
the above will always associate "file" with file descriptor 0

(assuming that open() succeeds)

Whenever a process requests a new file descriptor, the lowest

numbered file descriptor not already associated with an open

file is selected; thus

#include <fcntl.h>
#include <unistd.h>
...
close(0);
fd = open("file", O_RDONLY);

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Allocation of File Descriptors

You will need to implement the above rule in the kernel 2

assignment

For each process, the kernel maintains a file descriptor table, which

is an array of pointers to "file objects"

a file object represents an opened file

a file descriptor is simply an index to this array

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Running It

if (fork() == 0) {
 /* set up file descriptor 1 in the child process */
 close(1);
 if (open("/home/bc/Output", O_WRONLY) == -1) {
 perror("/home/bc/Output");
 exit(1);
 }
 execl("/home/bc/bin/primes", "primes", "300", 0);
 exit(1);
}
/* parent continues here */
while(pid != wait(0)) /* ignore the return code */
 ;

close(1) removes file descriptor 1 from extended address

space

file descriptors are allocated lowest first on open()

new code is same as running

% primes 300 > /home/bc/Output

extended address space survives execs

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

I/O Redirection

If ">" weren’t there, the output would go to the display

The ">" parameter in a shell command that instructs the command

shell to redirect the output to the given file

% primes 300 > /home/bc/Output

when the "cat" program reads from file descriptor 0, it would

get the data bytes from the file "/home/bc/Output"

Can also redirect input

% cat < /home/bc/Output

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File Descriptor Table

it also refers to the process’s current context for that file

includes how the file is to be accesses (how open() was

invoked)

A file descriptor refers not just to a file

cursor position / file position

next location (zero-based array index) to read/write

initialized to 0 when a file is opened

Let’s say a user program opened a file with O_RDONLY

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File Object

Context (or "execution context") information must be maintained by

the OS and not directly by the user program

later on it calls write() using the opened file descriptor

how does the OS knows that it doesn’t have write access?

stores O_RDONLY in context

if the user program can manipulate the context, it can

change O_RDONLY to O_RDWR

therefore, user program must not have access to context!

all it can see is the handle

the file handle is an index into an array maintained for

the process in kernel’s address space

in this class, we will say that a file object is used to maintain the

context information about an opened file

in addition to cursor position, a file object must also remember

how a file was opened

ref
count

access
mode

file
location

inode
pointer

File-descriptor
table (per process)

this is yet

another pointer

"cursor"

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File-Descriptor Table

Kernel

User

address space

0
1
2
3

n-1

File
descriptor

context is not stored directly into the file-descriptor table

one-level of indirection

User

a file object

system file table (system-wide)

Ch 2: Multithreaded

Programming

Bill Cheng

http://merlot.usc.edu/william/usc/

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Overview

what is the API?

Why threads?

How to program with threads?

mutual exclusion

Synchronization

Pitfall of thread programmings

semaphores

condition variables

If you have multiple processors, you may be able to handle

things in parallel

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Concurrency

e.g., data coming from a disk, data coming from the network,

data coming from the keyboard, mouse got clicked, jobs

need to get executed

Many things occur simultaneously in the OS

that’s real concurrency/parallelism

If you only have one processor, you may want to make it look

like things are running in parallel

do multiplexing to create the illusion

as it turns out, it’s a good idea to do this even if you have

only have one processor

The down side is that if you want concurrency, you have to

have concurrency control or bad things can happen

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Why Threads?

Many things are easier to do with threads

Many things run faster with threads

Kernel threads vs. user threads

basic concepts are the same

can easily do programming assignments for user-level threads

that’s why we start here (to get your warmed up)!

for kernel programming assignments, you need to fill

out missing parts of various kernel threads

multithreading is a powerful paradigm

if you are just waiting, don’t waste CPU cycles, give the CPU

to someone else, without explicitly giving up the CPU

makes your design cleaner, and therefore, less buggy

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple Example: rlogind

Server

(viterbi-scf1.usc.edu)

Client

requests
responses

rlogindnetwork

r_out

r_inl_out

l_in

pseudo-
terminal

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple Example: rlogind

Server

(viterbi-scf1.usc.edu)

Client

requests
responses

rlogindnetwork

r_out

r_inl_out

l_in

pseudo-
terminal

socket

for a socket, l_in = l_out, i.e., you read and write

using the same file descriptor

logind(int r_in, int r_out, int l_in, int l_out) {

 fd_set in = 0, out;

 int want_l_write = 0, want_r_write = 0;

 int want_l_read = 1, want_r_read = 1;

 int eof = 0, tsize, fsize, wret;

 char fbuf[BSIZE], tbuf[BSIZE];

 fcntl(r_in, F_SETFL, O_NONBLOCK);

 fcntl(r_out, F_SETFL, O_NONBLOCK);

 fcntl(l_in, F_SETFL, O_NONBLOCK);

 fcntl(l_out, F_SETFL, O_NONBLOCK);

 while(!eof) {

 FD_ZERO(&in);

