
0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

POSIX Condition Variables

when (guard) [
 statement 1;
 ...
 statement n;
]

pthread_mutex_lock(&mutex);
while(!guard)
 pthread_cond_wait(
 &cv,
 &mutex);
statement 1;
...
statement n;
pthread_mutex_unlock(&mutex);

[/* code
 * modifying
 * the guard
 */
]

pthread_mutex_lock(&mutex);
/*code modifying the guard:*/
...
pthread_cond_broadcast(&cv);
pthread_mutex_unlock(&mutex);

POSIX implementationGuarded command

don’t believe that pthread_cond_signal/broadcast()

can be called without locking the mutex

W

W

W

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Readers-Writers Problem

data

R R
R

R
R

R

R

R

R

R
R

R

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Readers-Writers Pseudocode

reader() {
 when (writers == 0) [
 readers++;
]
 /* read */
 [readers--;]
}

writer() {
 when ((writers == 0) &&
 (readers == 0)) [
 writers++;
]
 /* write */
 [writers--;]
}

this is synchronization code

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Pseudocode with Assertions

reader() {
 when (writers == 0) [
 readers++;
]
 // sanity check
 assert((writers == 0) &&
 (readers > 0));
 /* read */
 [readers--;]
}

writer() {
 when ((writers == 0) &&
 (readers == 0)) [
 writers++;
]
 // sanity check
 assert((readers == 0) &&
 (writers == 1));
 /* write */
 [writers--;]
}

the sanity checks are really not necessary

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Readers-Writers Pseudocode

reader() {
 when (writers == 0) [
 readers++;
]
 /* read */
 [readers--;]
}

writer() {
 when ((writers == 0) &&
 (readers == 0)) [
 writers++;
]
 /* write */
 [writers--;]
}

since readers is part of the guard in the implementation of

[readers--;], you may need to signal/broadcast the

corresponding condition used to implement that guard

in this case, only have to signal if readers becomes 0

(if the guard may become true)

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Readers-Writers Pseudocode

reader() {
 when (writers == 0) [
 readers++;
]
 /* read */
 [readers--;]
}

writer() {
 when ((writers == 0) &&
 (readers == 0)) [
 writers++;
]
 /* write */
 [writers--;]
}

also, since writers is part of the guards (and these two guards

are not identical), in the implementation of [writers--;], you

may need to signal/broadcast the corresponding conditions

used to implement these guards

in this case, signal/browdcast if writers becomes 0

(if the guard may become true)

don’t have to worry about this readers

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Readers-Writers Pseudocode

reader() {
 when (writers == 0) [
 readers++;
]
 /* read */
 [readers--;]
}

writer() {
 when ((writers == 0) &&
 (readers == 0)) [
 writers++;
]
 /* write */
 [writers--;]
}

you need to look at your program logic and figure when

signal/broadcast conditions won’t be useful

don’t have to worry about this writers

it’s not wrong to signal/broadcast here, it’s just

wasteful/inefficient

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Readers-Writers Pseudocode

reader() {
 when (writers == 0) [
 readers++;
]
 /* read */
 [readers--;]
}

writer() {
 when ((writers == 0) &&
 (readers == 0)) [
 writers++;
]
 /* write */
 [writers--;]
}

writers behaves like a binary semaphore

readers behaves like a counting semaphore

but they are not semaphores

due to the definition of a semaphore

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Solution with POSIX Threads

reader() {
 when (writers == 0) [
 readers++;
]
 /* read */
 [readers--;]
}

writer() {
 when ((writers == 0) &&
 (readers == 0)) [
 writers++;
]
 /* write */
 [writers--;]
}

writers,
readers

CS1
m

execute

read/write

CV

"Serialization Box"

writersQCV readersQ

so you don’t have to wake

up a thread unnecessarily

to be even more "efficient", can

use multiple CVs

here we use one CV for

reader’s guard and one CV

for writer’s guard (since

we want to wake them up

separately)

CS2execute

CS3execute

CS4execute

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Recall POSIX Guarded Command Implementation

when (guard) [
 statement 1;
 ...
 statement n;
]

pthread_mutex_lock(&mutex);
while(!guard)
 pthread_cond_wait(
 &cv,
 &mutex);
statement 1;
...
statement n;
pthread_mutex_unlock(&mutex);

