
0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Modified Program

int nprimes; // in bss region
int *prime; // in bss region
int main(int argc, char *argv[]) { // in stack
 int i; // in stack
 int current = 2; // in stack
 nprimes = atoi(argv[1]);
 prime = (int*)malloc(nprimes*sizeof(int));
 prime[0] = current;
 for (i=1; i<nprimes; i++) {
 ...
 }
 return(0);
}

what is argv[1] and why atoi()?

what is sizeof()?

what does malloc() do?

where do all the variables reside?

stack

text

dynamic

bss

data

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

1.3 A Simple OS

OS Structure

Processes, Address Spaces, & Threads

Managing Processes

Loading Program Into Processes

Files

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Program Execution

for processes

With abstraction, comes an interface / API

fork(), exit(), wait(), exec()

it’s very important to understand what they do exactly

because you will implement them in kernel assignments

Example: relationship between a shell (i.e., a command

interpreter, such as /bin/tcsh) and /bin/ls 0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Creating a Process

make a copy of a process (the parent process)

Creating a process is deceptively simple

this is the only way to create a process

pid_t fork(void)

the process where fork() is called is the parent process

the copy is the child process

in a way, fork() returns twice

once in the parent, the returned value is the

process ID (PID) of the child process

once in the child, the returned value is 0

a PID is 16-bit long

Ch 7 shows speed up tricks

Making a copy of the entire address space can be expensive

e.g., text segment is read-only so parent and child can share it

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Creating a Process: Before

fork()

parent proces

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Creating a Process: After

fork()

// returns p

parent proces

fork()

// retuns 0

child proces
(pid = p)

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Process Control Blocks

return code (when a process dies) is 8-bit long

Process Control Block (PCB) is a kernel data structure

pretty much every field is unsigned

the "Link" field points to the next PCB

but, the next PCB in what list?

so that the parent process can know what happened to child

Return code

PID

Process

Control Block

Link

Parent

?

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Process Control Blocks

return code (when a process dies) is 8-bit long

Process Control Block (PCB) is a kernel data structure

pretty much every field is unsigned

the "Link" field points to the next PCB

but, the next PCB in what list?

so that the parent process can know what happened to child

Above is not a real implementation (just an example)

Return code

Return code Return code

PID

Terminated children

Link

PID

Process

Control Block

Terminated children

Link

PID

Terminated children

Link

Parent

Dead Child Dead Child?

? ?

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The exit() System Calls

void exit(int status)

The exit() system call

your process can call exit(n) to self-terminate

set n to be the "exit/return code" of this process

this sytem call does not return (your process will die inside

the kernel)

Return code

Return code Return code

PID

Terminated children

Link

PID

Process

Control Block

Terminated children

Link

PID

Terminated children

Link

Parent

Dead Child Dead Child?

? ?

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The exit() System Calls

void exit(int status)

The exit() system call

your process can call exit(n) to self-terminate

set n to be the "exit/return code" of this process

this sytem call does not return (your process will die inside

the kernel)

Where does the "primes" program go after it executes the

"return(0)"?

it returns to a "startup" function

the code of the "startup" function is simply:

exit(main());

returns the PID of a dead child process where (*status)

is the exit/return code of the corresponding child process

0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The wait() System Calls

pid_t wait(int *status)

The wait() system call

your process can call wait() to wait for any child process to die

if there are more than one dead child processes, one of

them will be chosen at random

Return code

Return code Return code

PID

Terminated children

Link

PID

Process

Control Block

Terminated children

Link

PID

Terminated children

Link

Parent

Dead Child Dead Child?

? ?

Return code

Return code Return code

PID

Terminated children

Link

PID

Process

Control Block

Terminated children

Link

PID

Terminated children

Link

Parent

Dead Child Dead Child?

? ?

0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The wait() System Calls

pid_t wait(int *status)

The wait() system call

your process can call wait() to wait for any child process to die

it’s a blocking call, i.e., the calling process gets suspended

inside the kernel if this call cannot return yet

what does exit(n) do other than copying n into PCB?

least significant 8-bits of n

what happens when main() calls return(n)?

eventually, exit(n) will be invoked

pid_t wait(int *status) is a blocking call

it reaps dead child processes one at a time

e.g., this is the first step when /bin/tcsh forks /bin/ls

0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Fork and Wait
short pid;
if ((pid = fork()) == 0) {
 /* some code is here for the child to execute */
 exit(n);
} else {
 int ReturnCode;
 while(pid != wait(&ReturnCode))
 ;
 /* the child has terminated with ReturnCode as
 its return code */
}

parent and child are the same "program" here!

