
0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

2.2.4 Thread Safety

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Safety

Unix libraries were built without threads in mind

Unix was developed way before threads were commonly used

running code using these library functions with threads became

unsafe

to make these library functions safe to run under multithreading

is known as Thread Safety

global variables, e.g., errno

General problems with the old Unix API

shared data, e.g., printf()

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Safety vs. Reentrancy

reentrant: enter twice (even if you have only one thread)

Strictly speaking, making a function thread-safe is not the same as

making it reentrant

how do you enter a function twice if you are not running

multiple threads?

for a kernel function, you can get interrupted and call the

same funciton inside an interrupt service routine

for a user space function, you can get interrupted and the

kernel makes an upcall that calls the same funciton

most of the time, making a function thread-safe and making

it reentrant ends up to be the same thing

thread-safe: multiple threads can call the function in parallel or

concurrently

but you need to be careful

you can google "reentrancy" to see the difference between

reentrant code and thread-safe code and see examples

we focus on multi-threading (and "no signal handlers")

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Global Variables

int IOfunc(int fd) {
 extern int errno;
 ...
 if (write(fd, buffer, size) == -1) {
 if (errno == EIO)
 fprintf(stderr, "IO problems ...\n");
 ...
 return(0);
 }
 ...
}

errno is a system-call level global variable

if 2 threads call this function and both failed, how do you

guarantee that a thread would get the right errno?

Unix system-call library was implemented before

multi-threading was a common practice

the code is not "thread safe"

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Coping

Fix Unix’s C/system-call interface

Make errno refer to a different location in each thread

e.g.,

#define errno __errno(thread_ID)

__errno(thread_ID) will return the thread-specific errno

need a place to store this thread-specific errno

POSIX threads provides a general mechanism to store

thread-specific data

Win32 has something similar called thread-local storage

POSIX does not specify how this private storage is

allocated and organized

done with an array of (void*)

then errno would be at a fixed index into this array

want backwards compatibility

TCB

errno

thread data

don’t need to change application, just recompile

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Add "Reentrant" Version Of System Call

gethostbyname() system call is not "thread safe"

it returns a pointer to a global variable

struct hostent *gethostbyname(const char *name)

POSIX’s fix for this problem is to add a function to the

system library

(what a terrible idea!)

int gethostbyname_r(const char *name,
 struct hostent *ret,
 char *buf,
 size_t buflen,
 struct hostent **result,
 int *h_errnop)

caller of this function must provide the buffer to hold the

return data

(a good idea in general)

caller is aware of thread-safety

(a more educated programmer is desirable)

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Shared Data

Thread 1:

Thread 2:

printf("goto statement reached");

printf("Hello World\n");

Printed on display:

goto Hello Wostatement reachedrld

0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Coping

Wrap library calls with synchronization constructs

Fix the libraries

Application can use a mutex

If application is using the (FILE*) object in <stdio.h>, can wrap

functions like printf() around these functions

void flockfile(FILE *filehandle)
int ftrylockfile(FILE *filehandle)
void funlockfile(FILE *filehandle)

basically, flockfile() would block until lockcount is 0

then it increments the lockcount

funlockfile() decrements the lockcount

The right way to sleep is to say when you want to wake up, e.g.,

0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Killing Time ...

struct timespec timeout, remaining_time;

timeout.tv_sec = 3; // seconds
timeout.tv_nsec = 1000; // nanoseconds
nanosleep(&timeout, &remaining_time);

you need to calculate abstime carefully and correctly

int pthread_cond_timedwait(
 pthread_cond_t *cond,
 pthread_mutex_t *mutex,
 struct timespec *abstime)

