Operating Systems - CSCI 402

POSIX Condition Variables

Guarded command POSIX implementation
when (guard) [pthread_mutex_lock (&mutex) ;
statement 1; while (!guard)
... pthread_cond_wait (
statement n; &cv,
] &mutex) ;

statement 1;

statement n;
pthread_mutex_unlock (&mutex) ;

[/* code pthread_mutex_lock (&mutex) ;
* modifying /*code modifying the guard:*/
* the guard “ .
* / = pthread_cond_broadcast (&cv) ;

] pthread_mutex_unlock (&mutex) ;

= don’t believe that pthread_cond_signal/broadcast () |
can be called without locking the mutex . @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Readers-Writers Problem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Readers-Writers Pseudocode

reader() { writer() {
when (writers == 0) [when ((writers == 0) &&
readers++; (readers == 0)) [
] writers++;
/* read */]
[readers——;] /* write */
} [writers——;]
}
I
= this is synchronization code A @

Copyright © William C. Cheng

Operating Systems - CSCI 402

Pseudocode with Assertions

reader() { writer() {
when (writers == 0) [when ((writers == 0) &&
readers++; (readers == 0)) [
] writers++;
// sanity check 1
assert ((writers == 0) && // sanity check
(readers > 0)); assert ((readers == 0) &&
/* read */ (writers == 1));

[readers——;] /* write */
} [writers——;]

}

= the sanity checks are really not necessary

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Readers-Writers Pseudocode

reader() { writer() {
when (writers == 0) [when ((writers == 0) &&
readers++; (readers == 0)) [
] writers++;
/* read */]
[readers——;] /* write */
} [writers——;]

}

= Since readers is part of the guard in the implementation of
[readers——;], YOU may heed to signal/broadcast the
corresponding condition used to implement that guard
Q in this case, only have to signal if readers becomes 0
(if the guard may become true)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Readers-Writers Pseudocode

reader() { writer() {
when (writers == 0) [when ((writers == 0) &&
readers++; (readers == 0)) [

]
/* read */
[readers——;]

writers++;

1
/* write */
[writers——;]

}
}

= also, since writers is part of the guards (and these two guards
are not identical), in the implementation of [writers——;], you
may need to signal/broadcast the corresponding conditions
used to implement these guards
Q in this case, signal/browdcast if writers becomes 0 |
(if the guard may become true) 3 @

Copyright © William C. Cheng

Operating Systems - CSCI 402

Readers-Writers Pseudocode

reader() { writer() {
when (writers == 0) [when ((writers == 0) &&
readers++; (readers == 0)) [
] writers++;
/* read */]
[readers——;] /* write ¥/
} [writers—4;]

}

= don’t have to worry about this readers
= don’t have to worry about this writers
Q you need to look at your program logic and figure when
sighal/broadcast conditions won’t be useful
& it’s not wrong to signal/broadcast here, it’s just |
wasteful/inefficient Wy

Copyright © William C. Cheng

Operating Systems - CSCI 402

Readers-Writers Pseudocode

reader() {

writer() {

when (writers == 0) [when ((writers == 0) &&
readers++; (readers == 0)) [

] writers++;

/* read */]

[readers——;]

}

/* write */
[writers——;]

}

= writers behaves like a binary semaphore

= readers behaves like a counting semaphore
= but they are not semaphores

Q due to the definition of a semaphore

Copyright © William C. Cheng

Operating Systems - CSCI 402

Solution with POSIX Threads

reader() { writer() {
when (writers == 0) [when ((writers == 0) &&
readers++; (readers == 0)) [
] writers++;
/* read */]
[readers——;] /* write */
} [writers——;]

"Serialization Box"

" - " . writers,
ﬁ} to be even more "efficient”, can read/write

use multiple CVs
so you don’t have to wak s
you ave 1o a_ e m execute —{ CS,
up a thread unnecessarily 11 execute = CS,
Q here we use one CV for execute —»[CS,

reader’s guard and one CV
for writer’s guard (since
we want to wake them up
1l 1l b
separately) — — A

Copyright © William C. Cheng

@readersQ CV)writersQ

Operating Systems - CSCI 402

Recall POSIX Guarded Command Implementation

Guarded command

POSIX implementation

when (guard) [
statement 1;

statement n;

pthread_mutex_lock (&mutex) ;
while (!guard)
pthread_cond_wait (
&Cv,
&mutex) ;
statement 1;

statement n;
pthread_mutex_unlock (&mutex) ;