[/* code
 * modifying
 * the guard
 */
]

pthread_mutex_lock(&mutex);
/*code modifying the guard:*/
...
pthread_cond_broadcast(&cv);
pthread_mutex_unlock(&mutex);

POSIX implementationGuarded command

one mutex (m) and two condition variables (readersQ and

writersQ)
0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Solution with POSIX Threads

reader() {
 pthread_mutex_lock(&m);
 while (!(writers == 0))
 pthread_cond_wait(
 &readersQ, &m);
 readers++;
 pthread_mutex_unlock(&m);
 /* read */
 pthread_mutex_lock(&m);
 if (--readers == 0)
 pthread_cond_signal(
 &writersQ);
 pthread_mutex_unlock(&m);
}

writer() {
 pthread_mutex_lock(&m);
 while(!((readers == 0) &&
 (writers == 0)))
 pthread_cond_wait(
 &writersQ, &m);
 writers++;
 pthread_mutex_unlock(&m);
 /* write */
 pthread_mutex_lock(&m);
 writers--;
 pthread_cond_signal(
 &writersQ);
 pthread_cond_broadcast(
 &readersQ);
 pthread_mutex_unlock(&m);
}

one mutex (m) and two condition variables (readersQ and

writersQ)
0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Solution with POSIX Threads

reader() {
 pthread_mutex_lock(&m);
 while (!(writers == 0))
 pthread_cond_wait(
 &readersQ, &m);
 readers++;
 pthread_mutex_unlock(&m);
 /* read */
 pthread_mutex_lock(&m);
 if (--readers == 0)
 pthread_cond_signal(
 &writersQ);
 pthread_mutex_unlock(&m);
}

reader() {
 when (writers == 0) [
 readers++;
]
 /* read */
 [readers--;]
}

one mutex (m) and two condition variables (readersQ and

writersQ)
0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Solution with POSIX Threads

writer() {
 pthread_mutex_lock(&m);
 while(!((readers == 0) &&
 (writers == 0)))
 pthread_cond_wait(
 &writersQ, &m);
 writers++;
 pthread_mutex_unlock(&m);
 /* write */
 pthread_mutex_lock(&m);
 writers--;
 pthread_cond_signal(
 &writersQ);
 pthread_cond_broadcast(
 &readersQ);
 pthread_mutex_unlock(&m);
}

writer() {
 when ((writers == 0) &&
 (readers == 0)) [
 writers++;
]
 /* write */
 [writers--;]
}

reader() {
 when (writers == 0) [
 readers++;
]
 /* read */
 [readers--;]
}

writer() {
 when ((writers == 0) &&
 (readers == 0)) [
 writers++;
]
 /* write */
 [writers--;]
}

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The Starvation Problem

yes, if there are always readers

Can the writer never get a chance to write?

so, this implementation can be unfair to writers

once a writer arrives, shut the door on new readers

Solution

writers now means the number of writers wanting to write

use active_writers to make sure that only one

writer can do the actual writing at a time

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Solving The Starvation Problem

reader() {
 when (writers == 0) [
 readers++;
]
 /* read */
 [readers--;]
}

writer() {
 [writers++;]
 when ((readers == 0) &&
 (active_writers == 0))
 [
 active_writers++;
]
 /* write */
 [writers--;
 active_writers--;
]
}

now it’s unfair to the readers

isn’t writing more important than reading anyway?

This is an example of how to give threads priority without

assigning priorities to threads!

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Improved Reader

reader() {
 pthread_mutex_lock(&m);
 while (!(writers == 0))
 pthread_cond_wait(
 &readersQ, &m);
 readers++;
 pthread_mutex_unlock(&m);
 /* read */
 pthread_mutex_lock(&m);
 if (--readers == 0)
 pthread_cond_signal(
 &writersQ);
 pthread_mutex_unlock(&m);
}

exactly the same as before!

