Operating Systems - CSCI 402
Producer/Consumer with Semaphores

Semaphore empty = B;

Semaphore occupied = 0;
int nextin =0;
int nextout = 0;
void Produce (char item) { char Consume() {
P (empty) ; char item;
buf[nextin] = item; P (occupied);
nextin = nextin + 1; item = buf[nextout];
if (nextin == B) nextout = nextout + 1;
nextin = 0; if (nextout == B)
V (occupied) ; nextout = 0;
} V (empty) ;

return(item) ;

}

ﬁ> Note: this is not the first procedures of producer and consumer
threads

= this is synchronization code (producer and consumer |
threads calls them to synchronize with each other) 2534
Copyright © William C. Cheng

Operating Systems - CSCI 402

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;
void Produce (char item) { char Consume() {
P (empty) ; char item;
buf[nextin] = item; P (occupied);
nextin = nextin + 1; item = buf[nextout];
if (nextin == B) nextout = nextout + 1;
nextin = 0; if (nextout == B)
V (occupied) ; nextout = 0;
} V (empty) ;
return(item) ;
empty | 8 }
occupied | 0 Consumer<\ /‘Producer
y
nextin| O
nextout| O

Copyright © William C. Cheng

Operating Systems - CSCI 402

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;
void Produce (char item) { char Consume() {
=P P (empty) ; char item;
buf[nextin] = item; =X P (occupied) ;
nextin = nextin + 1; item = buf[nextout];
if (nextin == B) nextout = nextout + 1;
nextin = 0; if (nextout == B)
V (occupied) ; nextout = 0;
} V (empty) ;
return (item) ;
empty | 8 }
occupied | 0 Consumer<\ /‘Producer
y
nextin| O
nextout| O

Copyright © William C. Cheng

Operating Systems - CSCI 402

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;
void Produce (char item) { char Consume() {
P (empty) ; char item;
=P buf[nextin] = item; =X P (occupied) ;
nextin = nextin + 1; item = buf[nextout];
if (nextin == B) nextout = nextout + 1;
nextin = 0; if (nextout == B)
V (occupied) ; nextout = 0;
} V (empty) ;
return (item) ;
empty | 7 }
occupied | 0 Consumer<\ /‘Producer
y
nextin| O
nextout| O

Copyright © William C. Cheng

Operating Systems - CSCI 402

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;
void Produce (char item) { char Consume() {
P (empty) ; char item;
buf[nextin] = item; =X P (occupied) ;
= nextin = nextin + 1; item = buf[nextout];
if (nextin == B) nextout = nextout + 1;
nextin = 0; if (nextout == B)
V (occupied) ; nextout = 0;
} V (empty) ;
return (item) ;
empty | 7 }
occupied | 0 Consumer
nextin| O
nextout| O

Copyright © William C. Cheng

Operating Systems - CSCI 402

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;
void Produce (char item) { char Consume() {
P (empty) ; char item;
buf[nextin] = item; =X P (occupied) ;
nextin = nextin + 1; item = buf[nextout];
=P if (nextin == B) nextout = nextout + 1;
nextin = 0; if (nextout == B)
V (occupied) ; nextout = 0;
} V (empty) ;
return (item) ;
empty | 7 }
occupied | 0 Consumer /‘ Producer
y
nextin | 1
nextout| O

Copyright © William C. Cheng

Operating Systems - CSCI 402

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;
void Produce (char item) { char Consume() {
P (empty) ; char item;
buf[nextin] = item; =X P (occupied) ;
nextin = nextin + 1; item = buf[nextout];
if (nextin == B) nextout = nextout + 1;
nextin = 0; if (nextout == B)
=P V (occupied) ; nextout = 0;
} V (empty) ;
return (item) ;
empty | 7 }
occupied | 0 Consumer /‘ Producer
y
nextin | 1
nextout| O

Copyright © William C. Cheng

Operating Systems - CSCI 402

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;
void Produce (char item) { char Consume() {
P (empty) ; char item;
buf[nextin] = item; =P P (occupied);
nextin = nextin + 1; item = buf[nextout];
if (nextin == B) nextout = nextout + 1;
nextin = 0; if (nextout == B)
V (occupied) ; nextout = 0;
} V (empty) ;
return (item) ;
empty | 7 }
c brod = note: producer
- onsumer roducer .
occupied | 1 V/ continue to produce
nextin | 1
nextout| 0 Qﬂ\
3(2(10) i=
V=7