To suspend your thread for a certain duration

Unix/Linux is "best-effort"

okay to do this in warmup2 since it only has to run on Ubuntu

after abstime, give up waiting for an event and return

with an error code

0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Timeouts

struct timespec relative_timeout, absolute_timeout;
struct timeval now;
relative_timeout.tv_sec = 3; // seconds
relative_timeout.tv_nsec = 1000; // nanoseconds
gettimeofday(&now, 0);
absolute_timeout.tv_sec = now.tv_sec +
 relative_timeout.tv_sec;
absolute_timeout.tv_nsec = 1000*now.tv_usec +
 relative_timeout.tv_nsec;
if (absolute_timeout.tv_nsec >= 1000000000) {
 // deal with the carry
 absolute_timeout.tv_nsec -= 1000000000;
 absolute_timeout.tv_sec++;
}
pthread_mutex_lock(&m);
while (!may_continue)
 pthread_cond_timedwait(&cv, &m, &absolute_timeout);
pthread_mutex_unlock(&m);

must check return code of pthread_cond_timedwait()

0123

35

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

2.2.5 Deviations

0123

36

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Deviations

How do you ask another thread to deviate from its normal

execution path?

How do you force another thread to terminate cleanly

Unix’s signal mechanism

POSIX cancellation mechanism

int x, y;

x = 0;
...
y = 16/x;

for (;;)
 keep_on_trying();

0123

37

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Signals

the original intent of Unix signals was to force the graceful

termination of a process

e.g., <Ctrl+C>

0123

38

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The OS to the Rescue

generated (by OS) in response to

Signals

effect on process (i.e., when the signal is "delivered"):

exceptions (e.g., arithmetic errors, addressing problems)

external events (e.g., timer expiration, certain keystrokes,

actions of other processes such as to terminate or pause

the process)

termination (possibly after producing a core dump)

invocation of a procedure that has been set up to be a

signal handler (requires an upcall)

suspension of execution

resumption of execution

some would call a signal a software interrupt

user defined events

but it’s really not

it’s a "callback mechanism"

implemented in the OS by performing an upcall

time

0123

39

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Terminology

signal
 generation

signal
delivery

When a signal is generated, it is delivered as soon as possible if the

signal is not "blocked"

Ex: <Ctrl+C>

 signal not blocked

time

0123

40

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Terminology

signal
 pending

signal
 generation

signal
 delivery

A signal is pending if it’s generated but blocked

signal unblocked

 signal blocked

Ex: <Ctrl+C>

when the signal becomes unblocked, it will be delievered

If you replaced the word "signal" with "interrupt" and

"blocked/unblocked" with "disabled/enabled", everything

would be correct for a hardware interrupt

0123

41

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Signal Types

SIGABRT

SIGALRM

SIGCHLD

SIGCONT

SIGFPE

SIGHUP

SIGILL

SIGINT

SIGKILL

SIGPIPE

SIGQUIT

SIGSEGV

SIGSTOP

SIGTERM

SIGTSTP

SIGTTIN

SIGTTOU

SIGUSR1

SIGUSR2

abort called

alarm clock

death of a child

continue after stop

erroneous arithmetic operation

hangup on controlling terminal

illegal instruction

interrupt from keyboard

kill

write on pipe with no one to read

quit

invalid memory reference

stop process

software termination signal

stop signal from keyboard

background read attempted

background write attempted

application-defined signal 1

application-defined signal 2

term, core

term

ignore

cont

term, core

term

term, core

term

forced term

term

term, core

term, core

forced stop

term

stop

stop

stop

stop

stop

Name Description Default Action

0123

42

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Sending a Signal

send signal sig to process pid

int kill(pid_t pid, int sig)

(not always) terminate with extreme prejudice

kill shell command

Also

type Ctrl-c (or <Ctrl+C>)

do something illegal

bad address, bad arithmetic, etc.

sends signal 2 (SIGINT) to current process

send SIGINT to process with pid=12345: "kill -2 12345"

int pthread_kill(pthread_t thr, int sig)

send signal sig to thread thr (in the same process as the calling

thread)

avoid using this and use pthread cancellation mechanism

instead if you want to "kill a thread"

