Operating Systems - CSCI 402

2.2.3 Synchronization

ﬁ> In real life, "synchronization” means that you want to do things at
the same time

ﬁ} In computer science, "synchronization” could meant the above,
OR, it means that you want to prevent do things at the same time

Copyright © William C. Cheng

Operating Systems - CSCI 402

Mutual Exclusion

|:> Also see https:/en.wikipedia.org/wiki/Therac-25 3
</

Copyright © William C. Cheng

Operating Systems - CSCI 402

Threads and Mutual Exclusion

Thread 1: Thread 2:
X = x+1; X = x+1;

— looks like it doesn’t matter how you execute, x will be
incremented by 2 in the end

Q choices are
& thread 1 executes x = x+1 then thread 2 executes x = x+1

<& thread 2 executes x = x+1 then thread 1 executes x = x+1
Q are there other choices?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Threads and Mutual Exclusion

r1is

Thread 1: Thread 2: Inside here
X = x+1; x = x+1;
/% /% memory bus
1d rl,x 1d rl, x
add rl1,1 add rl1,1 =
st rl,x st rl,x
Wy y Memory
ﬁ> Unfortunately, machines do not execute high-level language
statements

—= they execute machine instructions

= now if thread 1 executes the first (or two) machine instructions
= context switch can happen (to run a different thread)

Q this can happen if you have a preemptive scheduler

then thread 2 executes all 3 machine instructions

then later thread 1 executes the remaining machine instruction
— x would have only increased by 1 l
x y y ; @J

27

[

[

Copyright © William C. Cheng

Operating Systems - CSCI 402

Threads and Mutual Exclusion

r1is

Thread 1: Thread 2: nside here
X = x+1; x = x+1;
/% /% memory bus
1d rl,x 1d rl, x
add rl1,1 add rl1,1 =
st rl,x st rl,x
y y Memory

) We want x=x+1 to be executed atomically
= atomically means that the 3 machine instructions are locked
together
Q if you execute the first machine instruction, you must
execute all 3 without interruption
= agtomicity is an abstraction
Q it’s important to understand exactly what it means to be
atomic

Copyright © William C. Cheng

Operating Systems - CSCI 402

Threads and Mutual Exclusion

r1is

Thread 1: Thread 2: nside here
x = x+1; x = x+1;
/% /% memory bus
1d rl,x 1d rl, x
add rl1,1 add rl1,1 =
st rl,x st rl,x
y y Memory

) Atomic operation
= if you execute the first machine instruction, can the CPU go do

something else (e.g., handle a hardware interrupt)?
Q yes!
= what does atomic really mean if you can go do something else?
Q It means atomic, with respect to the variables involved
<& in this example, it’s just x
<& you can do something else that does not involve x
Q more involved in general as we will see soon / @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Threads and Mutual Exclusion

r1is

Thread 1: Thread 2: nside here
X = x+1; x = x+1;
/% /% memory bus
1d rl,x 1d rl, x
add rl1,1 add rl1,1 =
st rl,x st rl,x
y y Memory

) Atomic operation

= every time you talk about an atomic operation, you need to be
very clear about exactly what it is with respect to
—= we will use a visual aid

Copyright © William C. Cheng

Operating Systems - CSCI 402

Threads and Synchronization

ﬁ} Solution: put x in an (abstract) safe-deposit box under lock and key
= whoever has the key gets to use x
Q what if you fall asleep while inside the box?
<& no problem, others will just have to wait
Q isn’t that inefficient?
& correctness is more important Box
& if you know you will fall asleep
inside the box, you should be nice % % % % ? 1
to others (and be more efficient)
by getting out of the box and get in line later

) Rule for accessing x from now on:
= you can only access x using an atomic operation

ﬁ> What if you have more than one variable (e.g., x, y, z)?
= put all of them inside one safe-deposit box
= you can only access x, y, z atomically, with respect to the
operation of the "box" 3