[/* code
* modifying
* the guard
*/

pthread_mutex_lock (&émutex) ;
/*code modifying the guard:*/

pthread_cond_broadcast (&cv);
pthread_mutex_unlock (&mutex) ;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Solution with POSIX Threads

reader() { writer() {
pthread_mutex_lock (&m) ; pthread_mutex_lock (&m) ;
while (! (writers == 0)) while (! ((readers == 0) &&
pthread_cond_wait ((writers == 0)))
&readersQ, &m); pthread_cond_wait (
readers++; &writersQ, &m);
pthread_mutex_unlock (&m) ; writers++;
/* read */ pthread_mutex_unlock (&m) ;
pthread_mutex_lock (&m) ; /* write */
if (——readers == 0) pthread_mutex_lock (&m) ;
pthread_cond_signal (writers——;
&writersQ) ; pthread_cond_signal (
pthread_mutex_unlock (&m) ; &writersQ) ;
} pthread_cond_broadcast (

&readersQ) ;
pthread_mutex_unlock (&m) ;

}

= ohe mutex (m) and two condition variables (readersQ and

writersQ) 3

Copyright © William C. Cheng

Operating Systems - CSCI 402

Solution with POSIX Threads

reader() { reader() {
when (writers == 0) [pthread_mutex_lock (&m) ;
readers++; while (! (writers == 0))
] pthread_cond_wait (
/* read */ [:>, &readersQ, &m);
[readers——;] readers++;
} pthread_mutex_unlock (&m) ;

/* read */
pthread_mutex_lock (&m) ;
if (——readers == 0)
pthread_cond_signal (
&writersQ);
pthread_mutex_unlock (&m) ;

= ohe mutex (m) and two condition variables (readersQ and
writersQ) (

Copyright © William C. Cheng

Operating Systems - CSCI 402

Solution with POSIX Threads

writer() { writer() {
when ((writers == 0) && pthread_mutex_lock (&m) ;
(readers == 0)) [while (! ((readers == 0) &&
writers++; (writers == 0)))
1 [:>, pthread_cond_wait (
/* write */ &writersQ, &m);

[writers——;]

}

writers++;
pthread_mutex_unlock (&m) ;
/* write */
pthread_mutex_lock (&m) ;
writers——;
pthread_cond_signal (
&writersQ);
pthread_cond_broadcast (
&readersQ) ;
pthread_mutex_unlock (&m) ;

= ohe mutex (m) and two condition variables (readersQ and

writersQ)

Copyright © William C. Cheng

1;QE§}

Operating Systems - CSCI 402

The Starvation Problem

reader() { writer() {
when (writers == 0) [when ((writers == 0) &&
readers++; (readers == 0)) [
] writers++;
/* read */]
[readers——;] /* write */
} [writers——;]

}

) Can the writer never get a chance to write?
= Yyes, if there are always readers
= s0, this implementation can be unfair to writers

G> Solution

= once a writer arrives, shut the door on new readers
Q writers how means the number of writers wanting to write
Q use active_writers to make sure that only one
writer can do the actual writing at a time %
3(2(1(0) =1
2

Copyright © William C. Cheng

Operating Systems - CSCI 402

Solving The Starvation Problem

reader() { writer() {
when (writers == 0) [[writers++;]
readers++; when ((readers == 0) &&
] (active_writers == 0))
/* read */ [
[readers——;] active_writers++;

}]
/* write */
[writers—;
active_writers——;

]

= now it’s unfair to the readers
= isn’t writing more important than reading anyway?

ﬁ} This is an example of how to give threads priority without
assigning priorities to threads!

Copyright © William C. Cheng

Improved Reader

reader() {
pthread_mutex_lock (&m) ;
while (! (writers == 0))
pthread_cond_wait (
&readersQ, &m);
readers++;
pthread_mutex_unlock (&m) ;
/* read */
pthread_mutex_lock (&m) ;
if (——readers == 0)
pthread_cond_signal (
&writersQ);
pthread_mutex_unlock (&m) ;

— exactly the same as before!

