Operating Systems - CSCI 402

Modified Program

int nprimes; // in bss region
int *prime; // in bss region
int main(int argc, char *argv[]) { // in stack
int i; // in stack
int current = 2; // in stack
nprimes = atoi (argv[l]);
prime = (int*)malloc (nprimes*sizeof (int));
prime[0] = current;
for (i=1l; i<nprimes; i++) { text
) data
return (0) ; bss
} dynamic
= where do all the variables reside? +
= what is argv[1] and why atoi () ?
= what is sizeof () ? *
= what does malloc () do? stack

Copyright © William C. Cheng

Operating Systems - CSCI 402

1.3 A Simple OS

) OS Structure
ﬁ} Processes, Address Spaces, & Threads
_) Managing Processes

_, Loading Program Into Processes

_ Files

Copyright © William C. Cheng

Operating Systems - CSCI 402

Program Execution

) With abstraction, comes an interface / API
= for processes
Q fork(),exit (), wait (), exec()
& it’s very important to understand what they do exactly
because you will implement them in kernel assignments

Copyright © William C. Cheng

Operating Systems - CSCI 402

Creating a Process

) Creating a process is deceptively simple

— make a copy of a process (the parent process)

Q pid_t fork (void)
the process where fork () is called is the parent process
the copy is the child process
in a way, fork () returns twice
<& once in the parent, the returned value is the
process ID (PID) of the child process

<& once in the child, the returned value is 0
<& aPID is 16-bit long
= this is the only way to create a process

O O O

ﬁ> Making a copy of the entire address space can be expensive
= Ch 7 shows speed up tricks
= e.(g., text segment is read-only so parent and child can share it

ﬁ} Example: relationship between a shell (i.e., a command |
interpreter, such as /bin/tcsh) and /bin/1s 2534

Copyright © William C. Cheng

Operating Systems - CSCI 402

Creating a Process: Before

fork ()

parent proces

Copyright © William C. Cheng

Operating Systems - CSCI 402

Creating a Process: After

fork () fork ()
// returns p // retuns O

parent proces child proces

(pid = p) 3

Copyright © William C. Cheng

Operating Systems - CSCI 402

Process Control Blocks

Parent
PID

Return code
Link = ?

Process
Control Block

ﬁ> Process Control Block (PCB) is a kernel data structure
= pretty much every field is unsigned
= return code (when a process dies) is 8-bit long
Q so that the parent process can know what happened to child
= the "Link" field points to the next PCB
Q but, the next PCB in what list?

B

Copyright © William C. Cheng

Process Control Blocks

Parent

PID

Return code

Link

..»?

Terminated children 1

Copyright © William C. Cheng

Process
Control Block

Operating Systems - CSCI 402

Dead Child Dead Child
PID —> PID
Return code Return code
Link Link
Terminated children 1% ? Terminated children -

= pretty much every field is unsigned
= return code (when a process dies) is 8-bit long
Q so that the parent process can know what happened to child
= the "Link" field points to the next PCB
Q but, the next PCB in what list?

ﬁ> Process Control Block (PCB) is a kernel data structure

ﬁ} Above is not a real implementation (just an example)

)

The exit () System Calls

) The exit () system call

void exit (int status)

= your process can call exit (n) to self-terminate
Q set n to be the "exit/return code” of this process
Q this sytem call does not return (your process will die inside

the kernel)

Parent

PID

Return code

Link

..»?

