>

>

>

Copyright © William C. Cheng

Operating Systems - CSCI 402

Allocation of File Descriptors

For each process, the kernel maintains a file descriptor table, which
is an array of pointers to "file objects”

— a file object represents an opened file

= a file descriptor is simply an index to this array

Whenever a process requests a new file descriptor, the lowest
numbered file descriptor not already associated with an open
file is selected; thus

#include <fcntl.h>
#include <unistd.h>

close (0);
fd = open("file", O_RDONLY);

—= the above will always associate "file” with file descriptor 0
(assuming that open () succeeds)

You will need to implement the above rule in the kernel 2
assighment

Operating Systems - CSCI 402

Running It

if (fork() == 0) {
/* set up file descriptor 1 in the child process */
close(1l);
if (open("/home/bc/Output”", O_WRONLY) == -1) {
perror (" /home/bc/Output") ;
exit (1) ;
}

execl ("/home/be/bin/primes", "primes", "300", 0);
exit (1) ;
}

/* parent continues here */
while (pid '= wait (0)) /* ignore the return code */

= close (1) removes file descriptor 1 from extended address

space

file descriptors are allocated /owest first on open ()

extended address space survives execs

new code is same as running |
% primes 300 > /home/bc/Output ﬂgg?

Copyright © William C. Cheng

[

[

[

Operating Systems - CSCI 402

/O Redirection

% primes 300 > /home/bc/Output

ﬁ> The ">" parameter in a shell command that instructs the command
shell to redirect the output to the given file
= [If ">" weren’t there, the output would go to the display

G> Can also redirect input
% cat < /home/bc/Output
—= when the "cat"” program reads from file descriptor 0, it would
get the data bytes from the file "/home/bc/Output”

Copyright © William C. Cheng

Operating Systems - CSCI 402

File Descriptor Table

_) Afile descriptor refers not just to a file
= [t also refers to the process’s current context for that file

Q includes how the file is to be accesses (how open () was
invoked)

Q cursor position / file position
<& next location (zero-based array index) to read/write

<% Initialized to 0 when a file is opened

Copyright © William C. Cheng

Operating Systems - CSCI 402

File Object

ﬁ} Context (or "execution context"”) information must be maintained by

the OS and not directly by the user program
= In this class, we will say that a file object is used to maintain the

context information about an opened file
= [n addition to cursor position, a file object must also remember

how a file was opened

ﬁ} Let’s say a user program opened a file with O_RDONLY

= later on it calls write () using the opened file descriptor

= how does the OS knows that it doesn’t have write access?
Q stores O RDONLY in context

= if the user program can manipulate the context, it can
change O _RDONLY to O_ RDWR

= therefore, user program must not have access to context!
Q all it can see is the handle
Q the file handle is an index into an array maintained for

the process in kernel’s address space (A

Copyright © William C. Cheng

Operating Systems - CSCI 402

File-Descriptor Table

File-descriptor thLS is yet
table (per process) another pointer
0

"cursor"

File

descriptor
P \» ref access file inode

count | mode |location| pointer

1
2
3
-

User
address space

=

a file object

system file table (system-wide
User Kernel y (sy)

= contextis not stored directly into the file-descriptor table |
Q one-level of indirection 4

Copyright © William C. Cheng

Operating Systems - CSCI 402

Ch 2: Multithreaded
Programming

Bill Cheng

http://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Operating Systems - CSCI 402

Overview
) Why threads?

_, How to program with threads?
= what is the API?

ﬁ} Synchronization
= mutual exclusion
—= semaphores
= condition variables

_ Pitfall of thread programmings

Copyright © William C. Cheng

Operating Systems - CSCI 402

Concurrency

> Many things occur simultaneously in the OS
= e.(g., data coming from a disk, data coming from the network,
data coming from the keyboard, mouse got clicked, jobs
need to get executed

ﬁ> If you have multiple processors, you may be able to handle
things in paraliel
— that’s real concurrency/parallelism

ﬁ} If you only have one processor, you may want to make it look
like things are running in parallel
= do multiplexing to create the illusion
= as it turns out, it’s a good idea to do this even if you have
only have one processor

ﬁ} The down side is that if you want concurrency, you have to
have concurrency control or bad things can happen

Copyright © William C. Cheng

Operating Systems - CSCI 402

Why Threads?

IDEDNDND

) Many things are easier to do with threads
= multithreading is a powerful paradigm
= makes your design cleaner, and therefore, less buggy

> Many things run faster with threads
= |f you are just waiting, don’t waste CPU cycles, give the CPU
to someone else, without explicitly giving up the CPU

_) Kernel threads vs. user threads
— basic concepts are the same
= can easily do programming assighments for user-level threads
Q that’s why we start here (to get your warmed up)!
Q for kernel programming assignments, you need to fill
out missing parts of various kernel threads ' @_

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Simple Example: rlogind

0 %

. | \

I 0

-

f P
requests — |

responses

[.

