Operating Systems - CSCI 402

Taking Multiple Locks

procl() { proc2() {
pthread_mutex_lock (&ml) ; pthread_mutex_lock (&m2) ;
/* use object 1 */ /* use object 2 */
pthread_mutex_lock (&m2) ; pthread_mutex_lock (&ml) ;
/* use objects 1 and 2 */ /* use objects 1 and 2 */
pthread_mutex_unlock (&m2) ; pthread_mutex_unlock (&ml) ;
pthread_mutex_unlock (&ml) ; pthread_mutex_unlock (&m2) ;

} }

ﬁ> Graph representation ("wait-for" graph) for the entire process
= draw an arrow from a mutex you are holding to another mutex

you are waiting for

@ Deadlock @

Copyright © William C. Cheng

Operating Systems - CSCI 402

Necessary Conditions For Deadlocks

ﬁ} All 4 conditions below must be met in order for a deadlock to be
possible (no guarantee that a deadlock may occur)

1) Bounded resources
= only a finite number of threads can have concurrent access
to a resource

2) Wait for resources
= threads wait for resources to be freed up, without releasing
resources that they hold

3) No preemption
= resources cannot be revoked from a thread

4) Circular wait
= there exists a set of waiting threads, such that each thread
Is waiting for a resource held by another

Copyright © William C. Cheng

Operating Systems - CSCI 402

Dealing with Deadlock

) Deadlock is a programming bug
= ohe of the oldest bug
= [t’s a tricky one because it only deadlocks sometimes

ﬁ> Hard

= is the system deadlocked?
= will this move lead to deadlock?
— this is detection
Q if you can detect deadlocks, what do you do after you
have detected them?

_) Easy

= restrict use of mutexes so that deadlock cannot happen
= this is prevention

) Deadlock is a complicated subject
= some textbooks spend an entire chapter on deadlocks
= we will only look at a couple of cases N
2

Copyright © William C. Cheng

Operating Systems - CSCI 402

Deadlock Prevention: Lock Hierarchies

ﬁ} If you can organize mutexes into levels and satisfies:
= must not try locking a mutex at level i if already holding a
mutex at equal or higher level, otherwise it’s okay

®

Copyright © William C. Cheng

Operating Systems - CSCI 402

Deadlock Prevention: Lock Hierarchies

ﬁ} If you can organize mutexes into levels and satisfies:
= must not try locking a mutex at level i if already holding a
mutex at equal or higher level, otherwise it’s okay
Q e.g., if holding mutexes at levels 2 and 3, can only wait 3

for a mutex at levels 4 or higher NS
Copyright © William C. Cheng

Operating Systems - CSCI 402

Deadlock Prevention: Lock Hierarchies

ﬁ} What if you cannot organize your mutexes in such strict order
for deadlock prevention?

= can we avoid "necessary conditions" for deadlocks (1), (2),

or (3)?

®

Copyright © William C. Cheng

Operating Systems - CSCI 402
Deadlock Prevention: Conditional Locking

procl() {
pthread_mutex_lock (&ml) ;
/* use object 1 */
pthread_mutex_lock (&m2) ;
/* use objects 1 and 2 */
pthread_mutex_unlock (&m2) ;
pthread_mutex_unlock (&ml) ;

}

proc2() {
while (1) {
pthread_mutex_lock (&m2) ;

if (!pthread_mutex_trylock (&ml))
break;
pthread_mutex_unlock (&m2) ;

}
/* use objects 1 and 2 */

pthread_mutex_unlock (&ml) ;
pthread_mutex_unlock (&m2) ; db
(o)

}

Copyright © William C. Cheng

Operating Systems - CSCI 402

Mutex Summary

_, How do threads interact with each other?
= they interact with each other by calling pthread functions

Q e.g., pthread _mutex_lock (), pthread_mutex_unlock ()
= they interact with each other using shared variables

ﬁ> If multiple threads want to share read-only data (i.e., no thread will
ever modify the shared data)

= you don’t need to use mutex

ﬁ} If multiple threads want to share data for reading and writing (or
just for writing, which is unusual)

= all these threads must share a mutex and only access the shared
data using critical section code with respect to this mutex

= In general, critical section code may be nested (as in the case of
locking hierarchy)

Q also, a thread may be using different mutexes to interact with

different threads (i\
&

Copyright © William C. Cheng

Operating Systems - CSCI 402

Beyond Mutexes

ﬁ} Mutex is necessary when shared data is being modified
= although there are cases where using a mutex is an overkill
(i.e., too restrictive and inefficient and would lock threads out
when it’s not necessary)
Q can always use one mutex to lock up all shared data
& no parallelism (when some parallelism can be permitted)
Q we would like to have better concurrency (i.e., "fine-grained
parallelism"”) when complete mutual exclusion in not required
= two major categories to illustrate this
1) what if threads don’t interfere one another most of the
time and synchronization is only required occasionally?
& e.g., Producer-Consumer problem (a.k.a.,
bounded-buffer problem)
2) what if some threads just want to /ook at (i.e., read) a
piece of data?
& e.g., Readers-Writers problem
= will also look at Barrier Synchronization
Copyright © William C. Cheng

Operating Systems - CSCI 402

Producer-Consumer Problem

Consumer 4\ / Producer

Y

) Conveyor belt (hardware)
= perfect parallelism between producer and consumer

Copyright © William C. Cheng

Operating Systems - CSCI 402

Producer-Consumer Problem

Consumer 4\ / Producer

Y

) Conveyor belt (hardware)
= perfect parallelism between producer and consumer

ﬁ> A circular buffer is used in software implementation

) Most of the time, no interference
= if you use a single mutex to lock the entire array of buffers, it's
an overkill (i.e., too inefficient)