Copyright © William C. Cheng

Operating Systems - CSCI 402

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;
void Produce (char item) { char Consume() {
P (empty) ; char item;
buf[nextin] = item; P (occupied);
nextin = nextin + 1; = jtem = buf[nextout];
if (nextin == B) nextout = nextout + 1;
nextin = 0; if (nextout == B)
V (occupied) ; nextout = 0;
} V (empty) ;
return (item) ;
empty | 7 }
c brod = note: producer
- onsumer roducer .
occupied | 0 V/ continue to produce
nextin | 1
nextout| O

B

Copyright © William C. Cheng

Operating Systems - CSCI 402

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;
void Produce (char item) { char Consume() {
P (empty) ; char item;
buf[nextin] = item; P (occupied);
nextin = nextin + 1; item = buf[nextout];
if (nextin == B) = nextout = nextout + 1;
nextin = 0; if (nextout == B)
V (occupied) ; nextout = 0;
} V (empty) ;
return (item) ;
empty | 7 }
c brod = note: producer
- onsumer roducer .
occupied | 0 4\ V/ continue to produce
nextin | 1
nextout| O

B

Copyright © William C. Cheng

Operating Systems - CSCI 402

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;
void Produce (char item) { char Consume() {
P (empty) ; char item;
buf[nextin] = item; P (occupied);
nextin = nextin + 1; item = buf[nextout];
if (nextin == B) nextout = nextout + 1;
nextin = 0; =P if (nextout == B)
V (occupied) ; nextout = 0;
} V (empty) ;
return (item) ;
empty | 7 }
c brod = note: producer
- onsumer roducer .
occupied | 0 4\ V/ continue to produce
nextin | 1
nextout | 1 (i\

Copyright © William C. Cheng

Operating Systems - CSCI 402

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;
void Produce (char item) { char Consume() {
P (empty) ; char item;
buf[nextin] = item; P (occupied);
nextin = nextin + 1; item = buf[nextout];
if (nextin == B) nextout = nextout + 1;
nextin = 0; if (nextout == B)
V (occupied) ; nextout = 0;
} = V(empty) ;
return (item) ;
empty | 7 }
c brod = note: producer
- onsumer roducer .
occupied | 0 4\ V/ continue to produce
nextin | 1
nextout | 1 (i\

Copyright © William C. Cheng

Operating Systems - CSCI 402

Producer/Consumer with Semaphores

Semaphore empty

B;

Semaphore occupied = 0;
int nextin =0;

int nextout

void Produce (char item) {
P (empty) ;
buf[nextin] = item;
nextin = nextin + 1;
if (nextin == B)
nextin = 0;
V (occupied) ;

empty | 8

occupied| O

Consumer 4\ /‘ Producer
Y

= 0;

char Consume() {
char item;
P (occupied) ;
item = buf[nextout];
nextout = nextout + 1;
if (nextout == B)
nextout = 0;

V(empty) ;

= return (item) ;

}
= note: producer

continue to produce

nextin | 1

nextout | 1

Copyright © William C. Cheng

@

Operating Systems - CSCI 402

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;
void Produce (char item) { char Consume() {
P (empty) ; char item;
buf[nextin] = item; P (occupied);
nextin = nextin + 1; item = buf[nextout];
if (nextin == B) nextout = nextout + 1;
nextin = 0; if (nextout == B)
V (occupied) ; nextout = 0;
} V (empty) ;
return (item) ;
empty | 8 }
c brod = note: producer
- onsumer roducer .
occupied | 0 4\(continue to produce
nextin | 1
nextout | 1 (i\

Copyright © William C. Cheng

Operating Systems - CSCI 402

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;
void Produce (char item) { char Consume() {
P (empty) ; char item;
buf[nextin] = item; P (occupied);
nextin = nextin + 1; item = buf[nextout];
if (nextin == B) nextout = nextout + 1;
nextin = 0; if (nextout == B)
V (occupied) ; nextout = 0;
} V (empty) ;

return(item) ;

}

= if produce and consume at same rate, no one may ever wait
Q parallelism of 2

= if producer is fast and consumer slow, producer may wait |
= if consumer is fast and producer slow, consumer may wait 3934

Copyright © William C. Cheng

Producer/Consumer with Semaphores

Semaphore empty
Semaphore occupied =

int nextin =0;
int nextout =

void Produce (char item) {
P (empty) ;
buf[nextin] = item;
nextin = nextin + 1;
if (nextin == B)
nextin = 0;
V (occupied) ;

}
) Mutex by itself is more

ﬁ> Semaphore gives more "fine grain parallelism"

= but not general enough
Copyright © William C. Cheng

0;

char Consume() {

"coarse grain”
= you may use one mutex to control access to the number of
empty and occupied cells, nextin, and nextout

Operating Systems - CSCI 402

= B;
0;

char item;

