
start_servers() {
 pthread_t thread;
 int i;
 for (i = 0; i < 100; i++)
 pthread_create(&thread,
 0,
 server,
 (void*)i);
}

void *server(void *arg) {
 int k=(int)arg;
 // perform service
 return(0);
}

0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Creating a POSIX Thread

every thread needs a separate stack

first stack frame in every child thread corresponds to
server()

one arg in each of these stack frames

arg

argc, argv

...

stack frame of main()

stack frame of server()

stack space

(one stack memory segment each)

...

stack frame of start_servers() thread, i 0

a stack space is in its own stack memory segment

start_servers() {
 pthread_t thread;
 int i;
 for (i = 0; i < 100; i++)
 pthread_create(&thread,
 0,
 server,
 (void*)i);
}

void *server(void *arg) {
 int k=(int)arg;
 // perform service
 return(0);
}

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Creating a POSIX Thread

every thread needs a separate stack

first stack frame in every child thread corresponds to
server()

one arg in each of these stack frames

arg

arg

argc, argv

...

stack frame of main()

stack frame of server()

stack frame of server()

stack space

(one stack memory segment each)

...

stack frame of start_servers() thread, i 1

0

a stack space is in its own stack memory segment

start_servers() {
 pthread_t thread;
 int i;
 for (i = 0; i < 100; i++)
 pthread_create(&thread,
 0,
 server,
 &i);
}

void *server(void *arg) {
 int *iptr=(int*)arg;
 // perform service
 return(0);
}

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Creating a POSIX Thread

every thread needs a separate stack

first stack frame in every child thread corresponds to
server()

one arg in each of these stack frames

arg

arg

argc, argvstack frame of main()

stack frame of server()

stack frame of server()

stack space

(one stack memory segment each)

...

stack frame of start_servers() thread, i

...

?

a stack space is in its own stack memory segment

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Creating a POSIX Thread

pthread_t thread;
pthread_create(&thread, ...);

keep thread handle in the stack

pthread_t *thread_ptr =
 (pthread_t*)malloc(sizeof(pthread_t));
pthread_create(thread_ptr, ...);

These are the same:

keep thread handle in the heap

need to make sure that eventually you will call the

following to not leak memory

free(thread_ptr);

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Creating a Win32 Thread

start_servers() {
 HANDLE thread;
 DWORD id;
 int i;
 for (i = 0; i < 100; i++)
 thread = CreateThread(
 0, // security attributes
 0, // default # of stack pages allocated
 server, // first procedure
 arg, // argument
 0, // default attributes
 0, // creation flags
 &id); // thread ID
}

DWORD WINAPI server(void *arg) {
 // perform service
 return(0);
}

We won’t talk about Win32 much

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Complications

rlogind(int r_in, int r_out, int l_in, int l_out) {
 pthread_t in_thread, out_thread;

 pthread_create(&in_thread,
 0,
 incoming,
 r_in, l_out); // Cannot do this ...
 pthread_create(&out_thread,
 0,
 outgoing,
 l_in, r_out); // Cannot do this ...
 /* How do we wait till they are done? */
}

typedef struct {
 int first, second;
} two_ints_t;

rlogind(int r_in, int r_out, int l_in, int l_out) {
 pthread_t in_thread, out_thread;

 two_ints_t in={r_in, l_out}, out={l_in, r_out};
 pthread_create(&in_thread,
 0,
 incoming,
 &in);
 ...
 /* How do we wait till they are done? */
}

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Multiple Arguments

void *incoming(void *arg) {
 two_ints_t *p=(two_ints_t*)arg;
 ... p->first ...
 return NULL;
}

typedef struct {
 int first, second;
} two_ints_t;

rlogind(int r_in, int r_out, int l_in, int l_out) {
 pthread_t in_thread, out_thread;

 two_ints_t in={r_in, l_out}, out={l_in, r_out};
 pthread_create(&in_thread,
 0,
 incoming,
 &in);
 ...
 /* How do we wait till they are done? */
}

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Multiple Arguments

...