:

[

[

: Server

.............................. * (viterbi-scf1.usc.edu)

network =

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Simple Example: rlogind

D
|
requests —>
responses ||
. Server
------------------------------ * (viterbi-scf1.usc.edu)
\ ‘_:..--.\D_l;i r_out)
network j:f::::::: EE
/ “‘:"""/ 1_out r_in)
socket
= for a socket,1_in = 1_out,i.e., you read and write |
% using the same file descriptor 5 @J

Copyright © William C. Cheng

Copyright © William C. Cheng

Life Without Threads

logind(int r_in, int r_out, int 1_in, int 1_out) ({

fd_set in = 0, out;

int want_l_write = 0, want_r_write = 0;
int want_1l_read = 1, want_r_read = 1;
int eof = 0, tsize, fsize, wret;

char fbuf[BSIZE], tbuf[BSIZE];

fentl (r_in, F_SETFL, O_NONBLOCK) ;
fentl (r_out, F_SETFL, O_NONBLOCK) ;
fentl(1l_in, F_SETFL, O_NONBLOCK) ;
fentl (1_out, F_SETFL, O_NONBLOCK) ;

while ('eof) {
FD_ZERO (&in) ;
FD_ZERO (&out) ;
if (want_1l_read) FD_SET(1l_in, &in);
if (want_r_read) FD_SET(r_in, &in);
if (want_l_write) FD_SET (l_out, &out);
if (want_r_write) FD_SET (r_out, &out);
select (MAXFD, &in, &out, 0, 0);
if (FD_ISSET(1l_in, &in)) {
if ((tsize = read(l_in, tbuf, BSIZE)) > 0) {
want_1l_read = O;
want_r_write =1
} else { eocf = 1;

}

}

Operating Systems - CSCI 402

pseudo-

terminal

Copyright © William C. Cheng

Operating Systems - CSCI 402

Life Without Threads

if (FD_ISSET(r_in, &in)) {
if ((fsize = read(r_in, fbuf, BSIZE)) > 0) {
want_r_read = O;
want_1l _write =1
} else { eof = 1;
}
if (FD_ISSET(1l_out, &out)) {
if ((wret = write(l_out, fbuf, fsize)) == fsize) {
want_r_ read = 1;
want_1l_write = O;
} else if (wret >= 0) {
tsize -= wret; pseudo-
} else { eof = 1; } terminal

}

}
if (FD_ISSET (r_out, &out)) {

if ((wret = write(r_out, tbuf, tsize)) == tsize) {
want_1l_read = 1;
want_r_write = O;

} else if (wret >= 0) {
tsize —= wret;

} else { eocf = 1; }

Operating Systems - CSCI 402

Life With Threads

pseudo-

terminal

incoming(int r_in, int 1_out) { outgoing(int 1_in, int r_out) {
int eof = 0; int eof = 0;
char buf[BSIZE]; char buf[BSIZE];
int size; int size;
while (!'eof) { while (!'eof) {
size = read(r_in, buf, BSIZE); size = read(l_in, buf, BSIZE);
if (size <= 0) if (size <= 0)
eof = 1; eof = 1;
if (write(l_out, buf, size) <= 0) if (write(r_out, buf, size) <= 0)
eof = 1; eof = 1;
} }
} }

= don’t have to call select ()

Copyright © William C. Cheng

Operating Systems - CSCI 402

Single-Threaded Database Server

Database

D

Copyright © William C. Cheng

Requests

Operating Systems - CSCI 402

Multithreaded Database Server

Requests

Database

(VAVAVAV,

= will be very difficult to implement this without using threads
if you want to handle a large humber of requests

simultaneously / @’

30

Copyright © William C. Cheng

Operating Systems - CSCI 402

2.2 Programming
With Threads

_) Threads Creation & Termination
ﬁ} Threads & C++

ﬁ} Synchronization

) Thread Safety

) Deviations

Copyright © William C. Cheng

Operating Systems - CSCI 402

Creating a POSIX Thread

[i>»man pthread_create

SYNOPSIS
#include <pthread.h>

int pthread_create (
pthread_t *thread,
const pthread_attr_t *attr,
void * (*start_routine) (void ¥*),
void *argq);

Compile and link with —-pthread.

= the start_routine is also known as the "first procedure' or
"thread function” of the child thread
Q Iit’s like main () for the child thread

= the "thread ID" of the newly created thread will be returned
in the first argument of pthread_create () |
O may not be a Thread Control Block 3 2.?2;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Creating a POSIX Thread

start_servers() {
pthread_t thread;
int i;
for (i = 0; i < 100; i++)
pthread_create (&thread, // thread ID

0, // default attributes
server, // first procedure
argument); // argument of first
} // procedure
void *server (void *arg) { 4—[child thread starts executing here
// perform service arg = argument (from caller)
return (0) ; <«— child thread ends when return
} from its start routine / first procedure

— pthread_create () returns 0 if successful
= POSIX 1003.1c standard
Q pthread is a user-space library package
= threads in a process shares the address space

Copyright © William C. Cheng

Creating a POSIX Thread

Operating Systems - CSCI 402

start_servers() {
pthread_t thread;
int i;
for (i = 0; i < 100; i++)
= pthread_create(&thread, Y
0,
server,
(void*)1i);
}
void *server (void *arg) {
int k=(int)arg; . :
. stack frame of start_servers() —» thread, i |I|
// perform service
return (0) ’ stack frame of main() —% argc, argv
} stack space

— every thread needs a separate stack

Q first stack frame in every child thread corresponds to

server ()

& one arg in each of these stack frames

Copyright © William C. Cheng

Operating Systems - CSCI 402

Creating a POSIX Thread

start_servers() {
pthread_t thread;

int i;
for (i = 0; i < 100; i++)
= pthread_create(&thread, Y
0,
server,

(void¥*)1i);

}

A 1¢
void *server (void *arg) { stack frame of server() —» arg |:|
[1 — 1 ° 4
P 1int k (1nt) arg; . stack frame of start_servers() —» thread, i |I|
// perform service
} return (0) ’ stack frame of main() argc, argv
stack space
= every thread needs a separate stack (one stack memory segment each)
Q first stack frame in every child thread corresponds to
server ()
& one arg in each of these stack frames / @!,}_
=/

& a stack space is in its own stack memory segment
Copyright © William C. Cheng

