Operating Systems - CSCI 402

2.2.4 Thread Safety

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread Safety

ﬁ} Unix was developed way before threads were commonly used
= Unix libraries were built without threads in mind
= running code using these library functions with threads became
unsafe
— to make these library functions safe to run under multithreading
is known as Thread Safety

ﬁ} General problems with the old Unix API
= global variables, e.g., errno
— shared data, e.g., print £ ()

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread Safety vs. Reentrancy

ﬁ} Strictly speaking, making a function thread-safe is not the same as

making it reentrant
= thread-safe: multiple threads can call the function in parallel or

concurrently
= reentrant: enter twice (even if you have only one thread)
QO how do you enter a function twice if you are not running
multiple threads?
<& for a kernel function, you can get interrupted and call the
same funciton inside an interrupt service routine
<& for a user space function, you can get interrupted and the
kernel makes an upcall that calls the same funciton
—= most of the time, making a function thread-safe and making

it reentrant ends up to be the same thing

Q but you need to be careful
Q you can google "reentrancy” to see the difference between

reentrant code and thread-safe code and see examples
= we focus on multi-threading (and "no signal handlers™) 4

Copyright © William C. Cheng

Operating Systems - CSCI 402

Global Variables

int IOfunc(int £d) {
extern int errno;

if (write(fd, buffer, size) == -1) {
if (errno == EIO)
fprintf (stderr, "IO problems ...\n");

return (0) ;

}

= if 2 threads call this function and both failed, how do you
guarantee that a thread would get the right errno?
Q the code is not "thread safe"
—= errno is a system-call level global variable
Q Unix system-call library was implemented before
multi-threading was a common practice / @J

Copyright © William C. Cheng

Coping

_, Fix Unix’s C/system-call interface
= want backwards compatibility

ﬁ} Make errno refer to a different location in each thread
= e.g.,

#define errno __errno (thread_ID)

TCB

Operating Systems - CSCI 402

thread data

errno

= __errno (thread_1ID) Wwill return the thread-specific errno

Q need a place to store this thread-specific errno

Q POSIX threads provides a general mechanism to store

thread-specific data

& Win32 has something similar called thread-local storage

Q POSIX does not specify how this private storage is
allocated and organized
& done with an array of (void*)

& then errno would be at a fixed index into this array

= don’t need to change application, just recompile

Copyright © William C. Cheng

Operating Systems - CSCI 402

Add "Reentrant” Version Of System Call
_) gethostbyname () system call is not "thread safe"

struct hostent *gethostbyname (const char *name)

= [t returns a pointer to a global variable
Q (what a terrible idea!)
= POSIX’s fix for this problem is to add a function to the

system library

int gethostbyname_r (const char *name,
struct hostent *ret,
char *buf,
size_t buflen,
struct hostent **result,
int *h_errnop)

Q caller of this function must provide the buffer to hold the

return data
& (a good idea in general)
Q caller is aware of thread-safety |
& (a more educated programmer is desirable) 3 @

30
Copyright © William C. Cheng

Operating Systems - CSCI 402

Shared Data
ﬁ} Thread 1:

printf ("goto statement reached");

) Thread 2:
printf ("Hello World\n");

) Printed on display:
goto Hello Wostatement reachedrld

Copyright © William C. Cheng

Operating Systems - CSCI 402

Coping

Wrap library calls with synchronization constructs

Fix the libraries

Application can use a mutex

VR VEVEV

If application is using the (FILE*) object in <stdio.h>, can wrap
functions like print £ () around these functions

void flockfile (FILE *filehandle)
int ftrylockfile(FILE *filehandle)
void funlockfile (FILE *filehandle)

— basically, flockfile () would block until lockcount is 0
Q then it increments the lockcount
= funlockfile () decrements the lockcount

Copyright © William C. Cheng

Operating Systems - CSCI 402

Killing Time ...

) To suspend your thread for a certain duration

struct timespec timeout, remaining_time;

timeout.tv_sec = 3; // seconds
timeout .tv_nsec = 1000; // nanoseconds
nanosleep (&timeout, &remaining_time);

= Unix/Linux is "best-effort"
= okay to do this in warmup2 since it only has to run on Ubuntu

ﬁ> The right way to sleep is to say when you want to wake up, e.g.,

int pthread_cond_timedwait (
pthread_cond_t *cond,
pthread_mutex_t *mutex,
struct timespec *abstime)

