
0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

More On System Calls

Sole interface between user and kernel

Implemented as library routines that execute "trap" machine

instructions to enter kernel

Errors indicated by returning an invalid value

if (write(fd, buffer, bufsize) == -1) {
 // error!
 printf("error %d\n", errno);
 // see perror
}

error code is in a global variable named errno

this interface (definition of system calls) is what distinguishes

one OS from another

in this class, we focus on Sixth-Edition Unix

on Ubuntu: "man 2 write" or "man -s 2 write"

search man pages in all sections: "man -k ..."

write(fd, buf, len)

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

System Calls

Kernel portion of

address space

User portion of

address space

EIP

ESP

EBP

CPU

mode U

In reality, a user

program cannot use the

entire address space

Is this the same "thread of execution"?

In reality, a user

program cannot use the

entire address space

is this the same process?

other stuff

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

System Calls

write(fd, buf, len)

kernel text

Kernel portion of

address space

User portion of

address spacetrap into kernel

kernel stack

other stuff

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

System Calls

write(fd, buf, len)

Kernel portion of

address space

User portion of

address spacetrap into kernel

Is this the same "thread of execution"?

In reality, a user

program cannot use the

entire address space

EIP

ESP

EBP

CPU

mode P/K

is this the same process?

kwrite(fd, buf, len)

process is just

an abstraction

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Multiple Processes

kernel stack
other stuff

kernel text

kernel stack
other stuff

kernel stack
other stuff

kernel stack
other stuff

the same kernel

spans across all

user processes

although there

are kernel-only

processes as

well (and they

don’t make

system calls)

the kernel is

very powerful

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

1.3 A Simple OS

OS Structure

Processes, Address Spaces, & Threads

Managing Processes

Loading Program Into Processes

Files

it has no output!

Our "primes" program wasn’t too interesting

cannot even verify that it’s doing the right thing

other program cannot use its result

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Files

how does a process write to someplace outside the process?

abstraction of persistent data storage

Files

means for fetching and storing data outside a process

including disks, another process, keyboard, display, etc.

need to name these different places

hierarchical naming structure

part of a process’s extended address space

file "cursor position" is part of "execution context"

The notion of a file is our Unix system’s sole abstraction for this

concept of "someplace outside the process"

modern Unix systems have additional abstractions

shared by all processes running on a computer

Directory system

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Naming Files

although each process can have a different view

by redefining what "root" means for the process

Unix provides a means to restrict a process to a subtree

name space is outside the processes

a user process provides the name of a file to the OS

the OS returns a handle to be used to access the file

after it has verified that the process is allowed access

along the entire path, starting from root

user process uses the handle to read/write the file

avoid subsequent access checks

Using a handle (which can be an index into a kernel array) to refer

to an object managed by the kernel is an important concept

handles are essentially an extension to the process’s

address space

can even survive execs!

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The File Abstraction

A file is a simple array of bytes

Files are made larger by writing beyond their current end

Files are named by paths in a naming tree

System calls on files are synchronous (unfortunately, Computer

Science likes to use the same word to mean different things)

File API

open(), read(), write(), close()

e.g., cat

here, it means that the system call will not return until the

operation is considered completed

although you cannot read past the current end

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File Handles (File Descriptors)

int fd;
char buffer[1024];
int count;
if ((fd = open("/home/bc/file", O_RDWR) == -1) {
 // the file couldn’t be opened
 perror("/home/bc/file");
 exit(1);
}
if ((count = read(fd, buffer, 1024)) == -1) {
 // the read failed
 perror("read");
 exit(1);
}
// buffer now contains count bytes read from the file

what is O_RDWR?

what does perror() do?

cursor position in an opened file depends on what

functions/system calls you use

what about C++?

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Standard File Descriptors

main() {
 char buf[BUFSIZE];
 int n;
 const char *note = "Write failed\n";

 while ((n = read(0, buf, sizeof(buf))) > 0)
 if (write(1, buf, n) != n) {
 (void)write(2, note, strlen(note));
 exit(EXIT_FAILURE);
 }
 return(EXIT_SUCCESS);
}

0 is stdin (by default, "map/connect" to the keyboard)

Standard File Descriptors

1 is stdout (by default, "map/connect" to the display)

2 is stderr (by default, "map/connect" to the display)

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Back to Primes

int nprimes;
int *prime;
int main(int argc, char *argv[]) {
 ...
 for (i=1; i<nprimes; i++) {
 ...
 }
 if (write(1, prime, nprimes*sizeof(int)) == -1) {
 perror("primes output");
 exit(1);
 }
 return(0);
}

Have our primes program write out the solution, i.e., the primes[]

array

the output is not readable by human

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Human-Readable Output

int nprimes;
int *prime;
int main(int argc, char *argv[]) {
 ...
 for (i=1; i<nprimes; i++) {
 ...
 }
 for (i=0; i<nprimes; i++) {
 fprintf(stdout, "%d\n", prime[i]);
 }
 return(0);
}

fprintf(stdout, ...) is the same as printf(...)

stdout is a pre-defined file pointer

please see the Programming FAQ regarding the difference

between a file descriptor and a file pointer

