
0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;

void Produce(char item) {
 P(empty);
 buf[nextin] = item;
 nextin = nextin + 1;
 if (nextin == B)
 nextin = 0;
 V(occupied);
}

char Consume() {
 char item;
 P(occupied);
 item = buf[nextout];
 nextout = nextout + 1;
 if (nextout == B)
 nextout = 0;
 V(empty);
 return(item);
}

this is synchronization code (producer and consumer

threads calls them to synchronize with each other)

Note: this is not the first procedures of producer and consumer

threads

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;

void Produce(char item) {
 P(empty);
 buf[nextin] = item;
 nextin = nextin + 1;
 if (nextin == B)
 nextin = 0;
 V(occupied);
}

char Consume() {
 char item;
 P(occupied);
 item = buf[nextout];
 nextout = nextout + 1;
 if (nextout == B)
 nextout = 0;
 V(empty);
 return(item);
}

0 1 2 3 4 5 6 7

ProducerConsumer

empty 8

occupied 0

nextin 0

nextout 0

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;

void Produce(char item) {
 P(empty);
 buf[nextin] = item;
 nextin = nextin + 1;
 if (nextin == B)
 nextin = 0;
 V(occupied);
}

char Consume() {
 char item;
 P(occupied);
 item = buf[nextout];
 nextout = nextout + 1;
 if (nextout == B)
 nextout = 0;
 V(empty);
 return(item);
}

0 1 2 3 4 5 6 7

ProducerConsumer

empty 8

occupied 0

nextin 0

nextout 0

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;

void Produce(char item) {
 P(empty);
 buf[nextin] = item;
 nextin = nextin + 1;
 if (nextin == B)
 nextin = 0;
 V(occupied);
}

char Consume() {
 char item;
 P(occupied);
 item = buf[nextout];
 nextout = nextout + 1;
 if (nextout == B)
 nextout = 0;
 V(empty);
 return(item);
}

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0

nextin 0

nextout 0

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;

void Produce(char item) {
 P(empty);
 buf[nextin] = item;
 nextin = nextin + 1;
 if (nextin == B)
 nextin = 0;
 V(occupied);
}

char Consume() {
 char item;
 P(occupied);
 item = buf[nextout];
 nextout = nextout + 1;
 if (nextout == B)
 nextout = 0;
 V(empty);
 return(item);
}

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0

nextin 0

nextout 0

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;

void Produce(char item) {
 P(empty);
 buf[nextin] = item;
 nextin = nextin + 1;
 if (nextin == B)
 nextin = 0;
 V(occupied);
}

char Consume() {
 char item;
 P(occupied);
 item = buf[nextout];
 nextout = nextout + 1;
 if (nextout == B)
 nextout = 0;
 V(empty);
 return(item);
}

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0

nextin 1

nextout 0

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;

void Produce(char item) {
 P(empty);
 buf[nextin] = item;
 nextin = nextin + 1;
 if (nextin == B)
 nextin = 0;
 V(occupied);
}

char Consume() {
 char item;
 P(occupied);
 item = buf[nextout];
 nextout = nextout + 1;
 if (nextout == B)
 nextout = 0;
 V(empty);
 return(item);
}

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0

nextin 1

nextout 0

0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;

void Produce(char item) {
 P(empty);
 buf[nextin] = item;
 nextin = nextin + 1;
 if (nextin == B)
 nextin = 0;
 V(occupied);
}

char Consume() {
 char item;
 P(occupied);
 item = buf[nextout];
 nextout = nextout + 1;
 if (nextout == B)
 nextout = 0;
 V(empty);
 return(item);
}

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 1

nextin 1

nextout 0

note: producer

continue to produce

0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;

void Produce(char item) {
 P(empty);
 buf[nextin] = item;
 nextin = nextin + 1;
 if (nextin == B)
 nextin = 0;
 V(occupied);
}

char Consume() {
 char item;
 P(occupied);
 item = buf[nextout];
 nextout = nextout + 1;
 if (nextout == B)
 nextout = 0;
 V(empty);
 return(item);
}