Q after abstime, give up waiting for an event and return

with an error code
= Yyou need to calculate abstime carefully and correctly

Copyright © William C. Cheng

Copyright © William C. Cheng

Operating Systems - CSCI 402

Timeouts

struct timespec relative_timeout, absolute_timeout;
struct timeval now;

relative_timeout.tv_sec = 3; // seconds

relative_timeout.tv_nsec = 1000; // nanoseconds

gettimeofday (&now, 0);

absolute_timeout.tv_sec = now.tv_sec +
relative_timeout.tv_sec;

absolute_timeout.tv_nsec = 1000*now.tv_usec +

relative_timeout.tv_nsec;
if (absolute_timeout.tv_nsec >= 1000000000) {
// deal with the carry
absolute_timeout.tv_nsec —= 1000000000;
absolute_timeout.tv_sec++;
}
pthread_mutex_lock (&m) ;
while (!may_continue)
pthread_cond_timedwait (&cv, &m, &absolute_timeout);
pthread_mutex_unlock (&m) ;

= must check return code of pthread_cond_timedwait () | @!,}_
3\

Operating Systems - CSCI 402

2.2.5 Deviations

Copyright © William C. Cheng

Operating Systems - CSCI 402

Deviations

ﬁ} How do you ask another thread to deviate from its normal
execution path?
= Unix’s signal mechanism

ﬁ> How do you force another thread to terminate cleanly
= POSIX cancellation mechanism

Copyright © William C. Cheng

Operating Systems - CSCI 402

Signals

int x, y;

x = 0;
y = 16/x;
for (;;)

keep_on_t\rying();

= the original intent of Unix signals was to force the graceful
termination of a process |
Q e.g., <Ctrl+C> 3 @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

The OS to the Rescue

_) Signals
= some would call a signal a software interrupt

Q but it’s really not
& it’s a "callback mechanism”
& implemented in the OS by performing an upcall
= generated (by OS) in response to
Q exceptions (e.g., arithmetic errors, addressing problems)
Q external events (e.g., timer expiration, certain keystrokes,
actions of other processes such as to terminate or pause
the process)
Q user defined events
= effect on process (i.e., when the signal is "delivered”):
Q termination (possibly after producing a core dump)
Q Invocation of a procedure that has been set up to be a
sighal handler (requires an upcall)
Q suspension of execution |
QO resumption of execution 3 @;
Copyright © William C. Cheng

Operating Systems - CSCI 402

Terminology

-<— signal not blocked —>
sighal signal
generation delivery

|| time
N >

I:> Ex: <Ctrl+C>

ﬁ> When a signal is generated, it is delivered as soon as possible if the
signal is not "blocked"

B

Copyright © William C. Cheng

Operating Systems - CSCI 402

Terminology

signhal unblocked

-<«—— signal blocked —

signal signal
: Y / _
geneTatlon delllvery Jlme
| - Signal __ |
pending

I:> Ex: <Ctrl+C>

) Asignal is pending if it's generated but blocked
= when the signal becomes unblocked, it will be delievered

ﬁ> If you replaced the word "signal” with "interrupt” and
"blocked/unblocked" with "disabled/enabled", everything |
would be correct for a hardware interrupt 4

40
Copyright © William C. Cheng

Signal Types

Name Description Default Action
SIGABRT abort called term, core
SIGALRM alarm clock term
SIGCHLD death of a child ighore
SIGCONT continue after stop cont
SIGFPE erroneous arithmetic operation term, core
SIGHUP hangup on controlling terminal term
SIGILL illegal instruction term, core
SIGINT interrupt from keyboard term
SIGKILL kill forced term
SIGPIPE write on pipe with no one to read term
SIGQUIT quit term, core
SIGSEGV invalid memory reference term, core
SIGSTOP stop process forced stop
SIGTERM software termination signal term
SIGTSTP stop signal from keyboard stop
SIGTTIN background read attempted stop
SIGTTOU background write attempted stop
SIGUSR1 application-defined signal 1 stop
SIGUSR2 application-defined signal 2 stop

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Sending a Signal

_) int kill(pid_t pid, int sig)
= send signal sig to process pid
= (not always) terminate with extreme prejudice

_) Also

= type Ctrl-c (or <Ctrl+C>)

Q sends signal 2 (SIGINT) to current process
— kill shell command

Q send SIGINT to process with pid=12345: "kill -2 12345"
= do something illegal

QO bad address, bad arithmetic, etc.

I:> int pthread_kill (pthread_t thr, int sig)
= send signal sig to thread thr (in the same process as the calling
thread)

= avoid using this and use pthread cancellation mechanism

instead if you want to "kill a thread" i
S

Copyright © William C. Cheng

