Operating Systems - CSCI 402

Creating a POSIX Thread

start_servers() {
pthread_t thread;

int i;
for (i = 0; i < 100; i++)
= pthread_create(&thread, Y
0,
server,

(void¥*)1i);

}

A 1¢
void *server (void *arg) { stack frame of server() —» arg |:|
[1 — 1 ° 4
P 1int k (1nt) arg; . stack frame of start_servers() —» thread, i |I|
// perform service
} return (0) ’ stack frame of main() argc, argv
stack space
= every thread needs a separate stack (one stack memory segment each)
Q first stack frame in every child thread corresponds to
server ()
& one arg in each of these stack frames / @!,}_
=/

& a stack space is in its own stack memory segment
Copyright © William C. Cheng

Operating Systems - CSCI 402

Creating a POSIX Thread

start_servers() {
pthread_t thread;
int i;
for (i = 0; i < 100; i++)
= pthread_create(&thread, Y
0,
server,
(void*)i); A
} stack frame of server() — arg| |
A 1¢
void *server (void *arg) { stack frame of server() —» arg|I|
= int ke (i . !
k J/'I;tp];r:é:;z;) :]e:g\,rice stack frame of start_servers() —» thread, i |I|
} return (0) ' stack frame of main() argc, argv
stack space
= every thread needs a separate stack (one stack memory segment each)
Q first stack frame in every child thread corresponds to
server ()
<& one arg in each of these stack frames / @!,}_
=/

& a stack space is in its own stack memory segment
Copyright © William C. Cheng

Operating Systems - CSCI 402

Creating a POSIX Thread

start_servers() {
pthread_t thread;
int i;
for (i = 0; i < 100; i++)
= pthread_create(&thread, Y
0,
server,
&i) ; A
} stack frame of server() — arg| |
A 1¢
void *server (void *arg) { stack frame of server() —» a;g|:|
= - *a ik -
k int 1ptr (1nt) arg; stack frame of start_servers() —» thread, i
// perform service
} return (0) ' stack frame of main() argc, argv
stack space
= every thread needs a separate stack (one stack memory segment each)
Q first stack frame in every child thread corresponds to
server ()
<& one arg in each of these stack frames / @!,}_
=/

& a stack space is in its own stack memory segment
Copyright © William C. Cheng

Operating Systems - CSCI 402

Creating a POSIX Thread

_) These are the same:
= keep thread handle in the stack

pthread_t thread;
pthread_create (&thread, ...);

— keep thread handle in the heap

pthread_t *thread_ptr =
(pthread_t*)malloc (sizeof (pthread_t));
pthread_create (thread_ptr, ...);

Q need to make sure that eventually you will call the
following to not leak memory
free (thread_ptr);

Copyright © William C. Cheng

Creating a Win32 Thread
{

start_servers()
HANDLE thread;

DWORD id;

int i;

for (i = 0; i1 < 100; i++)

thread = CreateThread (

0, // security attributes
0, // default # of stack pages allocated
server, // first procedure
arg, // argument
0, // default attributes
0, // creation flags
&id) ; // thread ID

}

DWORD WINAPI server (void *arg) ({
// perform service

return (0) ;

}

= We won’t talk about Win32 much '

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402
Complications

rlogind(int r_in, int r_out, int 1_in, int 1_out) ({
pthread_t in_thread, out_thread;

pthread_create (&in_thread,

0,

incoming,

r_in, 1_out); // Cannot do this
pthread_create (&out_thread,

0,

outgoing,

1l _in, r_out); // Cannot do this
/* How do we wait till they are done? */

}

Copyright © William C. Cheng

Operating Systems - CSCI 402

Multiple Arguments

typedef struct {
int first, second;
} two_ints_t;

rlogind(int r_in, int r_out, int 1_in, int 1_out) ({
pthread_t in_thread, out_thread;

two_ints_t in={r_in, 1l_out}, out={l_in, r_out};
pthread_create (&in_thread,

0,

incoming,

&in) ;

/* How do we wait till they are done? */

}

void *incoming(void *arg) {
two_ints_t *p=(two_ints_t¥*)arg;
p—>first
return NULL; %
’ 3(2(1f0) o=
} 2)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Multiple Arguments

typedef struct {
int first, second; »
} two_ints_t; main() —

rlogind)] in| |out| |

rlogind(int r_in, int r_out, int 1_in, int 1_out) ({
pthread_t in_thread, out_thread;

two_ints_t in={r_in, 1l_out}, out={l_in, r_out};
pthread_create (&in_thread, 7
0,
incoming, incoming() argl | p| |
&in) ;

