETMASK,
long_running_proc(); &old_set,
return O; 0);
} compute_more () ;

}
}

void handler (int signo) {

= now SIGINT cannot be display (&state);
delievered in }
N
update_state () 17£:>

Copyright © William C. Cheng

Operating Systems - CSCI 402

Signals and Threads

ﬁ} In Unix, signals are sent to processes, not threads!
= in a single-threaded process, it’s obvious which thread
would handle the signal
= In a multi-threaded process, it’s not so clear
Q in POSIX, the signal is delivered to a thread chosen at random

> What about the signal mask (i.e., blocked/enabled signals)?
= should one set of sigmask affect all threads in a process?
= or should each thread gets it own sigmask?
Q this certainly makes more sense

_, POSIX rules for a multithreaded process:
= the thread that is to receive the signal is chosen randomly
from the set of threads that do not have the signal blocked
Q if all threads have the signal blocked, then the signal
remains pending until some thread unblocks it
& at which point the signal is delivered to that thread |
= child thread inherits signal mask from parent thread 3
Copyright © William C. Cheng

Operating Systems - CSCI 402

Synchronizing Asynchrony

some_state_t state; void long_running_proc() {
sigset_t set; while (a_long_time) {
pthread_mutex_lock (&m) ;
main () { update_state (&state);
pthread_t thread; pthread_mutex_unlock (&m) ;
sigemptyset (&set) ; compute_more () ;
sigaddset (&set, }
SIGINT) ; }
sigprocmask (
SIG_BLOCK, void *monitor () {
&set, 0); int sig;
// main thread while (1) {
// blocks SIGINT sigwait (&set, &siqg);
pthread_create (pthread_mutex_lock (&m) ;
&thread, O, display (&state);
monitor, 0); pthread_mutex_unlock (&m) ;
long_running_proc(); }
} return (0) ;
}
= this is PREFERRED, no need for signhal handler! Y

Copyright © William C. Cheng

Operating Systems - CSCI 402

sigwait

int sigwait (sigset_t *set, int *sig)

ﬁ> sigwait () blocks until a signal specified in set is received
= return which signal caused it to return in sig
= if you have a sighal handler specified for sig, it will not get
invoked when the signal is delivered
Q instead, sigwait () will return

ﬁ> You should make sure that all the threads in your process have
these signals blocked!
= this way, when sigwait () is called, the calling thread
temporarily becomes the only thread in the process who can
receive the signal

unblocks signals specified
in set and waits for signal

>Time |
delivery unblocks signals T T 3

wait for signal 20
Copyright © William C. Cheng ATOMIC

ﬁ> sigwait (set) atomically msignal delivery
OK

