
In real life, "synchronization" means that you want to do things at

the same time

In computer science, "synchronization" could meant the above,

OR, it means that you want to prevent do things at the same time

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

2.2.3 Synchronization

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Mutual Exclusion

Also see https://en.wikipedia.org/wiki/Therac-25

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Threads and Mutual Exclusion

Thread 1:

x = x+1;

Thread 2:

x = x+1;

looks like it doesn’t matter how you execute, x will be

incremented by 2 in the end

choices are

thread 1 executes x = x+1 then thread 2 executes x = x+1

thread 2 executes x = x+1 then thread 1 executes x = x+1

are there other choices?

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Threads and Mutual Exclusion

Thread 1:

x = x+1;
 /*
 ld r1,x
 add r1,1
 st r1,x
 */

Thread 2:

x = x+1;
 /*
 ld r1,x
 add r1,1
 st r1,x
 */

they execute machine instructions

Unfortunately, machines do not execute high-level language

statements

now if thread 1 executes the first (or two) machine instructions

then thread 2 executes all 3 machine instructions

then later thread 1 executes the remaining machine instructions

x would have only increased by 1

context switch can happen (to run a different thread)

Memory

memory bus

x

r1 is
inside here

this can happen if you have a preemptive scheduler

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Threads and Mutual Exclusion

Thread 1:

x = x+1;
 /*
 ld r1,x
 add r1,1
 st r1,x
 */

Thread 2:

x = x+1;
 /*
 ld r1,x
 add r1,1
 st r1,x
 */

Memory

memory bus

x

r1 is
inside here

atomically means that the 3 machine instructions are locked

together

We want x=x+1 to be executed atomically

if you execute the first machine instruction, you must

execute all 3 without interruption

it’s important to understand exactly what it means to be

atomic

atomicity is an abstraction

if you execute the first machine instruction, can the CPU go do

something else (e.g., handle a hardware interrupt)?

Atomic operation

yes!

what does atomic really mean if you can go do something else?

it means atomic, with respect to the variables involved

in this example, it’s just x

you can do something else that does not involve x

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Threads and Mutual Exclusion

Thread 1:

x = x+1;
 /*
 ld r1,x
 add r1,1
 st r1,x
 */

Thread 2:

x = x+1;
 /*
 ld r1,x
 add r1,1
 st r1,x
 */

Memory

memory bus

x

r1 is
inside here

more involved in general as we will see soon

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Threads and Mutual Exclusion

Thread 1:

x = x+1;
 /*
 ld r1,x
 add r1,1
 st r1,x
 */

Thread 2:

x = x+1;
 /*
 ld r1,x
 add r1,1
 st r1,x
 */

Memory

memory bus

x

r1 is
inside here

Atomic operation

every time you talk about an atomic operation, you need to be

very clear about exactly what it is with respect to

we will use a visual aid

if you know you will fall asleep

inside the box, you should be nice

to others (and be more efficient)

by getting out of the box and get in line later

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Threads and Synchronization

Box

whoever has the key gets to use x

Solution: put x in an (abstract) safe-deposit box under lock and key

what if you fall asleep while inside the box?

no problem, others will just have to wait

correctness is more important

isn’t that inefficient?

you can only access x using an atomic operation

Rule for accessing x from now on:

you can only access x, y, z atomically, with respect to the

operation of the "box"

put all of them inside one safe-deposit box

What if you have more than one variable (e.g., x, y, z)?

the system (not necessarily the OS) guarantees that only

one critical section can be executing at any point in time

with respect to a particular mutex

all the critical sections with respect to a particular mutex

are "mutually exclusive"

code between pthread_mutex_lock() and

pthread_mutex_unlock() for a particular mutex is called a

critical section with respect to that mutex

// shared by both threads
pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
int x;
...
pthread_mutex_lock(&m);

x = x+1;

pthread_mutex_unlock(&m);

0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Threads and Synchronization

critical section

Locking a mutex is

like getting the key to

a safe-deposit box
Box

how it’s really done will be covered in Ch 5

0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Set Up

int pthread_mutex_init(
 pthread_mutex_t *mutexp,
 pthread_mutexattr_t *attrp)

int pthread_mutex_destroy(
 pthread_mutex_t *mutexp)

If a mutex cannot be initialized statically, do:

Usually, mutex attributes are not used

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

mutex is unlocked

Mutex initialization

initialize data structure (initially empty) used to keep track of

waiting threads

x++

x--

m

...

execute

execute

"Serialization Box"

xread/write

you should only access shared variables using critical

section code
0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

One Mutex, Multiple Critical Sections

x--;

x++;

only one thread can be running

inside the "Serialization Box" at a time (access to the "box" is

"serialized" or "synchronized")

f1() {

}

 pthread_mutex_lock(&m);

 pthread_mutex_unlock(&m);

critical section

f2() {

}

 pthread_mutex_lock(&m);

 pthread_mutex_unlock(&m);

critical section

Box

the "Serialization Box" is not a real box, it’s conceptual

0123

35

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

One Mutex, Multiple Critical Sections

x--;

x++;

By calling pthread_mutex_lock(&m), a thread can be placed into

a queue and wait there indefinitely for mutex m to become available

f1() {

}

 pthread_mutex_lock(&m);

 pthread_mutex_unlock(&m);

critical section

multiple threads would join this queue

queue is served one at a time, like a supermarket checkout

when it’s your thread’s turn, pthread_mutex_lock() returns

with the mutex locked, your thread can execute critical

section code, and then release the mutex

f2() {

}

 pthread_mutex_lock(&m);

 pthread_mutex_unlock(&m);

critical section

x++

x--

m

...

execute

execute

"Serialization Box"

xread/write

0123

36

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Taking Multiple Locks

proc1() {
 pthread_mutex_lock(&m1);
 /* use object 1 */
 pthread_mutex_lock(&m2);
 /* use objects 1 and 2 */
 pthread_mutex_unlock(&m2);
 pthread_mutex_unlock(&m1);
}

proc2() {
 pthread_mutex_lock(&m2);
 /* use object 2 */
 pthread_mutex_lock(&m1);
 /* use objects 1 and 2 */
 pthread_mutex_unlock(&m1);
 pthread_mutex_unlock(&m2);
}

Mutex is not a cure-all

when you have more than one locks, you may get into trouble

0123

37

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Taking Multiple Locks

proc1() {
 pthread_mutex_lock(&m1);
 /* use object 1 */
 pthread_mutex_lock(&m2);
 /* use objects 1 and 2 */
 pthread_mutex_unlock(&m2);
 pthread_mutex_unlock(&m1);
}

proc2() {
 pthread_mutex_lock(&m2);
 /* use object 2 */
 pthread_mutex_lock(&m1);
 /* use objects 1 and 2 */
 pthread_mutex_unlock(&m1);
 pthread_mutex_unlock(&m2);
}

mutex 1 mutex 2Deadlock

Graph representation ("wait-for" graph) for the entire process

draw an arrow from a mutex you are holding to another mutex

you are waiting for