/* How do we wait till they are done? */

}

void *incoming(void *arg) {
two_ints_t *p=(two_ints_t¥*)arg;
p—>first
return NULL; %
’ 3(2(1f0) o=
} 2)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Multiple Arguments

ﬁ} Need to be careful how to pass argument to new thread when you
call pthread_create ()
= passing address of a /ocal variable (like the previous example)
only works if we are certain the this storage doesn’t go out of
scope until the thread is done with it
— passing address of a static or a global variable only works if we
are certain that only one thread at a time is using the storage
= passing address of a dynamically allocated storage only works
if we can free the storage when, and only when, the thread is
finished with it
Q this would not be a problem if the language supports
garbage collection

ﬁ} Memory corruption happens when memory is re-used unexpectedly
= ask yourself, "How can | be sure?"
Q if the answer is, "l hope it works™, then you need a

different solution (AR
2

Copyright © William C. Cheng

Operating Systems - CSCI 402

When Is The Child Thread Done?

) In our example, what would happen if we return from rlogind ()
right after the child threads are created?

typedef struct ({
int first, second; -
} two_ints_t; main() —

rlogind)] in| _ |out| |

rlogind(int r_in, int r_out, int 1_in, int 1_out) ({
pthread_t in_thread, out_thread;
two_ints_t in={r_in, 1l_out}, out={l_in, r_out};
pthread_create (&in_thread,
0,

incoming, A
&in) ; incoming() argl | p| |

}
void *incoming(void *arg) ({
two_ints_t *p=(two_ints_t¥*)arg;
p—>first
return NULL,
}

Copyright © William C. Cheng

Operating Systems - CSCI 402

When Is The Child Thread Done?

) In our example, what would happen if we return from rlogind ()
right after the child threads are created?

A
typedef struct ({ - .
U [
int first, second; rlogind() mlnl:x
} two_ints_t; i

rlogind(int r_in, int r_out, int 1_in, int 1_out) ({
pthread_t in_thread, out_thread;
two_ints_t in={r_in, 1l_out}, out={l_in, r_out};
pthread_create (&in_thread,
0,

incoming, A
&in) ; incoming() argl | p| |

- }

void *incoming(void *arg) ({
two_ints_t *p=(two_ints_t¥*)arg;
p—>first
return NULL,
}

Copyright © William C. Cheng

Operating Systems - CSCI 402

When Is The Child Thread Done?

> To wait for a child thread to die, use pthread_join()

int pthread_join (thread_t thread,
(void **)ret_value);

rlogind(int r_in, int r_out, int 1_in, int 1_out) ({
pthread_t in_thread, out_thread,;
two_ints_t in={r_in, 1l_out}, out={l_in, r_out};

pthread_create (&in_thread, 0, incoming, &in);
pthread_create (&out_thread, 0, outgoing, &out);

/* if not interested in thread return wvalues */
pthread_join (in_thread, 0);
pthread_join (out_thread, 0);

= (void**) Is the address of a variable of type (void*)
— pthread_join () is a blocking call
Q can only return if the specified thread has terminated

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread Termination

) Thread return values
= which threads receive these values
= how do they do it?
Q clearly, receiving thread must wait until the producer
thread produced it, i.e., producer thread has terminated
Q so we must have a way for one thread to wait for another
thread to terminate
= must have a way to say which thread you are waiting for
Q need a unique identifier
Q tricky if it can be reused

int pthread_join(thread_t thread,
(void **)ret_vwvalue);

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread Termination
) How does a thread self-terminate? |)
1) return from its "first procedure" el == :
& return a value of type (void¥) parent) | result| |
2) call pthread_exit (ret_value)
& ret_value is of type (void*) maind ==
parent () { void *child(void *arg) {
pthread_t thread; . ..
void *result=(void*)O0; if (terminate_now) {
pthread_create (&thread, pthread_exit ((void¥*)1);
0, child, 0); }
pthread_join (thread, return ((void*) 2) ;
(void**) &result) ; }
switch ((int)result) { Thread Control Block
case 1: LI
case 2: Exit/Return Code

}

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread Termination

) Difference between pthread_exit () and exit ()
= pthread_exit () terminates only the calling thread
= exit () terminates the process, including all threads
running in it
Q it will not wait for any thread to terminate
Q what will this code do?

int main(int argc, char *argv[]) {
// create all the threads
return (0) ;

}
QO when main () returns, exit () will be called
<& as a result, none of the created
child threads may get a chance to run