arg

void *incoming(void *arg) {
 two_ints_t *p=(two_ints_t*)arg;
 ... p->first ...
 return NULL;
}

pincoming()

main()

in outrlogind()

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Multiple Arguments

Need to be careful how to pass argument to new thread when you

call pthread_create()

passing address of a local variable (like the previous example)

only works if we are certain the this storage doesn’t go out of

scope until the thread is done with it

passing address of a static or a global variable only works if we

are certain that only one thread at a time is using the storage

passing address of a dynamically allocated storage only works

if we can free the storage when, and only when, the thread is

finished with it

this would not be a problem if the language supports

garbage collection

Memory corruption happens when memory is re-used unexpectedly

ask yourself, "How can I be sure?"

if the answer is, "I hope it works", then you need a

different solution

In our example, what would happen if we return from rlogind()

right after the child threads are created?

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

When Is The Child Thread Done?

typedef struct {
 int first, second;
} two_ints_t;

rlogind(int r_in, int r_out, int l_in, int l_out) {
 pthread_t in_thread, out_thread;
 two_ints_t in={r_in, l_out}, out={l_in, r_out};
 pthread_create(&in_thread,
 0,
 incoming,
 &in);
}

...

arg

void *incoming(void *arg) {
 two_ints_t *p=(two_ints_t*)arg;
 ... p->first ...
 return NULL;
}

pincoming()

main()

in outrlogind()

In our example, what would happen if we return from rlogind()

right after the child threads are created?

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

When Is The Child Thread Done?

typedef struct {
 int first, second;
} two_ints_t;

rlogind(int r_in, int r_out, int l_in, int l_out) {
 pthread_t in_thread, out_thread;
 two_ints_t in={r_in, l_out}, out={l_in, r_out};
 pthread_create(&in_thread,
 0,
 incoming,
 &in);
}

...

arg

void *incoming(void *arg) {
 two_ints_t *p=(two_ints_t*)arg;
 ... p->first ...
 return NULL;
}

pincoming()

main()

in outrlogind()

can only return if the specified thread has terminated

To wait for a child thread to die, use pthread_join()

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

When Is The Child Thread Done?

rlogind(int r_in, int r_out, int l_in, int l_out) {
 pthread_t in_thread, out_thread;
 two_ints_t in={r_in, l_out}, out={l_in, r_out};

 pthread_create(&in_thread, 0, incoming, &in);
 pthread_create(&out_thread, 0, outgoing, &out);

 /* if not interested in thread return values */
 pthread_join(in_thread, 0);
 pthread_join(out_thread, 0);
}

int pthread_join(thread_t thread,
 (void **)ret_value);

(void**) is the address of a variable of type (void*)

pthread_join() is a blocking call

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Termination

which threads receive these values

Thread return values

how do they do it?

clearly, receiving thread must wait until the producer

thread produced it, i.e., producer thread has terminated

so we must have a way for one thread to wait for another

thread to terminate

must have a way to say which thread you are waiting for

need a unique identifier

tricky if it can be reused

int pthread_join(thread_t thread,
 (void **)ret_value);

void *child(void *arg) {
 ...
 if (terminate_now) {
 pthread_exit((void*)1);
 }
 return((void*)2);
}

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Termination

1)

How does a thread self-terminate?

return from its "first procedure"

return a value of type (void*)

2) call pthread_exit(ret_value)

ret_value is of type (void*)

parent() {
 pthread_t thread;
 void *result=(void*)0;
 pthread_create(&thread,
 0, child, 0);
 pthread_join(thread,
 (void**)&result);
 switch ((int)result) {
 case 1: ...
 case 2: ...
 }
 ...
}

...

result

TID

Thread Control Block

Exit/Return Code

...

main()

parent()

child()

as a result, none of the created

child threads may get a chance to run

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Termination

Difference between pthread_exit() and exit()

pthread_exit() terminates only the calling thread

exit() terminates the process, including all threads

running in it

it will not wait for any thread to terminate

what will this code do?

int main(int argc, char *argv[]) {
 // create all the threads
 return(0);
}

when main() returns, exit() will be called

argc, argvmain()

startup()main() is called by a "startup routine":

exit(main(argc,argv))