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0

nextin 1

nextout 0

note: producer

continue to produce

0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;

void Produce(char item) {
 P(empty);
 buf[nextin] = item;
 nextin = nextin + 1;
 if (nextin == B)
 nextin = 0;
 V(occupied);
}

char Consume() {
 char item;
 P(occupied);
 item = buf[nextout];
 nextout = nextout + 1;
 if (nextout == B)
 nextout = 0;
 V(empty);
 return(item);
}

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0

nextin 1

nextout 0

note: producer

continue to produce

0123

35

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;

void Produce(char item) {
 P(empty);
 buf[nextin] = item;
 nextin = nextin + 1;
 if (nextin == B)
 nextin = 0;
 V(occupied);
}

char Consume() {
 char item;
 P(occupied);
 item = buf[nextout];
 nextout = nextout + 1;
 if (nextout == B)
 nextout = 0;
 V(empty);
 return(item);
}

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0

nextin 1

nextout 1

note: producer

continue to produce

0123

36

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;

void Produce(char item) {
 P(empty);
 buf[nextin] = item;
 nextin = nextin + 1;
 if (nextin == B)
 nextin = 0;
 V(occupied);
}

char Consume() {
 char item;
 P(occupied);
 item = buf[nextout];
 nextout = nextout + 1;
 if (nextout == B)
 nextout = 0;
 V(empty);
 return(item);
}

0 1 2 3 4 5 6 7

ProducerConsumer

empty 7

occupied 0

nextin 1

nextout 1

note: producer

continue to produce

0123

37

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;

void Produce(char item) {
 P(empty);
 buf[nextin] = item;
 nextin = nextin + 1;
 if (nextin == B)
 nextin = 0;
 V(occupied);
}

char Consume() {
 char item;
 P(occupied);
 item = buf[nextout];
 nextout = nextout + 1;
 if (nextout == B)
 nextout = 0;
 V(empty);
 return(item);
}

0 1 2 3 4 5 6 7

ProducerConsumer

empty 8

occupied 0

nextin 1

nextout 1

note: producer

continue to produce

0123

38

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;

void Produce(char item) {
 P(empty);
 buf[nextin] = item;
 nextin = nextin + 1;
 if (nextin == B)
 nextin = 0;
 V(occupied);
}

char Consume() {
 char item;
 P(occupied);
 item = buf[nextout];
 nextout = nextout + 1;
 if (nextout == B)
 nextout = 0;
 V(empty);
 return(item);
}

0 1 2 3 4 5 6 7

ProducerConsumer

empty 8

occupied 0

nextin 1

nextout 1

note: producer

continue to produce

0123

39

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;

void Produce(char item) {
 P(empty);
 buf[nextin] = item;
 nextin = nextin + 1;
 if (nextin == B)
 nextin = 0;
 V(occupied);
}

char Consume() {
 char item;
 P(occupied);
 item = buf[nextout];
 nextout = nextout + 1;
 if (nextout == B)
 nextout = 0;
 V(empty);
 return(item);
}

if produce and consume at same rate, no one may ever wait

if producer is fast and consumer slow, producer may wait

if consumer is fast and producer slow, consumer may wait

parallelism of 2

0123

40

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Producer/Consumer with Semaphores

Semaphore empty = B;
Semaphore occupied = 0;
int nextin =0;
int nextout = 0;

void Produce(char item) {
 P(empty);
 buf[nextin] = item;
 nextin = nextin + 1;
 if (nextin == B)
 nextin = 0;
 V(occupied);
}

char Consume() {
 char item;
 P(occupied);
 item = buf[nextout];
 nextout = nextout + 1;
 if (nextout == B)
 nextout = 0;
 V(empty);
 return(item);
}

you may use one mutex to control access to the number of

empty and occupied cells, nextin, and nextout

Mutex by itself is more "coarse grain"

Semaphore gives more "fine grain parallelism"

but not general enough

0123

41

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Semaphore

Semaphore has limited use

pretty much the only place it’s really good for is

producer-consumer

T2 T3 T4T1 T5

"pipelined parallelism"

although it’s a very important application of semaphores

the queues above are queues with bounded buffer space

recall that the "producer-consumer problem" is also known

as the "bounded-buffer problem"