Terminated children 1

Copyright © William C. Cheng

Process
Control Block

Operating Systems - CSCI 402

Dead Child Dead Child
PID —> PID
Return code Return code
Link Link
Terminated children 1% ? Terminated children -

Operating Systems - CSCI 402

The exit () System Calls
) The exit () system call

void exit (int status)

= your process can call exit (n) to self-terminate
Q set n to be the "exit/return code” of this process
Q this sytem call does not return (your process will die inside
the kernel)

ﬁ> Where does the "primes” program go after it executes the
"return (0)"?
= [t returns to a "startup” function
—= the code of the "startup” function is simply:

exit (main());

Copyright © William C. Cheng

The wait () System Calls

_) The wait () system call

pid_t wait (int *status)

Operating Systems - CSCI 402

= your process can call wait () to wait for any child process to die
Q returns the PID of a dead child process where (*status)
Is the exit/return code of the corresponding child process
<& if there are more than one dead child processes, one of
them will be chosen at random

Parent
PID
Return code
Link 1> Dead Child Dead Child
Terminated children T—» PID —> PID
Return code Return code
Link Link
Terminated children 1% ? Terminated children -

Copyright © William C. Cheng

Process
Control Block

The wait () System Calls

_) The wait () system call

pid_t wait (int *status)

Operating Systems - CSCI 402

= your process can call wait () to wait for any child process to die
Q it’s a blocking call, i.e., the calling process gets suspended
inside the kernel if this call cannot return yet

Parent
PID
Return code
Link 1> Dead Child Dead Child
Terminated children T—» PID —> PID
Return code Return code
Link Link
Terminated children 1% ? Terminated children -

Copyright © William C. Cheng

Process
Control Block

Operating Systems - CSCI 402

Fork and Wait

short pid;

if ((pid = fork()) == 0) {
/* some code is here for the child to execute */
exit (n);

} else {
int ReturnCode;

while (pid != wait (&ReturnCode))

4

/* the child has terminated with ReturnCode as
its return code */

= e.g., this is the first step when /bin/tcsh forks /bin/1s
what does exit (n) do other than copying n into PCB?
Q least significant 8-bits of n
= what happens when main () calls return(n)?

Q eventually, exit (n) will be invoked
= pid_t wait (int *status) is a blocking call

Q It reaps dead child processes one at a time

|
= parent and child are the same "program™ here! Y l,y
Copyright © William C. Cheng

[

Operating Systems - CSCI 402

Fork and Wait

short pid;
if ((pid = fork()) == 0) {
/* some code is here for the child to execute */
exit (n);
} else {
int ReturnCode;
while (pid != wait (&ReturnCode))

4

/* the child has terminated with ReturnCode as
its return code */

Parent
PID
Return code _]
Link 12 Dead Child Dead Child
Terminated children T—» PID — PID
Return code Return code
Link Link
Terminated children % ? Terminated children % ? %
Process
Control Block @
=/

Copyright © William C. Cheng

Operating Systems - CSCI 402

Fork and Wait

short pid;

if ((pid = fork()) == 0) {
/* some code is here for the child to execute */
exit (n);

} else {
int ReturnCode;

while (pid != wait (&ReturnCode))

4

/* the child has terminated with ReturnCode as
its return code */

}

> What if you don’t want to write your code this way?
= you can write any code you want, you just shouldn’t expect your
code to work if you write weird code
= you need to understand exactly what these system calls do
and use them appropriately
Q if you do something weird, the OS will try to satisfy your

request, but may end up with results you don’t expect (/AN
q y p y p | @

Copyright © William C. Cheng

Operating Systems - CSCI 402

Process Termination Issues

) PID is only 16-bits long
= OS must not reuse PID too quickly or there may be ambiguity

> When exit () is called, the OS must not free up PCB too quickly
= parent needs to get the return code
= [t’s okay to free up everything else (such as address space)

ﬁ> Solutions for both is for the terminated child process to go into
a zombie state
= only after wait () returned with the child’s PID can the PID
be reused and the PCB can be freed up
= but what if the parent calls exit () while the child is in the
zombie state?
Q process 1 (the process with PID=1) inherits all the children of
this parent process
& this is known as "reparenting”