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Improved Writer

writer() {
 pthread_mutex_lock(&m);
 writers++;
 while (!((readers == 0) &&
 (active_writers == 0))) {
 pthread_cond_wait(&writersQ, &m);
 }
 active_writers++;
 pthread_mutex_unlock(&m);
 /* write */
 pthread_mutex_lock(&m);
 writers--;
 active_writers--;
 if (writers > 0)
 pthread_cond_signal(&writersQ);
 else
 pthread_cond_broadcast(&readersQ);
 pthread_mutex_unlock(&m);
}

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

New, From POSIX!

int pthread_rwlock_init(
 pthread_rwlock_t *lock,
 pthread_rwlockattr_t *att);
int pthread_rwlock_destroy(
 pthread_rwlock_t *lock);
int pthread_rwlock_rdlock(
 pthread_rwlock_t *lock);
int pthread_rwlock_wrlock(
 pthread_rwlock_t *lock);
int pthread_rwlock_tryrdlock(
 pthread_rwlock_t *lock);
int pthread_rwlock_trywrlock(
 pthread_rwlock_t *lock);
int pthread_timedrwlock_rdlock(
 pthread_rwlock_t *lock, struct timespec *ts);
int pthread_timedrwlock_wrlock(
 pthread_rwlock_t *lock, struct timespec *ts);
int pthread_rwlock_unlock(
 pthread_rwlock_t *lock);

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Barriers

when all the threads that were suppose to arrive at the

barrier have all arrived at the barrier, they are all given the

signal to proceed forward

When a thread reaches a barrier, it must stop (do nothing) and

simply wait for other threads to arrive at the same barrier

the barrier is then reset

Ex: fork/join (fork to create parallel execution)

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Solution?

int count = 0;
pthread_mutex_t m;
pthread_cond_t BarrierQueue;
void barrier_sync() {
 pthread_mutex_lock(&m);
 if (++count < n) {
 pthread_cond_wait(&BarrierQueue, &m);
 } else {
 count = 0;
 pthread_cond_broadcast(&BarrierQueue);
 }
 pthread_mutex_unlock(&m);
}

the idea here is to have the last thread broadcast the

condition while all the other threads are blocked at waiting

for the condition to be signaled

as it turns out, pthread_cond_wait() might return

spontaneously, so this won’t work

http://pubs.opengroup.org/onlinepubs/009604599/functions/pthread_cond_signal.html

if the n
 th

 thread wakes up all the other blocked threads, most

likely, none of these threads will see count == n

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Solution?

int count = 0;
pthread_mutex_t m;
pthread_cond_t BarrierQueue;
void barrier_sync() {
 pthread_mutex_lock(&m);
 if (++count < n) {
 while (count < n)
 pthread_cond_wait(&BarrierQueue, &m);
 } else {
 pthread_cond_broadcast(&BarrierQueue);
 count = 0;
 }
 pthread_mutex_unlock(&m);
}

if the n
 th

 thread wakes up all the other blocked threads, most

likely, none of these threads will see count == n

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Solution?

int count = 0;
pthread_mutex_t m;
pthread_cond_t BarrierQueue;
void barrier_sync() {
 pthread_mutex_lock(&m);
 if (++count < n) {
 while (count < n)
 pthread_cond_wait(&BarrierQueue, &m);
 } else {
 pthread_cond_broadcast(&BarrierQueue);
 }
 pthread_mutex_unlock(&m);
 count = 0;
}

cannot guarantee all n threads will exit the barrier

moving count = 0 around won’t help

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Barrier in POSIX Threads

int count = 0;
pthread_mutex_t m;
pthread_cond_t BarrierQueue;
void barrier_sync() {
 pthread_mutex_lock(&m);
 if (++count < number) {
 int my_generation = generation;
 while(my_generation == generation)
 pthread_cond_wait(&BarrierQueue, &m);
 } else {
 count = 0;
 generation++;
 pthread_cond_broadcast(&BarrierQueue);
 }
 pthread_mutex_unlock(&m);
}

don’t use count in the guard since its problematic!

introduce a new guard (with a new variable)

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

More From POSIX!

int pthread_barrier_init(
 pthread_barrier_t *barrier,
 pthread_barrierattr_t *attr,
 unsigned int count);
int pthread_barrier_destroy(
 pthread_barrier_t *barrier);
int pthread_barrier_wait(
 pthread_barrier_t *barrier);