0123

42

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

POSIX Semaphores

#include <semaphore.h>
sem_t semaphore;
int err;
int pshared = 0; // not shared among processes
int init_value = B; // initial value

err = sem_init(&semaphore, pshared, init_value);
err = sem_destroy(&semaphore);
err = sem_wait(&semaphore); /* P operation */
err = sem_trywait(&semaphore); /* conditional P
 operation
 */
err = sem_post(&semaphore); /* V operation */

void Produce(char item) {
 P(empty);
 buf[nextin] = item;
 nextin = nextin + 1;
 if (nextin == B)
 nextin = 0;
 V(occupied);
}

char Consume() {
 char item;
 P(occupied);
 item = buf[nextout];
 nextout = nextout + 1;
 if (nextout == B)
 nextout = 0;
 V(empty);
 return(item);
}

void Produce(char item) {
 sem_wait(&empty);
 buf[nextin++] = item;
 if (nextin >= B)
 nextin = 0;
 sem_post(&occupied);
}

char Consume() {
 char item;
 sem_wait(&occupied);
 item = buf[nextout++];
 if (nextout >= B)
 nextout = 0;
 sem_post(&empty);
 return(item);
} 0123

43

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Producer-Consumer with POSIX Semaphores

0123

44

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Implementing Semaphore With Mutex

when (S > 0) [
 S = S - 1;
]

while(1) {
 pthread_mutex_lock(&m);
 if (S > 0) {
 S = S - 1;
 pthread_mutex_unlock(&m);
 break;
 }
 pthread_mutex_unlock(&m);
}

[S = S + 1;] pthread_mutex_lock(&m);
S = S + 1;
pthread_mutex_unlock(&m);

POSIX implementationSemaphore operation

what if guard is false (in this case, S = 0) and no other thread is

waiting for the mutex?

Implementation of P(S)above works but not good - inefficient

0123

45

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Implementing Semaphore With Mutex

when (S > 0) [
 S = S - 1;
]

while(1) {
 pthread_mutex_lock(&m);
 if (S > 0) {
 S = S - 1;
 pthread_mutex_unlock(&m);
 break;
 }
 pthread_mutex_unlock(&m);
}

POSIX implementationSemaphore operation

busy waiting: your thread will not give up CPU while waiting

for the guard to become true

it does not do anythnig "useful"

right way to wait is to give up the CPU when waiting

the guard (which evaluates to either true

or false) keeps changing its value,

continuously and by multiple threads

in multiple CPUs simultaneously

0123

46

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Implementation Of General Guarded Commands

In general, the guard can be complicated

and involving the evaluation of several

variables (e.g., a > 3 && f(b) <= c)

when (guard) [
 /* command sequence */
 ...
]

how can we "capture" the instance of time when it evaluates

to true so we can execute the command sequence atomically?

we have to "sample" it, i.e., take snap shot of all the

variables that are involved and then evaluate it

a mutex is involved, but how?

the guard (which evaluates to either true

or false) keeps changing its value,

continuously and by multiple threads

in multiple CPUs simultaneously

0123

47

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Implementation Of General Guarded Commands

In general, the guard can be complicated

and involving the evaluation of several

variables (e.g., a > 3 && f(b) <= c)

when (guard) [
 /* command sequence */
 ...
]

how can we "capture" the instance of time when it evaluates

to true so we can execute the command sequence atomically?

we have to "sample" it, i.e., take snap shot of all the

variables that are involved and then evaluate it

a mutex is involved, but how?

this would work, but can lead to busy-waiting

a, b,
c

CS1

CS2

m

...

execute

execute

read/write

If you have the mutex
locked, you can do:

"Serialization Box"

a, b,
c

CS1

CS2

m

...

execute

execute

read/write

cond_wait
signal/broadcast

CV

If you have the mutex
locked, you can do:

"Serialization Box"

the guard (which evaluates to either true

or false) keeps changing its value,

continuously and by multiple threads

in multiple CPUs simultaneously

0123

48

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Implementation Of General Guarded Commands

In general, the guard can be complicated

and involving the evaluation of several

variables (e.g., a > 3 && f(b) <= c)

when (guard) [
 /* command sequence */
 ...
]