Q process 1 keeps calling wait () to reap the zombies |
D

Copyright © William C. Cheng

Operating Systems - CSCI 402

1.3 A Simple OS

) OS Structure
ﬁ} Processes, Address Spaces, & Threads
_,> Managing Processes

_) Loading Program Into Processes

_ Files

Copyright © William C. Cheng

Operating Systems - CSCI 402

Loading Programs Into Processes

_, How do you run a program?
— make a copy of a process
Q any process
= replace the child process with a hew one
Q wipe out the child process
& not everything, some stuff survives this (i.e., won’t get
destroyed)
& definitely need a new address space since we will be
running a different program
Q using a family of system calls known as exec
= kind of a waste to make a copy in the first place
Q but it’s the only way
Q also, the OS does not know if the reason the parent process
calls fork () is to run a new program or not

Copyright © William C. Cheng

Operating Systems - CSCI 402

Exec

int pid;
if ((pid = fork()) == 0) {
/* we’ll discuss what might take place before
exec is called */
execl ("/home/bec/bin/primes", "primes", "300", 0);
exit (1) ;
}

/* parent continues here */
while (pid != wait(0)) /* ignore the return code */

4

= what does execl () do?
Q "man execl” says:
int execl (const char *path,
const char *arg, ...);
Q isn’t "primes" in the 2nd argument kind of redundent?
Q what’s up with "..."?
& this is called "varargs" (similar to print£ ())

Copyright © William C. Cheng

Loading a New Image

fork () exec (prog,
// returns p args)

parent proces child process
Before

Copyright © William C. Cheng

Operating Systems - CSCI 402

fork ()
// returns p

Loading a New Image

exec (prog,
args)

prog’s text

prog’s data

prog’s bss

Copyright © William C. Cheng

parent proces

l

T

child process
Before

args

child process
After

42

Operating Systems - CSCI 402

@

Operating Systems - CSCI 402

Exec
int pid;
if ((pid = fork()) == 0) {
execl ("/home/bec/bin/primes", "primes", "300", 0);
exit (1) ;
}
while (pid !'= wait (0)) /* ignore the return code */

% primes 300

ﬁ> Your login shell forks off a child process, load the primes
program on top of it, wait for the child to terminate

— the same code as before
= exit (1) would get called if somehow execl () returned
Q if execl () is successful, it cannot return since the code is
gone (i.e., the code segment has been replaced by the

code segment of "primes") @!’}

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent e oid
int pid;
((shell) . =P if ((pid = fork()) == 0) {
execl (" /home/bec/bin/primes",
fork () "primesll , "300" , 0) ;
exit(1l);
}
while (pid !'= wait (0))
. J . .
Applications
0S
() ()
Process Files ©c o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent e oid
int pid;
) (shell) . =P if ((pid = fork()) == 0) {
fork execl (" /home/bec/bin/primes",
oxr () "primes" , "300" , 0) ;
exit(1l);
}
while (pid !'= wait (0))
. J . .
trap Applications

context(P)

Process Files e o o
Subsystem | [Subsystem

_> Where do you keep "context"?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child _ »
) (shell) . (shell) . S izt (I.()::;ic,i = fork()) == 0) {
fork (S e
exit (1) ;
ihile(pid 1= wait (0))
|))

Applications

context(P) context(C)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child _ "
) (shell) . (shell) . S izt (1?;151 = fork()) == 0) {
fork () O i, 30t 57
exit (1) ;
pid v}while (pid !'= wait (0))
L J _ J

Applications

?

context(P) context(C)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child e big
int pid;
) (shell) . (shell) . =P if ((pid = fork()) == 0) {
execl (" /home/bec/bin/primes",
fork () "primes" , n300n , 0) ;
exit(1l);
}
pid 0 while (pid !'= wait (0))
. J . J . .
Applications

(\) ()
? ?
context(P) context(C)
Process Files o o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child e big
int piq;
) (shell) . (shell) . if ((pid = fork()) == 0) {
o execl (" /home/bec/bin/primes",
fork () "primes" , 1130011 , 0) ;
exit(1l);
}
pid 0 while (pid !'= wait (0))
. y, . J . -
Applications