P (occupied) ;

item = buf[nextout];

nextout = nextout + 1;

if (nextout B)
nextout =

V(empty) ;

return(item) ;

0;

Operating Systems - CSCI 402

Semaphore

) Semaphore has limited use
= pretty much the only place it’s really good for is
producer-consumer
Q although it’s a very important application of semaphores

plPl P o]

—>||||| - — |llllF— —lllllfF— —lllll[—

T

Q the queues above are queues with bounded buffer space
& recall that the "producer-consumer problem" is also known
as the "bounded-buffer problem"™
"pipelined parallelism”

Copyright © William C. Cheng

Operating Systems - CSCI 402

POSIX Semaphores

#include <semaphore.h>
sem_t semaphore;

int
int
int

erxr
erxr
erxr
erxr

err

Copyright © William C. Cheng

err;
pshared = 0; // not shared among processes
init_wvalue = B; // initial wvalue

sem_init (&semaphore, pshared, init_vwvalue);
sem_destroy (&semaphore) ;

sem_wait (&semaphore) ; /* P operation */
sem_trywait (&semaphore); /* conditional P
operation
*/
sem_post (&semaphore) ; /* V operation */

Operating Systems - CSCI 402

Producer-Consumer with POSIX Semaphores

void Produce (char item) { char Consume() {
P (empty) ; char item;
buf[nextin] = item; P (occupied);
nextin = nextin + 1; item = buf[nextout];
if (nextin == B) nextout = nextout + 1;
nextin = 0; if (nextout == B)
V (occupied) ; nextout = 0;
} V (empty) ;

return(item) ;

}

void Produce (char item) { char Consume () {
sem_wait (&empty) ; char item;
buf [nextin++] = item; sem_wait (&occupied);
if (nextin >= B) item = buf[nextout++];
nextin = 0O; if (nextout >= B)
sem_post (&occupied) ; nextout = 0;
} sem_post (&empty) ;

return(item) ;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Implementing Semaphore With Mutex

Semaphore operation POSIX implementation
when (S > 0) [while (1) {
S =8 - 1; pthread_mutex_lock (&m) ;
] if (S > 0) {
S =8 -1;
pthread_mutex_unlock (&m) ;
break;

}

pthread_mutex_unlock (&m) ;

}

[S

S + 1;] pthread_mutex_lock (&m) ;
S =S + 1;
pthread_mutex_unlock (&m) ;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Implementing Semaphore With Mutex

Semaphore operation POSIX implementation

when (S > 0) [while (1) {

S =8 - 1; pthread_mutex_lock (&m) ;
] if (S > 0) {
S =8 -1;
pthread_mutex_unlock (&m) ;
break;

}

pthread_mutex_unlock (&m) ;

}

ﬁ> Implementation of p (s) above works but not good - inefficient
= what if guard is false (in this case, s = 0) and no other thread is
waiting for the mutex?
Q busy waiting: your thread will not give up CPU while waiting
for the guard to become true
& it does not do anythnig "useful"
= right way to wait is to give up the CPU when waiting 15\

Copyright © William C. Cheng

Operating Systems - CSCI 402

Implementation Of General Guarded Commands

when (guard) [
/* command sequence */

]

) In general, the guard can be complicated

and involving the evaluation of several

variables (e.g.,a > 3 && £(b) <= c)

= the guard (which evaluates to either true
or false) keeps changing its value,
continuously and by multiple threads
in multiple CPUs simultaneously

= how can we "capture” the instance of time when it evaluates
to true so we can execute the command sequence atomically?
Q we have to "sample" it, i.e., take shap shot of all the

variables that are involved and then evaluate it

QO a mutex is involved, but how?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Implementation Of General Guarded Commands

"Serialization Box"

when (guard) [
/* command sequence */

]

) In general, the guard can be complicated
and involving the evaluation of several
variables (e.g.,a > 3 && £(b) <= c)
= the guard (which evaluates to either true

or false) keeps changing its value,
continuously and by multiple threads
in multiple CPUs simultaneously

m

If you have the mutex
locked, you can do:

read/write :-

execute —%

CS,

execute —%

CS,

= how can we "capture” the instance of time when it evaluates
to true so we can execute the command sequence atomically?
Q we have to "sample" it, i.e., take shap shot of all the
variables that are involved and then evaluate it

QO a mutex is involved, but how?