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Improved Writer

writer() {
pthread_mutex_lock (&m) ;

writers++;
while (! ((readers == 0) &&
(active_writers == 0))) {

pthread_cond_wait (&writersQ, &m);
}
active_writers++;
pthread_mutex_unlock (&m) ;
/* write */
pthread_mutex_lock (&m) ;
writers——;
active_writers——;
if (writers > 0)
pthread_cond_signal (&writersQ);
else
pthread_cond_broadcast (&readersQ) ;
pthread_mutex_unlock (&m) ;

Copyright © William C. Cheng

int

int
int
int
int
int
int
int

int

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

New, From POSIX!

pthread_rwlock_init (

pthread_rwlock_t *lock,

pthread_rwlockattr_t *att);
pthread_rwlock_destroy (

pthread_rwlock_t *lock);
pthread_rwlock_rdlock (

pthread_rwlock_t *lock);
pthread_rwlock_wrlock (

pthread_rwlock_t *lock);
pthread_rwlock_tryrdlock (

pthread_rwlock_t *lock);
pthread_rwlock_trywrlock (

pthread_rwlock_t *lock);
pthread_timedrwlock_rdlock (

pthread_rwlock_t *lock, struct timespec *ts);
pthread_timedrwlock_wrlock (

pthread_rwlock_t *lock, struct timespec *ts);
pthread_rwlock_unlock (

pthread_rwlock_t *lock);

Operating Systems - CSCI 402

/

\
/ \

ﬁ> When a thread reaches a barrier, it must stop (do nothing) and
simply wait for other threads to arrive at the same barrier
= when all the threads that were suppose to arrive at the
barrier have all arrived at the barrier, they are all given the
signal to proceed forward
Q the barrier is then reset

) Ex: forkijoin (fork to create parallel execution) ‘ @’_

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Solution?

int count = O0;
pthread_mutex_t m;
pthread_cond_t BarrierQueue;
void barrier_sync() {
pthread_mutex_lock (&m) ;
if (++count < n) {
pthread_cond_wait (&BarrierQueue, &m);
} else {
count = 0;
pthread_cond_broadcast (&BarrierQueue) ;

}

pthread_mutex_unlock (&m) ;

}

= the idea here is to have the last thread broadcast the
condition while all the other threads are blocked at waiting
for the condition to be signaled

= as it turns out, pthread_cond_wait () might return
spontaneously, so this won’t work

I
Q http://pubs.opengroup.org/onlinepubs/009604599/functions/pthread_cond_signal.html 3..’
Copyright © William C. Cheng

Operating Systems - CSCI 402

A Solution?

int count = O0;
pthread_mutex_t m;
pthread_cond_t BarrierQueue;
void barrier_sync() {

pthread_mutex_lock (&m) ;

if (++count < n) {

while (count < n)
pthread_cond_wait (&BarrierQueue, &m);

} else {
pthread_cond_broadcast (&BarrierQueue) ;
count = 0;

}

pthread_mutex_unlock (&m) ;

}

= if the n " thread wakes up all the other blocked threads, most
likely, none of these threads will see count ==

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Solution?

int count = O0;
pthread_mutex_t m;
pthread_cond_t BarrierQueue;
void barrier_sync() {
pthread_mutex_lock (&m) ;
if (++count < n) {
while (count < n)
pthread_cond_wait (&BarrierQueue, &m);
} else {
pthread_cond_broadcast (&BarrierQueue) ;
}
pthread_mutex_unlock (&m) ;
count = 0;

= if the n " thread wakes up all the other blocked threads, most
likely, none of these threads will see count ==

= moving count = 0 around won’t help
Q cannot guarantee all n threads will exit the barrier

Copyright © William C. Cheng

int

Barrier in POSIX Threads

count = 0;

pthread_mutex_t m;
pthread_cond_t BarrierQueue;
void barrier_sync() {
pthread_mutex_lock (&m) ;
if (++count < number) {

}

int my_generation = generation;

while (my_generation == generation)
pthread_cond_wait (&BarrierQueue, &m);

else {

count = 0;

generation++;

pthread_cond_broadcast (&§BarrierQueue) ;

pthread_mutex_unlock (&m) ;

}

= don’t use count in the guard since its problematic!
= Introduce a new guard (with a new variable)

Copyright © William C. Cheng

Operating Systems - CSCI 402

More From POSIX!

int pthread_barrier_init (
pthread_barrier_t *barrier,
pthread_barrierattr_t *attr,
unsigned int count);

int pthread_barrier_destroy (
pthread_barrier_t *barrier);

int pthread_barrier_wait (
pthread_barrier_t *barrier);

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