31

Copyright © William C. Cheng

Threads and Synchronization

// shared by both threads
pthread_mutex_t m = PTHREAD_ MUTEX_ INITIALIZER;
int x;

pthread_mutex_lock (&m) ;

a safe-deposit box
x = x+1; critical section

pthread_mutex_unlock (&m) ; % % % %

= code between pthread_mutex_lock () and

Operating Systems - CSCI 402

_) Locking a mutex is
like getting the key to

Box

T

pthread_mutex_unlock () for a particular mutex is called a

critical section with respect to that mutex

Q all the critical sections with respect to a particular mutex

are "mutually exclusive"

& the system (not necessarily the OS) guarantees that only
one critical section can be executing at any point in time

with respect to a particular mutex

Q how it’s really done will be covered in Ch 5
Copyright © William C. Cheng

E

Operating Systems - CSCI 402

Set Up

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

> Mutex initialization
= mutex is unlocked
= [nitialize data structure (initially empty) used to keep track of
waiting threads

) If amutex cannot be initialized statically, do:

int pthread_mutex_init (
pthread_mutex_t *mutexp,
pthread_mutexattr_t *attrp)

int pthread_mutex_destroy (
pthread_mutex_t *mutexp)

) Usually, mutex attributes are not used

Copyright © William C. Cheng

Operating Systems - CSCI 402

One Mutex, Multiple Critical Sections

£1() { Box

pthread_mutex_lock (&m) ;
- } critical section % % % % 1

pthread mutex_unlock (&m) ;

f2() {
pthread_mutex_lock (&m) ;

- } critical section read/write =~ x)

pthread_mutex_unlock (&m) ;

}

"Serialization Box"

m execute —¥| x++

u execute ¥ x—

= only one thread can be running
inside the "Serialization Box" at a time (access to the "box" is

"serialized"” or "synchronized")
Q vyou should only access shared variables using critical

section code |
= the "Serialization Box" is not a real box, it’s conceptual 343 @J

Copyright © William C. Cheng

£1(0) {
pthread_mutex_lock (&m) ;

- } critical section

pthread mutex_unlock (&m) ;

f2() {
pthread_mutex_lock (&m) ;

- } critical section

pthread_mutex_unlock (&m) ;
}

I:> By calling pthread_mutex_lock (&m), a thread can be placed into
a queue and wait there indefinitely for mutex m to become available

= multiple threads would join this queue

=]

Operating Systems - CSCI 402

One Mutex, Multiple Critical Sections

"Serialization Box"

read/write —>@

execute —%

x++

execute —%

= queue is served one at a time, like a supermarket checkout

= when it’s your thread’s turn, pthread_mutex_lock () returns

with the mutex locked, your thread can execute critical

section code, and then release the mutex

Copyright © William C. Cheng

Operating Systems - CSCI 402

Taking Multiple Locks

) Mutex is not a cure-all
= when you have more than one locks, you may get into trouble

procl() { proc2() {
pthread_mutex_lock (&ml) ; pthread_mutex_lock (&m2) ;
/* use object 1 */ /* use object 2 */
pthread_mutex_lock (&m2) ; pthread_mutex_lock (&ml) ;
/* use objects 1 and 2 */ /* use objects 1 and 2 */
pthread_mutex_unlock (&m2) ; pthread_mutex_unlock (&ml) ;
pthread_mutex_unlock (&ml) ; pthread_mutex_unlock (&m2) ;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Taking Multiple Locks

procl() { proc2() {
pthread_mutex_lock (&ml) ; pthread_mutex_lock (&m2) ;
/* use object 1 */ /* use object 2 */
pthread_mutex_lock (&m2) ; pthread_mutex_lock (&ml) ;
/* use objects 1 and 2 */ /* use objects 1 and 2 */
pthread_mutex_unlock (&m2) ; pthread_mutex_unlock (&ml) ;
pthread_mutex_unlock (&ml) ; pthread_mutex_unlock (&m2) ;

} }

ﬁ> Graph representation ("wait-for" graph) for the entire process
= draw an arrow from a mutex you are holding to another mutex

you are waiting for

@ Deadlock @

Copyright © William C. Cheng