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Termination

Difference between pthread_exit() and exit()

pthread_exit() terminates only the calling thread

exit() terminates the process, including all threads

running in it

it will not wait for any thread to terminate

what about this code?

int main(int argc, char *argv[]) {
 // create all the threads
 pthread_exit(0); // exit the main thread
 return(0);
}

here, pthread_exit() will terminate the main thread, so

exit() is never called

as it turns out, this special case is taken care of in the

pthread library implemetation

You should use pthread_join() unless you are absolutely

sure what you are doing

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Termination

Any thread can join with any other thread

there’s no parent/child relationships among threads

unlike process termination and wait()

What happens if a thread terminates and no other thread wants

to join with this thread?

it also goes into a zombie state

all the thread related information is freed up, except for

the thread ID, return code, and stack space

What if two threads want to join with the same thread?

after the first thread joins, the thread ID and return code are

freed up and the thread ID may get reused

so don’t do this!

Calling pthread_exit() is the only way a thread can

self-terminate (without affecting other threads)

a running thread cannot delete its own stack!

start_servers() {
 pthread_t thread;
 int i;
 for (i = 0; i < 100; i++) {
 pthread_create(&thread, 0, server, 0);
 pthread_detach(thread);
 }
 ...
}

server() {
 ...
}

What if you have a thread that you don’t want any thread to join

with it?

you can detach the thread after you have created it

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Detached Threads

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Types

pthread_create(&tid,
 0,
 (void *(*)(void *))func,
 (void *)1);

int func = 4; // func definition 1

void func(int i) { // func definition 2
 ...
}

void *func(void *arg) { // func definition 3
 int i = (int)arg;
 ...
 return(0);
}

a function is just an address (of something in the text/code

segment)

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thread Attributes

pthread_t thread;
pthread_attr_t thr_attr;

pthread_attr_init(&thr_attr);
/* establish some attributes */
...
pthread_create(&thread, &thr_attr, startroutine, arg);
pthread_attr_destroy(&thr_attr);
...

thread attribute only needs to be valid when a thread is created

therefore, it can be destroyed as soon as the thread is

created

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Stack Size

pthread_t thread;
pthread_attr_t thr_attr;

pthread_attr_init(&thr_attr);
pthread_attr_setstacksize(&thr_attr, 20*1024*1024);
...
pthread_create(&thread, &thr_attr, startroutine, arg);
pthread_attr_destroy(&thr_attr);

if you have very deep recursion in your code, you may

want a bigger stack size

the default stack size is not small

if you need to create a lot of threads, you may want to have

smaller stack size

default stack size is probably around 1MB in Solaris and

8MB in some Linux implementations

the above code set the stack size to 20MB

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

#include <stdio.h>

#include <pthread.h>

#include <string.h>

#define M 3

#define N 4

#define P 5

int A[M][N];

int B[N][P];

int C[M][P];

void *matmult(void *arg) {

 int row = (int)arg, col;

 int i, t;

 for (col=0; col < P; col++) {

 t = 0;

 for (i=0; i<N; i++)

 t += A[row][i] * B[i][col];

 C[row][col] = t;

 }

 return(0);

}

main() {

 int i;

 pthread_t thr[M];

 int error;

 /* initialize the matrices ... */

 ...

 // create the worker threads

 for (i=0; i<M; i++) {

 if (error = pthread_create(

 &thr[i],

 0,

 matmult,

 (void *)i)) {

 fprintf(stderr,

 "pthread_create: %s",

 strerror(error));

 exit(1);

 }

 }

 // wait for workers to finish

 for (i=0; i<M; i++)

 pthread_join(thr[i], 0)

 /* print the results ... */

}

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Compiling It

% gcc -o mat mat.c -pthread

technically speaking, "-pthread" is for linking with the

pthread library

compiling is to compile "mat.c" into "mat.o"

"mat.o" is deleted after the "mat" executable file is created

another syntax is (for Unix systems in general):

% gcc -o mat mat.c -lpthread