A
]] main()] argc, argv
_ main() is called by a "startup routine": startup() >
exit (main (argc, argv)) (AR
B

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread Termination

) Difference between pthread_exit () and exit ()
= pthread_exit () terminates only the calling thread
= exit () terminates the process, including all threads
running in it
Q it will not wait for any thread to terminate
Q what about this code?

int main(int argc, char *argv[]) {
// create all the threads
pthread_exit (0); // exit the main thread
return (0) ;

}

Q here, pthread_exit () will terminate the main thread, so
exit () is never called
& as it turns out, this special case is taken care of in the
pthread library implemetation

ﬁ} You should use pthread_join () unless you are absolutely (\
(0) b=

sure what you are doing Y

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread Termination

) Calling pthread_exit () is the only way a thread can
self-terminate (without affecting other threads)

ﬁ} Any thread can join with any other thread
= there’s no parent/child relationships among threads
Q unlike process termination and wait ()

ﬁ> What happens if a thread terminates and no other thread wants
to join with this thread?
= it also goes into a zombie state
Q all the thread related information is freed up, except for
the thread ID, return code, and stack space
& arunning thread cannot delete its own stack!

> What if two threads want to join with the same thread?
= after the first thread joins, the thread ID and return code are
freed up and the thread ID may get reused
= so don’t do this! (D

Copyright © William C. Cheng

Operating Systems - CSCI 402

Detached Threads

ﬁ} What if you have a thread that you don’t want any thread to join
with it?
= you can detach the thread after you have created it

start_servers() {
pthread_t thread;
int 1i;
for (1 = 0; i < 100; i++) {
pthread_create (&thread, 0, server, 0);
pthread_detach (thread);
}

}

server() {

}

Copyright © William C. Cheng

Operating Systems - CSCI 402

Types

pthread_create (&tid,
0,
(void * (*) (void *)) func,
(void *)1);

int func 4; // func definition 1

void func(int i) { // func definition 2

}

void *func(void *arqg) { // func definition 3
int i = (int)arg;

return (0) ;

}

= a function is just an address (of something in the text/code
segment)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread Attributes

pthread_t thread;
pthread_attr_t thr_attr;

pthread_attr_init (&thr_attr);
/* establish some attributes */

pthread_create (&thread, &thr_attr, startroutine, argqg);
pthread_attr_destroy (&thr_attr);

= thread attribute only needs to be valid when a thread is created
Q therefore, it can be destroyed as soon as the thread is
created

Copyright © William C. Cheng

Operating Systems - CSCI 402

Stack Size

pthread_t thread;
pthread_attr_t thr_attr;

pthread_attr_init (&thr_attr);
pthread_attr_setstacksize (&thr_attr, 20*1024*1024);

pthread_create (&thread, &thr_attr, startroutine, argqg);
pthread_attr_destroy (&thr_attr);

= the above code set the stack size to 20MB
= the default stack size is not small
Q default stack size is probably around 1MB in Solaris and
8MB in some Linux implementations
Q if you need to create a lot of threads, you may want to have
smaller stack size
Q if you have very deep recursion in your code, you may
want a bigger stack size

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example

#include <stdio.h> main() {
#include <pthread.h> int i;
#include <string.h> pthread_t thr[M];

int error;
#define M 3
##define N 4 /* initialize the matrices ... */
##define P 5 ..
// create the worker threads

int A[M] [N]; for (i=0; i<M; i++) {
int B[N] [P]; if (error = pthread_create (
int C[M] [P]; &thr[i],
0,
void *matmult (void *arg) ({ matmult,
int row = (int)arg, col; (void *)1i)) {
int 1, t; fprintf (stderr,
"pthread_create: %s",
for (col=0; col < P; col++) { strerror (error));
t = 0; exit (1);
for (i=0; i<N; i++) }
t += A[row] [i] * B[i] [col]; }
Cl[row] [col] = t; // wait for workers to finish
} for (i=0; i<M; i++)
return (0); pthread_join (thr[i], O0)
} /* print the results ... */

Copyright © William C. Cheng

Operating Systems - CSCI 402

Compiling It
% gcc —o mat mat.c -pthread

Q technically speaking, "-pthread" is for linking with the
pthread library
Q compiling is to compile "mat .c" into "mat .o"
¢ "mat.o" is deleted after the "mat™ executable file is created
Q another syntax is (for Unix systems in general):

o

% gcc —o mat mat.c -lpthread

Copyright © William C. Cheng

