More On System Calls

_) Sole interface between user and kernel
= this interface (definition of system calls) is what distinguishes
one OS from another
Q in this class, we focus on Sixth-Edition Unix

ﬁ> Implemented as library routines that execute "trap’ machine
instructions to enter kernel

_, Errors indicated by returning an invalid value
= error code is in a global variable named errno

if (write(fd, buffer, bufsize) == -1) {
// error!
printf ("error %d\n", errno);
// see perror

}

= oh Ubuntu: "man 2 write'" Oor 'man -s 2 write"

= search man pages in all sections: "'man -k ...

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

System Calls

write (fd, buf, len)

User portion of
address space

CPU \
mode U/ 4
Ep| o S —
esp[o]
EBP
Kernel portion of

_, Inreality, a user address space
program cannot use the
entire address space

Copyright © William C. Cheng

System Calls

- J write (fd, buf, len)

L

Y
A

§~A

kernel text

A

kernel stack

_, Inreality, a user

other stuff

program cannot use the
entire address space

) Is this the same "thread of execution"?

= is this the same process?

Copyright © William C. Cheng

Operating Systems - CSCI 402

. User portion of
address space

J\\

Kernel portion of
address space

System Calls

- J write (fd, buf, len)

L

cpy trap |nto‘kernel Y
‘ A
mode | P/K “
) 2
EIP | &— .
ESP o—_| | t‘ kwrite (£fd, buf, 1len)
EBP 4

_, Inreality, a user

other stuff

program cannot use the
entire address space

) Is this the same "thread of execution"?

= is this the same process?
Copyright © William C. Cheng

J\\

-

Operating Systems - CSCI 402

User portion of
address space

Kernel portion of
address space

Operating Systems - CSCI 402

Multiple Processes

—= the same kernel
spans across all
user processes
Q although there

are kernel-only
processes as

kernil fext well (and they
kernel stack don’t make
°t“er45‘—“” system calls)
kernel stack = process is just
other stuff g

A an abstraction
kernel stack i
other sttt QO the kernel is

A very powerful

kernel stack
other stuff

Copyright © William C. Cheng

Operating Systems - CSCI 402

1.3 A Simple OS

) OS Structure
ﬁ} Processes, Address Spaces, & Threads
_,> Managing Processes

_, Loading Program Into Processes

_) Files

Copyright © William C. Cheng

Operating Systems - CSCI 402

Files

) Our "primes" program wasn’t too interesting
= it has no output!
= cannot even verify that it's doing the right thing
= other program cannot use its resulit
= how does a process write to someplace outside the process?

_) Files

= abstraction of persistent data storage
—= means for fetching and storing data outside a process
Q Including disks, another process, keyboard, display, etc.
Q need to name these different places
<& hierarchical naming structure
Q part of a process’s extended address space
& file "cursor position” is part of "execution context”

ﬁ> The notion of a file is our Unix system’s sole abstraction for this
concept of "someplace outside the process” |
= modern Unix systems have additional abstractions 3 @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Naming Files

) Directory system
= shared by all processes running on a computer
Q although each process can have a different view
Q Unix provides a means to restrict a process to a subtree
& by redefining what "root"” means for the process
— name space is outside the processes
Q a user process provides the name of a file to the OS
Q the OS returns a handle to be used to access the file
& after it has verified that the process is allowed access
along the entire path, starting from root
Q user process uses the handle to read/write the file
& avoid subsequent access checks

ﬁ} Using a handle (which can be an index into a kernel array) to refer
to an object managed by the kernel is an important concept
= handles are essentially an extension to the process’s

address space 3 @!,2_
=

Q cah even survive execs!
Copyright © William C. Cheng

Operating Systems - CSCI 402

The File Abstraction
_) Afile is a simple array of bytes

ﬁ> Files are made larger by writing beyond their current end
= although you cannot read past the current end

ﬁ} Files are named by paths in a naming tree

) File API

= open (), read(), write (), close()
= e.(., cat

G> System calls on files are synchronous (unfortunately, Computer
Science likes to use the same word to mean different things)
= here, it means that the system call will not return until the
operation is considered completed

Copyright © William C. Cheng

Operating Systems - CSCI 402

File Handles (File Descriptors)

int £d;

char buffer[1024];

int count;

if ((fd = open("/home/bc/file", O_RDWR)
// the file couldn’t be opened
perror (" /home/bec/£file") ;
exit (1) ;

-1) {

}

if ((count = read(fd, buffer, 1024)) == -1) {
// the read failed
perror ("read") ;
exit (1) ;

}

// buffer now contains count bytes read from the file

= what is O_ RDWR?

= what does perror () do?

= cursor position in an opened file depends on what
functions/system calls you use |
O what about C++? 3 2?2;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Standard File Descriptors

_, Standard File Descriptors
= 0 is stdin (by default, "map/connect” to the keyboard)
= 1 is stdout (by default, "'map/connect” to the display)
= 2 is stderr (by default, "'map/connect” to the display)

main () {
char buf[BUFSIZE];
int n;
const char *note = "Write failed\n";

while ((n = read (0, buf, sizeof(buf))) > 0)
if (write(l, buf, n) !'= n) {
(void)write (2, note, strlen(note));
exit (EXIT_FAILURE);

}
return (EXIT_SUCCESS) ;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Back to Primes

ﬁ} Have our primes program write out the solution, i.e., the primes|[]
array

int nprimes;
int *prime;
int main(int argc, char *argv[]) {

for (i=1; i<nprimes; i++) {

}

if (write(l, prime, nprimes*sizeof(int)) == -1) {
perror ("primes output");
exit (1) ;

}

return (0) ;

}

= the output is not readable by human

Copyright © William C. Cheng

Operating Systems - CSCI 402

Human-Readable Output

int nprimes;
int *prime;
int main(int argc, char *argv[]) {

for (i=1; i<nprimes; i++) {

}
for (i=0; i<nprimes; i++) {

fprintf (stdout, "%d\n", primel[il]);
}

return (0) ;

_) fprintf(stdout, ...) isthe same as printf(...)
—= stdout is a pre-defined file pointer
= please see the Programming FAQ regarding the difference
between a file descriptor and a file pointer

Copyright © William C. Cheng