(\ {) ()
? ?
context(P) context(C)
Process Files o o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child e oiq
int pid;
) (shell) . (shell) . >if ((pid = fork()) == 0) {
- execl (" /home/bec/bin/primes",
fork () execl () nprimes", "300", 0);
exit(1l);
}
while (pid !'= wait (0))
\ J \ J . .
Applications
0S
() ()
? ?
context(P) context(C)
Process Files ©c o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child e oiq

int pid;

) (shell) . (shell) . if ((pid = fork()) == 0) {

= execl (" /home/bec/bin/primes",
fork () execl () nprimes", "300", 0);
exit(1l);

}
while (pid !'= wait (0))

\ J \ y, . .

trap Applications

?

context(P) context(C)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child e bid
. int pid;
) (shell) . (primes) . _ if ((pi == 0) {
- execl ("Noome /fc/bin/primes",
fork() "pr s", "300", 0);
exit(1l);
}
while (p#d !'= wait¥%0))
_ J . } J . .
tra Applications

?

context(P) context(C)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child

(shell) (primes)
fork () main ()
wait ()

int pid;
if ((pid = fork()) == 0) {
execl (" /home/bec/bin/primes",
"primes", "300", 0);
exit(1l);
}
while (pid !'= wait (0))

14

Applications

?

context(P)

Process

Subsystem

?

context(C)

Copyright © William C. Cheng

Files

| Subsystem |

Operating Systems - CSCI 402

Put It All Together

Parent Child it ooia
. int pid;
) (shell) - (primes) . if ((pid = fork()) == 0) {
execl (" /home/bec/bin/primes",
fO?k () "primeS" , "300" , 0) ;
wait () exit (1) ;
}
=P while (pid != wait (0))
. v, . V, . .
Applications
0S
() ()
? ?
context(P) context(C)
Process Files ©c o o
Subsystem] | Subsystem |

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child e big
. int pid;
) (shell) _ (primes) . if ((pid = fork()) == 0) {
execl (" /home/bec/bin/primes",
fO?k () "primesll , "300" , 0) ;
wait () exit (1) ;
}
=P while (pid != wait (0))
. J . J . .
trap Applications

?

context(P) context(C)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child e oiq
. int pid;
) (shell) - (primes) . if ((pid = fork()) == 0) {
. execl (" /home/bec/bin/primes",
fo:_:k() exit () nprimes", "300", 0);
wait () exit (1) ;
}
while (pid !'= wait (0))
\ \ J - J i .
tra Applications

?

context(P) context(C)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child e oiq
. int pid;
) (shell) - (primes) . if ((pid = fork()) == 0) {
. execl (" /home/bec/bin/primes",
fo:_:k() exit () nprimes", "300", 0);
wait () exit (1) ;
}
while (pid !'= wait (0))
\ \ J \ J . .
tra trap Applications

context(P) context(C)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child e oiq
. int pid;
) (shell) . (primes) if ((pid = fork()) == 0) {
. execl (" /home/bec/bin/primes",
fo:_:k() it () nprimes", "300", 0);
wait () exit (1) ;
}
=P while (pid != wait (0))
_ \ J - -
tra tra Applications

(* ‘) 4)
4 Y 4
LI 4
N
context(P) cpfitexf(Q)
Y 2 £ -
Process Files o o o
Subsystem | [Subsystem

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child e big
. int pid;
) (shell) . (primes) if ((pid = fork()) == 0) {
. execl (" /home/bec/bin/primes",
fo:_:k() it () nprimes", "300", 0);
wait () exit (1) ;
}
pid =P while (pid != wait (0))
. J . .
tra Applications

?

context(P)

Process Files e o o
Subsystem | Subsystem |

Copyright © William C. Cheng

Operating Systems - CSCI 402

Put It All Together

Parent Child e big
. int pid;
) (shell) . (primes) if ((pid = fork()) == 0) {
. execl (" /home/bec/bin/primes",
fo:_:k() it () nprimes", "300", 0);
wait () exit (1); /* never here */
}
pid while (pid !'= wait (0))
_ J/ . .
tra Applications

?

context(P)

Process Files e o o
Subsystem | [Subsystem

Copyright © William C. Cheng