Need something else (known as condition variables)

and a bunch of rules to follow

0123

49

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Implementation Of General Guarded Commands

when (guard) [
 /* command sequence */
 ...
]

a condition variable is a queue of threads

waiting for some sort of notification

(an "event" or "condition")

POSIX provides condition variables (CV)

for programmers to implement guarded

commands

threads, waiting for a guard to become

true, go to sleep in such a queue

they wait for a specific condition to be signaled

they wait for the right time to re-evaluate the guard

a, b,
c

CS1

CS2

m

...

execute

execute

read/write

cond_wait
signal/broadcast

CV

If you have the mutex
locked, you can do:

"Serialization Box"

POSIX provides condition variables (CV)

for programmers to implement guarded

commands

unlike notifications on your cellphone, an

"event" (signaling/broadcasting of a

condition) happens in an instance of time

(duration of this "event" is zero)

if you are not waiting for it, you’ll miss it

how do you make sure you won’t miss an event?

you have to follow the rules/protocol (for multiple

interacting threads to follow) described here

0123

50

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Implementation Of General Guarded Commands

when (guard) [
 /* command sequence */
 ...
]

a, b,
c

CS1

CS2

m

...

execute

execute

read/write

cond_wait
signal/broadcast

CV

If you have the mutex
locked, you can do:

"Serialization Box"

POSIX provides condition variables (CV)

for programmers to implement guarded

commands

threads that do something to potentially

change the truth value of the guard can

then wake up the threads that were

sleeping in the queue

no guarantee that the guard will be true when it’s

time for another thread to evaluate the guard again

they can signal (wake up one thread sleeping there) or

broadcast (wake up all threads sleeping there) the condition

0123

51

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Implementation Of General Guarded Commands

when (guard) [
 /* command sequence */
 ...
]

a, b,
c

CS1

CS2

m

...

execute

execute

read/write

cond_wait
signal/broadcast

CV

If you have the mutex
locked, you can do:

"Serialization Box"

wake up thread(s) by moving it into the mutex queue

POSIX provides condition variables (CV)

for programmers to implement guarded

commands

0123

52

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Implementation Of General Guarded Commands

when (guard) [
 /* command sequence */
 ...
]

pthread_cond_wait(
 pthread_cond_t *cv,
 pthread_mutex_t *mutex)

must only call pthread_cond_wait() if you have

the mutex locked

atomically unlocks mutex and wait for the "event"

when the event is signaled/broadcasted,

pthread_cond_wait()returns with the mutex locked

1)

a, b,
c

CS1

CS2

m

...

execute

execute

read/write

cond_wait
signal/broadcast

CV

If you have the mutex
locked, you can do:

"Serialization Box"

POSIX provides condition variables (CV)

for programmers to implement guarded

commands

0123

53

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Implementation Of General Guarded Commands

when (guard) [
 /* command sequence */
 ...
]

atomically unlocks mutex and wait

for the "event"

a, b,
c

CS1

CS2

m

...

execute

execute

read/write

cond_wait
signal/broadcast

CV

If you have the mutex
locked, you can do:

"Serialization Box"

Time

unlocks mutex wait for event
ATOMIC

with respect to the operation of the mutex

pthread_cond_wait(cv, mutex)1)

POSIX provides condition variables (CV)

for programmers to implement guarded

commands

0123

54

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Implementation Of General Guarded Commands

when (guard) [
 /* command sequence */
 ...
]

atomically unlocks mutex and wait

for the "event"

a, b,
c

CS1

CS2

m

...

execute

execute

read/write

cond_wait
signal/broadcast

CV

If you have the mutex
locked, you can do:

"Serialization Box"

Time

unlocks mutex wait for event
ATOMIC

with respect to the operation of the mutex

signal/broadcast

OK?

pthread_cond_wait(cv, mutex)1)