Q this would work, but can lead to busy-waiting

Copyright © William C. Cheng

Operating Systems - CSCI 402

Implementation Of General Guarded Commands

when (guard) | "Serialization Box"

%* %*
/* command sequence */ If you have the mutex
locked, you can do:

]
diwri
> In general, the guard can be complicated ~ m | write

and involving the evaluation of several E execute —»{ CS,
variables (e.g.,a > 3 && £(b) <= c) execute —>| CS,
= the guard (which evaluates to either true
or false) keeps changing its value, :
)) cond_wait cV
continuously and by multiple threads signal/broadcast

in multiple CPUs simultaneously n

_, Need something else (known as condition variables)
= and a bunch of rules to follow

Copyright © William C. Cheng

Operating Systems - CSCI 402

Implementation Of General Guarded Commands

when (guard) [
/* command sequence */

o
) POSIX provides condition variables (CV) ~ m

"Serialization Box"

for programmers to implement guarded 1]
commands o
= a condition variable is a queue of threads
waiting for some sort of notification
(an "event” or "condition")
Q threads, waiting for a guard to become
true, go to sleep in such a queue

If you have the mutex

locked, you can do

read/write

execute —»

CS,

execute —»

CS,

cond_wait
signal/broadcast

CVv

& they wait for a specific condition to be signaled
& they wait for the right time to re-evaluate the guard

Copyright © William C. Cheng

Operating Systems - CSCI 402

Implementation Of General Guarded Commands

when (guard) | "Serialization Box"

%* %*
/* command sequence */ If you have the mutex
locked, you can do:

]
> POSIX provides condition variables (CV) ~ m | 0"

for programmers to implement guarded 1] execute — CS,
commands execute — CS,
= unlike notifications on your cellphone, an
"event” (signaling/broadcasting of a :
.))] cond_wait oy
condition) happens in an instance of time signal/broadcast

(duration of this "event" is zero) m
Q if you are not waiting for it, you’ll miss it —
Q how do you make sure you won’t miss an event?
<& you have to follow the rules/protocol (for multiple
interacting threads to follow) described here

Copyright © William C. Cheng

Implementation Of General Guarded Commands

when (guard) [
/* command sequence */

]

_, POSIX provides condition variables (CV)
for programmers to implement guarded
commands
= threads that do something to potentially

change the truth value of the guard can
then wake up the threads that were
sleeping in the queue

Q they can signal (wake up one thread sleeping there) or —
broadcast (wake up all threads sleeping there) the condition
<& wake up thread(s) by moving it into the mutex queue

Q no guarantee that the guard will be true when it's
time for another thread to evaluate the guard again

Copyright © William C. Cheng

m

Operating Systems - CSCI 402

"Serialization Box"

If you have the mutex
locked, you can do:

read/write

execute —| CS;

execute —{ CS,

cond_wait V
signal/broadcast

@

51

Operating Systems - CSCI 402

Implementation Of General Guarded Commands

when (guard) [
/* command sequence */

]

_, POSIX provides condition variables (CV)
for programmers to implement guarded
commands

1) pthread_cond_wait (
pthread_cond_t *cv,
pthread_mutex_t *mutex)

m

"Serialization Box"

If you have the mutex

locked, you can do

read/write

execute —»

CS,

execute —»

CS,

cond_wait
signal/broadcast

CVv

Q must only call pthread_cond_wait () if you have

the mutex locked

Q atomically unlocks mutex and wait for the "event”
Q when the event is signaled/broadcasted,
pthread_cond_wait () returns with the mutex locked

Copyright © William C. Cheng

‘I

Operating Systems - CSCI 402

Implementation Of General Guarded Commands

when (guard) [
/* command sequence */

]

_, POSIX provides condition variables (CV)
for programmers to implement guarded

commands

1) pthread_cond_wait (cv, mutex)
Q atomically unlocks mutex and wait
for the "event”

m

"Serialization Box"

If you have the mutex

locked, you can do

read/write

execute —| CS;

execute —»

CS,

cond_wait
signal/broadcast

CVv

<& with respect to the operation of the mutex

-

1

unlocks mutex wait for event
ATOMIC

Copyright © William C. Cheng

Operating Systems - CSCI 402

Implementation Of General Guarded Commands

when (guard) [
/* command sequence */

]

_, POSIX provides condition variables (CV)
for programmers to implement guarded

commands

1) pthread_cond_wait (cv, mutex)
Q atomically unlocks mutex and wait
for the "event”

m

"Serialization Box"

If you have the mutex

locked, you can do

read/write

execute —| CS;

execute —»

CS,

cond_wait
signal/broadcast

CVv

<& with respect to the operation of the mutex

W signhal/broadcast
? OK

-

1

unlocks mutex wait for event
ATOMIC

Copyright © William C. Cheng

|
50

Operating Systems - CSCI 402

Implementation Of General Guarded Commands

when (guard) [
/* command sequence */

]