 FD_ZERO(&out);

 if (want_l_read) FD_SET(l_in, &in);

 if (want_r_read) FD_SET(r_in, &in);

 if (want_l_write) FD_SET(l_out, &out);

 if (want_r_write) FD_SET(r_out, &out);

 select(MAXFD, &in, &out, 0, 0);

 if (FD_ISSET(l_in, &in)) {

 if ((tsize = read(l_in, tbuf, BSIZE)) > 0) {

 want_l_read = 0;

 want_r_write = 1;

 } else { eof = 1; }

 }

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Life Without Threads

rlogind

r_out

r_inl_out

l_in

pseudo-
terminal

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Life Without Threads

 if (FD_ISSET(r_in, &in)) {

 if ((fsize = read(r_in, fbuf, BSIZE)) > 0) {

 want_r_read = 0;

 want_l_write = 1;

 } else { eof = 1; }

 }

 if (FD_ISSET(l_out, &out)) {

 if ((wret = write(l_out, fbuf, fsize)) == fsize) {

 want_r_read = 1;

 want_l_write = 0;

 } else if (wret >= 0) {

 tsize -= wret;

 } else { eof = 1; }

 }

 if (FD_ISSET(r_out, &out)) {

 if ((wret = write(r_out, tbuf, tsize)) == tsize) {

 want_l_read = 1;

 want_r_write = 0;

 } else if (wret >= 0) {

 tsize -= wret;

 } else { eof = 1; }

 }

 }

}

rlogind

r_out

r_inl_out

l_in

pseudo-
terminal

rlogind

r_out

r_inl_out

l_in

outgoing

incoming

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Life With Threads

incoming(int r_in, int l_out) {

 int eof = 0;

 char buf[BSIZE];

 int size;

 while (!eof) {

 size = read(r_in, buf, BSIZE);

 if (size <= 0)

 eof = 1;

 if (write(l_out, buf, size) <= 0)

 eof = 1;

 }

}

outgoing(int l_in, int r_out) {

 int eof = 0;

 char buf[BSIZE];

 int size;

 while (!eof) {

 size = read(l_in, buf, BSIZE);

 if (size <= 0)

 eof = 1;

 if (write(r_out, buf, size) <= 0)

 eof = 1;

 }

}

pseudo-
terminal

don’t have to call select()

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Single-Threaded Database Server

Requests

Database

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Multithreaded Database Server

Requests

Database

will be very difficult to implement this without using threads

if you want to handle a large number of requests

simultaneously

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

2.2 Programming

With Threads

Threads Creation & Termination

Threads & C++

Synchronization

Thread Safety

Deviations

0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Creating a POSIX Thread

SYNOPSIS
 #include <pthread.h>

 int pthread_create(
 pthread_t *thread,
 const pthread_attr_t *attr,
 void *(*start_routine)(void *),
 void *arg);

 Compile and link with -pthread.

man pthread_create

the start_routine is also known as the "first procedure" or

"thread function" of the child thread

the "thread ID" of the newly created thread will be returned

in the first argument of pthread_create()

it’s like main() for the child thread

may not be a Thread Control Block

start_servers() {
 pthread_t thread;
 int i;
 for (i = 0; i < 100; i++)
 pthread_create(&thread, // thread ID
 0, // default attributes
 server, // first procedure
 argument); // argument of first
} // procedure

void *server(void *arg) {
 // perform service
 return(0);
}

0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Creating a POSIX Thread

pthread_create() returns 0 if successful

POSIX 1003.1c standard

child thread starts executing here

child thread ends when return
from its start routine / first procedure

arg = argument (from caller)

pthread is a user-space library package

threads in a process shares the address space

start_servers() {
 pthread_t thread;
 int i;
 for (i = 0; i < 100; i++)
 pthread_create(&thread,
 0,
 server,
 (void*)i);
}

void *server(void *arg) {
 int k=(int)arg;
 // perform service
 return(0);
}

0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Creating a POSIX Thread

every thread needs a separate stack

first stack frame in every child thread corresponds to
server()

one arg in each of these stack frames

argc, argvstack frame of main()

stack space

...

stack frame of start_servers() thread, i 0

start_servers() {
 pthread_t thread;
 int i;
 for (i = 0; i < 100; i++)
 pthread_create(&thread,
 0,
 server,
 (void*)i);
}

void *server(void *arg) {
 int k=(int)arg;
 // perform service
 return(0);
}

0123

35

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Creating a POSIX Thread

every thread needs a separate stack

first stack frame in every child thread corresponds to
server()

one arg in each of these stack frames

arg

argc, argv

...

stack frame of main()

stack frame of server()

stack space

(one stack memory segment each)

...

stack frame of start_servers() thread, i 0

a stack space is in its own stack memory segment

