
0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Taking Multiple Locks

proc1() {
 pthread_mutex_lock(&m1);
 /* use object 1 */
 pthread_mutex_lock(&m2);
 /* use objects 1 and 2 */
 pthread_mutex_unlock(&m2);
 pthread_mutex_unlock(&m1);
}

proc2() {
 pthread_mutex_lock(&m2);
 /* use object 2 */
 pthread_mutex_lock(&m1);
 /* use objects 1 and 2 */
 pthread_mutex_unlock(&m1);
 pthread_mutex_unlock(&m2);
}

mutex 1 mutex 2Deadlock

Graph representation ("wait-for" graph) for the entire process

draw an arrow from a mutex you are holding to another mutex

you are waiting for

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Necessary Conditions For Deadlocks

only a finite number of threads can have concurrent access

to a resource

1)

threads wait for resources to be freed up, without releasing

resources that they hold

2)

resources cannot be revoked from a thread

3)

there exists a set of waiting threads, such that each thread

is waiting for a resource held by another

4)

All 4 conditions below must be met in order for a deadlock to be

possible (no guarantee that a deadlock may occur)

Bounded resources

Wait for resources

No preemption

Circular wait

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Dealing with Deadlock

is the system deadlocked?

Hard

will this move lead to deadlock?

restrict use of mutexes so that deadlock cannot happen

Easy

this is prevention

this is detection

if you can detect deadlocks, what do you do after you

have detected them?

Deadlock is a programming bug

one of the oldest bug

it’s a tricky one because it only deadlocks sometimes

some textbooks spend an entire chapter on deadlocks

Deadlock is a complicated subject

we will only look at a couple of cases

If you can organize mutexes into levels and satisfies:

must not try locking a mutex at level i if already holding a

mutex at equal or higher level, otherwise it’s okay

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Deadlock Prevention: Lock Hierarchies

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

If you can organize mutexes into levels and satisfies:

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Deadlock Prevention: Lock Hierarchies

1 1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4 4

2

3

must not try locking a mutex at level i if already holding a

mutex at equal or higher level, otherwise it’s okay

e.g., if holding mutexes at levels 2 and 3, can only wait

for a mutex at levels 4 or higher

What if you cannot organize your mutexes in such strict order

for deadlock prevention?

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Deadlock Prevention: Lock Hierarchies

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

can we avoid "necessary conditions" for deadlocks (1), (2),

or (3)?

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Deadlock Prevention: Conditional Locking

proc1() {
 pthread_mutex_lock(&m1);
 /* use object 1 */
 pthread_mutex_lock(&m2);
 /* use objects 1 and 2 */
 pthread_mutex_unlock(&m2);
 pthread_mutex_unlock(&m1);
}

proc2() {
 while (1) {
 pthread_mutex_lock(&m2);

 if (!pthread_mutex_trylock(&m1))
 break;
 pthread_mutex_unlock(&m2);
 }
 /* use objects 1 and 2 */
 pthread_mutex_unlock(&m1);
 pthread_mutex_unlock(&m2);
}

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Mutex Summary

If multiple threads want to share read-only data (i.e., no thread will

ever modify the shared data)

you don’t need to use mutex

How do threads interact with each other?

If multiple threads want to share data for reading and writing (or

just for writing, which is unusual)

all these threads must share a mutex and only access the shared

data using critical section code with respect to this mutex

they interact with each other by calling pthread functions

they interact with each other using shared variables

in general, critical section code may be nested (as in the case of

locking hierarchy)

also, a thread may be using different mutexes to interact with

different threads

e.g., pthread_mutex_lock(), pthread_mutex_unlock()

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Beyond Mutexes

Mutex is necessary when shared data is being modified

although there are cases where using a mutex is an overkill

(i.e., too restrictive and inefficient and would lock threads out

when it’s not necessary)

two major categories to illustrate this

1) what if threads don’t interfere one another most of the

time and synchronization is only required occasionally?

2) what if some threads just want to look at (i.e., read) a

piece of data?

e.g., Producer-Consumer problem (a.k.a.,

bounded-buffer problem)

e.g., Readers-Writers problem

can always use one mutex to lock up all shared data

will also look at Barrier Synchronization

we would like to have better concurrency (i.e., "fine-grained

parallelism") when complete mutual exclusion in not required

no parallelism (when some parallelism can be permitted)

Conveyor belt (hardware)

perfect parallelism between producer and consumer

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Producer-Consumer Problem

ProducerConsumer

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Producer-Consumer Problem

ProducerConsumer

producer needs to be blocked when all slots are full

consumer needs to be blocked when all slots are empty

Most of the time, no interference

When does it require synchronization?