_, POSIX provides condition variables (CV)
for programmers to implement guarded

commands W signal/broadcast
? OK
|
T T Time
unlocks mutex wait for event

ATOMIC

m

"Serialization Box"

If you have the mutex
locked, you can do:

read/write

execute —| CS;

execute —{ CS,

cond_wait
signal/broadcast &

2) pthread_cond_broadcast (pthread_cond_t *cv)
pthread_cond_signal (pthread_cond_t *cv)

Q must only call pthread_cond_wait (),
pthread_cond_broadcast () OF pthread_cond_signal ()

if you have the corresponding mutex /ocked

Copyright © William C. Cheng

553

Operating Systems - CSCI 402

Implementation Of General Guarded Commands

when (guard) | "Serialization Box"

%*
/* command sequence */ If you have the mutex
locked, you can do:

]
> POSIX provides condition variables (CV) ~ m | 0"

for programmers to implement guarded 11 execute —| CS;
commands signal/broadcast execute —{ CS,
> Time cond_wait (-
T T signal/broadcast
unlocks mutex wait for event

ATdC
= What if pthread_cond_wait () it not atomic? Ll
Q your thread may miss the event and sleep forever in the CV
queue

Q is this a deadlock?
& no, this is a race condition (i.e., bad timing-dependent (\
behavior) o SN
Copyright © William C. Cheng

Operating Systems - CSCI 402

Set Up

pthread_cond_t cv = PTHREAD_COND_INITIALIZER;

_, If a condition variable cannot be initialized statically, do:

int pthread_cond_init (
pthread_cond_t *cvp,
pthread_condattr_t *attrp)

int pthread_cond_destroy (
pthread_cond_t *cvp)

) Usually, condition variable attributes are not used

Copyright © William C. Cheng

Operating Systems - CSCI 402

Implementation Of General Guarded Commands

_) Synchronization: mutex, condition variables, guards,

critical sections
= with respect to a mutex, a thread can be
Q waiting in the mutex queue
Q got the lock and inside the
"serialization box"
<& only one thread can be inside m

"Serialization Box"

the "serialization box" —
Q waiting in the CV queue
QO or outside
= With respect to a mutex, a, b, c are
variables that can affect the value
of the guard

If you have the mutex
locked, you can do:

read/write

execute —»

CS,

execute —»

CS,

cond_ wait
signal/broadcast

CvV

Q can only access (i.e., read/write) them if a thread is
inside the "serialization box" (i.e., has the mutex locked)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Implementation Of General Guarded Commands

_) Synchronization: mutex, condition variables, guards,
critical sections
= when you signal CV
Q one thread in the CV queue gets e
moved to the mutex queue

= when you broadcast CV read/write
m

Q all threads in the CV queue get —
1 execute —» CS;
moved to the mutex queue —

"Serialization Box"

= you can only get added to the CV execute —| CS,
queue if you have the mutex locked
= you can only modify the variables in cond_wait Gy

signal/broadcast

the guard if you have the mutex locked
= you can only read the variables in the 1]
guard (i.e., evaluate the guard) if you o
have the mutex locked
= you canh only execute critical section |
code if you have the mutex locked 3 @;

Copyright © William C. Cheng

Operating Systems - CSCI 402

POSIX Condition Variables

Guarded command POSIX implementation
when (guard) [pthread_mutex_lock (&mutex) ;
statement 1; while (!guard)
... pthread_cond_wait (
statement n; &cv,
] &mutex) ;

statement 1;

statement n;
pthread_mutex_unlock (&mutex) ;

[/* code pthread_mutex_lock (&mutex) ;
* modifying /*code modifying the guard:*/
* the guard “ .
*/ pthread_cond_broadcast (&cv) ;
] pthread_mutex_unlock (&mutex) ;
= if you don’t follow these rules, your code will have |
race conditions (i.e., bad timing-dependent behavior) 6034

Copyright © William C. Cheng

Operating Systems - CSCI 402

POSIX Condition Variables

Guarded command POSIX implementation
when (guard) [pthread_mutex_lock (&mutex) ;
statement 1; while (!guard)
... pthread_cond_wait (
statement n; &cv,
] &mutex) ;

statement 1;

statement n;
pthread_mutex_unlock (&mutex) ;

[/* code pthread_mutex_lock (&mutex) ;
* modifying /*code modifying the guard:*/
* the guard “ .
* / = pthread_cond_broadcast (&cv) ;

] pthread_mutex_unlock (&mutex) ;

= don’t believe that pthread_cond_signal/broadcast () |
can be called without locking the mutex . @J

Copyright © William C. Cheng