) When does it require synchronization?
= producer needs to be blocked when all slots are full
= consumer needs to be blocked when all slots are empty f @’_

Copyright © William C. Cheng

Operating Systems - CSCI 402

Guarded Commands

when (guard) [
/*
once the guard is true,
execute this code atomically - command sequence

*/

= this means that the command sequence is executed (atomically)
when the guard is evaluated to be true
Q a guardis a boolean expression (evaluates to true or false)
Q atomically mean that it’s executed "without interruption”
<& but with respect to what?
& evaluting the guard and executing the command sequence
altogether is an atomic operation if the guard is true
<& you cannot evaluate the guard if your thread is not running
ﬁ} For exams, you need to know how to write simple pesudo-code |
in the language of Guarded Commands 3

12

Copyright © William C. Cheng

Operating Systems - CSCI 402

Guarded Commands

when (guard) [
/*
once the guard is true,
execute this code atomically - command sequence

*/

true

guard

false >Time

= you can only evaluate the guard if your thread is running

Copyright © William C. Cheng

Operating Systems - CSCI 402

Guarded Commands

when (guard) [
/*
once the guard is true,
execute this code atomically - command sequence

*/

true

guard

>
false t Time

evaluate guard

= you can only evaluate the guard if your thread is running

Copyright © William C. Cheng

Operating Systems - CSCI 402

Guarded Commands

when (guard) [
/*
once the guard is true,
execute this code atomically - command sequence

*/

true

guard

false tzT Time

evaluate guard

= you can only evaluate the guard if your thread is running

Copyright © William C. Cheng

Operating Systems - CSCI 402

Guarded Commands

when (guard) [
/*
once the guard is true,
execute this code atomically - command sequence

*/

true

guard

false t3A >Time

evaluate guard

= you can only evaluate the guard if your thread is running

Copyright © William C. Cheng

Operating Systems - CSCI 402

Guarded Commands

when (guard) [
/*
once the guard is true,
execute this code atomically - command sequence

*/

true

guard

>
false t4T Time

evaluate guard

= you can only evaluate the guard if your thread is running

Copyright © William C. Cheng

Operating Systems - CSCI 402

Guarded Commands

when (guard) [
/*
once the guard is true,
execute this code atomically - command sequence

*/

true

guard

>
false qn Time

evaluate guard

execute command sequence

= you can only evaluate the guard if your thread is running

Copyright © William C. Cheng

Operating Systems - CSCI 402

Guarded Commands

when (guard) [
/*
once the guard is true,
execute this code atomically - command sequence

*/

true

guard
| — -
false t, n Time
evaluate guard execute command sequence

ATOMIC

= please understand that command sequence = critical section
Q evaluate the guard to be true and execute command sequence
together is done inside one critical section
3(\
19N

Copyright © William C. Cheng

Operating Systems - CSCI 402

Guarded Commands

when (guard) [
/*
once the guard is true,
execute this code atomically - command sequence

*/

true \

guard

>
false t Time

guard evaluate to be true and
execute command sequence

= atomic: as if it’'s executed in an instance of time (duration = 0)
Q this is okay because it’s just pseudo-code

Copyright © William C. Cheng

Operating Systems - CSCI 402

Semaphores

ﬁ> A semaphore, s, is a nonnegative integer on which there are

exactly two operations defined by two garded commands
= P (S) operation (implemented as a guarded command):

Q when (S > 0) [

S =8 -1;
]

= V(S) operation (implemented as a guarded command):

Q [S =8+ 1;]
= there are no other means for manipulating the value of s

Q other than initializing it

Copyright © William C. Cheng

Operating Systems - CSCI 402

Mutexes with Semaphores

()
semaphore S = 1; ;
= P (S) operation:
void OneAtATime() { QO when (S > 0) [
P (S); S =8 -1,

]

= V(S) operation:
Q [S =S + 1;]

/* code executed mutually
exclusively */

v(S);

} . J

= this is known as a binary semaphore

Copyright © William C. Cheng

Operating Systems - CSCI 402

Implement A Mutex With A Binary Semaphore

) Instead of doing

pthread_mutex_t m = PTHREAD_MUTEX_ INITIALIZER,
pthread_mutex_lock (&m) ;

x = x+1;

pthread_mutex_unlock (&m) ;

= do:

semaphore S = 1;
P(S);

x = x+1;

V(s);

ﬁ> So, you can lock a data structure using a binary semaphore
= this looks just like mutex, what have we really gained?
Q if you use it this way, nothing

Copyright © William C. Cheng

Operating Systems - CSCI 402

Mutexes with Semaphores

semaphore S = N; [)

= P (S) operation:
void NAtATime() { QO when (S > 0) [
P (S); S =8 -1,

]

= V(S) operation:
Q [S =S + 1;]

/* no more than N threads
here at once */

v(S);

} . J

= this is known as a counting semaphore
= cah be used to solve the producer-consumer problem

ﬁ> Main difference between a semaphore and a mutex
= if a thread locks a mutex, it’s holding the lock
Q therefore, it must be that thread that unlocks that mutex
= ohe thread performs a p operation on a semaphore, another

thread performs a v operation on the same semaphore ' (Q!,_
.. V),
Q this is often why you would use a semaphore 24

Copyright © William C. Cheng