A circular buffer is used in software implementation

if you use a single mutex to lock the entire array of buffers, it’s

an overkill (i.e., too inefficient)

Conveyor belt (hardware)

perfect parallelism between producer and consumer

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Guarded Commands

when (guard) [
 /*
 once the guard is true,
 execute this code atomically
 */
 ...
]

command sequence

this means that the command sequence is executed (atomically)

when the guard is evaluated to be true

atomically mean that it’s executed "without interruption"

evaluting the guard and executing the command sequence

altogether is an atomic operation if the guard is true

For exams, you need to know how to write simple pesudo-code

in the language of Guarded Commands

a guard is a boolean expression (evaluates to true or false)

you cannot evaluate the guard if your thread is not running

but with respect to what?

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Guarded Commands

when (guard) [
 /*
 once the guard is true,
 execute this code atomically
 */
 ...
]

command sequence

false

true

Time

guard

you can only evaluate the guard if your thread is running

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Guarded Commands

when (guard) [
 /*
 once the guard is true,
 execute this code atomically
 */
 ...
]

command sequence

false

true

Time

guard

evaluate guard

t1

you can only evaluate the guard if your thread is running

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Guarded Commands

when (guard) [
 /*
 once the guard is true,
 execute this code atomically
 */
 ...
]

command sequence

false

true

Time

guard

evaluate guard

t2

you can only evaluate the guard if your thread is running

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Guarded Commands

when (guard) [
 /*
 once the guard is true,
 execute this code atomically
 */
 ...
]

command sequence

false

true

Time

guard

evaluate guard

t3

you can only evaluate the guard if your thread is running

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Guarded Commands

when (guard) [
 /*
 once the guard is true,
 execute this code atomically
 */
 ...
]

command sequence

false

true

Time

guard

evaluate guard

t4

you can only evaluate the guard if your thread is running

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Guarded Commands

when (guard) [
 /*
 once the guard is true,
 execute this code atomically
 */
 ...
]

command sequence

false

true

Time

guard

evaluate guard

t4

execute command sequence

you can only evaluate the guard if your thread is running

false

true

Time

guard

evaluate guard

t4

execute command sequence
ATOMIC

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Guarded Commands

when (guard) [
 /*
 once the guard is true,
 execute this code atomically
 */
 ...
]

command sequence

please understand that command sequence ≠ critical section

evaluate the guard to be true and execute command sequence

together is done inside one critical section

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Guarded Commands

when (guard) [
 /*
 once the guard is true,
 execute this code atomically
 */
 ...
]

command sequence

false

true

Time

guard

guard evaluate to be true and
execute command sequence

t4

atomic: as if it’s executed in an instance of time (duration = 0)

this is okay because it’s just pseudo-code

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Semaphores

A semaphore, S, is a nonnegative integer on which there are

exactly two operations defined by two garded commands

P(S) operation (implemented as a guarded command):

when (S > 0) [

 S = S - 1;

]

V(S) operation (implemented as a guarded command):

[S = S + 1;]

there are no other means for manipulating the value of S

other than initializing it

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Mutexes with Semaphores

semaphore S = 1;

void OneAtATime() {
 P(S);
 ...
 /* code executed mutually
 exclusively */
 ...
 V(S);
}

this is known as a binary semaphore

P(S) operation:

when (S > 0) [

 S = S - 1;

]

V(S) operation:

[S = S + 1;]

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Implement A Mutex With A Binary Semaphore

Instead of doing

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_lock(&m);
x = x+1;
pthread_mutex_unlock(&m);

semaphore S = 1;
P(S);
x = x+1;
V(S);

do:

So, you can lock a data structure using a binary semaphore

this looks just like mutex, what have we really gained?

if you use it this way, nothing

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Mutexes with Semaphores

semaphore S = N;

void NAtATime() {
 P(S);
 ...
 /* no more than N threads
 here at once */
 ...
 V(S);
}

this is known as a counting semaphore

can be used to solve the producer-consumer problem

P(S) operation:

when (S > 0) [

 S = S - 1;

]

V(S) operation:

[S = S + 1;]

if a thread locks a mutex, it’s holding the lock

Main difference between a semaphore and a mutex

one thread performs a P operation on a semaphore, another

thread performs a V operation on the same semaphore

therefore, it must be that thread that unlocks that mutex

this is often why you would use a semaphore