POSIX provides condition variables (CV)

for programmers to implement guarded

commands

0123

55

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Implementation Of General Guarded Commands

when (guard) [
 /* command sequence */
 ...
]

pthread_cond_broadcast(pthread_cond_t *cv)
pthread_cond_signal(pthread_cond_t *cv)

must only call pthread_cond_wait(),

pthread_cond_broadcast() or pthread_cond_signal()

if you have the corresponding mutex locked

2)

a, b,
c

CS1

CS2

m

...

execute

execute

read/write

cond_wait
signal/broadcast

CV

If you have the mutex
locked, you can do:

"Serialization Box"

Time

unlocks mutex wait for event
ATOMIC

signal/broadcast

OK?

is this a deadlock?

signal/broadcast

POSIX provides condition variables (CV)

for programmers to implement guarded

commands

0123

56

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Implementation Of General Guarded Commands

when (guard) [
 /* command sequence */
 ...
]

a, b,
c

CS1

CS2

m

...

execute

execute

read/write

cond_wait
signal/broadcast

CV

If you have the mutex
locked, you can do:

"Serialization Box"

Time

unlocks mutex wait for event
ATOMIC

what if pthread_cond_wait() it not atomic?

your thread may miss the event and sleep forever in the CV

queue

no, this is a race condition (i.e., bad timing-dependent

behavior)

0123

57

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Set Up

int pthread_cond_init(
 pthread_cond_t *cvp,
 pthread_condattr_t *attrp)

int pthread_cond_destroy(
 pthread_cond_t *cvp)

If a condition variable cannot be initialized statically, do:

Usually, condition variable attributes are not used

pthread_cond_t cv = PTHREAD_COND_INITIALIZER;

0123

58

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Implementation Of General Guarded Commands

Synchronization: mutex, condition variables, guards,

critical sections

with respect to a mutex, a thread can be

waiting in the mutex queue

a, b,
c

CS1

CS2

m

...

execute

execute

read/write

cond_wait
signal/broadcast

CV

If you have the mutex
locked, you can do:

"Serialization Box"

got the lock and inside the

"serialization box"

waiting in the CV queue

only one thread can be inside

the "serialization box"

with respect to a mutex, a, b, c are

variables that can affect the value

of the guard

or outside

can only access (i.e., read/write) them if a thread is

inside the "serialization box" (i.e., has the mutex locked)

Synchronization: mutex, condition variables, guards,

critical sections

when you signal CV

one thread in the CV queue gets

moved to the mutex queue

when you broadcast CV

all threads in the CV queue get

moved to the mutex queue

0123

59

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Implementation Of General Guarded Commands

a, b,
c

CS1

CS2

m

...

execute

execute

read/write

cond_wait
signal/broadcast

CV

If you have the mutex
locked, you can do:

you can only modify the variables in

the guard if you have the mutex locked

you can only execute critical section

code if you have the mutex locked

you can only get added to the CV

queue if you have the mutex locked

you can only read the variables in the

guard (i.e., evaluate the guard) if you

have the mutex locked

"Serialization Box"

0123

60

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

POSIX Condition Variables

when (guard) [
 statement 1;
 ...
 statement n;
]

pthread_mutex_lock(&mutex);
while(!guard)
 pthread_cond_wait(
 &cv,
 &mutex);
statement 1;
...
statement n;
pthread_mutex_unlock(&mutex);

[/* code
 * modifying
 * the guard
 */
]

pthread_mutex_lock(&mutex);
/*code modifying the guard:*/
...
pthread_cond_broadcast(&cv);
pthread_mutex_unlock(&mutex);

POSIX implementationGuarded command

if you don’t follow these rules, your code will have

race conditions (i.e., bad timing-dependent behavior)

0123

61

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

POSIX Condition Variables

when (guard) [
 statement 1;
 ...
 statement n;
]

pthread_mutex_lock(&mutex);
while(!guard)
 pthread_cond_wait(
 &cv,
 &mutex);
statement 1;
...
statement n;
pthread_mutex_unlock(&mutex);

[/* code
 * modifying
 * the guard
 */
]

pthread_mutex_lock(&mutex);
/*code modifying the guard:*/
...
pthread_cond_broadcast(&cv);
pthread_mutex_unlock(&mutex);

POSIX implementationGuarded command

don’t believe that pthread_cond_signal/broadcast()

can be called without locking the mutex