0123

35

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Fork and Wait
short pid;
if ((pid = fork()) == 0) {
 /* some code is here for the child to execute */
 exit(n);
} else {
 int ReturnCode;
 while(pid != wait(&ReturnCode))
 ;
 /* the child has terminated with ReturnCode as
 its return code */
}

Return code

Return code Return code

PID

Terminated children

Link

PID

Process

Control Block

Terminated children

Link

PID

Terminated children

Link

Parent

Dead Child Dead Child?

? ?

0123

36

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Fork and Wait
short pid;
if ((pid = fork()) == 0) {
 /* some code is here for the child to execute */
 exit(n);
} else {
 int ReturnCode;
 while(pid != wait(&ReturnCode))
 ;
 /* the child has terminated with ReturnCode as
 its return code */
}

you can write any code you want, you just shouldn’t expect your

code to work if you write weird code

What if you don’t want to write your code this way?

you need to understand exactly what these system calls do

and use them appropriately

if you do something weird, the OS will try to satisfy your

request, but may end up with results you don’t expect

0123

37

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Process Termination Issues

OS must not reuse PID too quickly or there may be ambiguity

PID is only 16-bits long

parent needs to get the return code

When exit() is called, the OS must not free up PCB too quickly

Solutions for both is for the terminated child process to go into

a zombie state

only after wait() returned with the child’s PID can the PID

be reused and the PCB can be freed up

it’s okay to free up everything else (such as address space)

but what if the parent calls exit() while the child is in the

zombie state?

process 1 (the process with PID=1) inherits all the children of

this parent process

process 1 keeps calling wait() to reap the zombies

this is known as "reparenting"

0123

38

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

1.3 A Simple OS

OS Structure

Processes, Address Spaces, & Threads

Managing Processes

Loading Program Into Processes

Files

0123

39

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Loading Programs Into Processes

make a copy of a process

any process

How do you run a program?

replace the child process with a new one

using a family of system calls known as exec

kind of a waste to make a copy in the first place

but it’s the only way

wipe out the child process

also, the OS does not know if the reason the parent process

calls fork() is to run a new program or not

not everything, some stuff survives this (i.e., won’t get

destroyed)

definitely need a new address space since we will be

running a different program

int execl(const char *path,
 const char *arg, ...);

0123

40

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Exec

int pid;
if ((pid = fork()) == 0) {
 /* we’ll discuss what might take place before
 exec is called */
 execl("/home/bc/bin/primes", "primes", "300", 0);
 exit(1);
}
/* parent continues here */
while(pid != wait(0)) /* ignore the return code */
 ;

what does execl() do?

"man execl" says:

what’s up with "..."?

this is called "varargs" (similar to printf())

isn’t "primes" in the 2nd argument kind of redundent?

fork()

// returns p

parent proces

0123

41

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Loading a New Image

exec(prog,

args)

child process

Before

fork()

// returns p

parent proces

0123

42

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Loading a New Image

exec(prog,

args)

child process

Before

child process

After

prog’s data

prog’s text

prog’s bss

args

0123

43

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Exec

the same code as before

Your login shell forks off a child process, load the primes

program on top of it, wait for the child to terminate

% primes 300

exit(1) would get called if somehow execl() returned

if execl() is successful, it cannot return since the code is

gone (i.e., the code segment has been replaced by the

code segment of "primes")

int pid;
if ((pid = fork()) == 0) {
 execl("/home/bc/bin/primes", "primes", "300", 0);
 exit(1);
}
while(pid != wait(0)) /* ignore the return code */
 ;

Process
Subsystem

Files
Subsystem

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

44

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Process
Subsystem

Files
Subsystem

context(P)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

45

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

trap

Where do you keep "context"?

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

46

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(shell)

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

47

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(shell)

pid

?

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

48

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(shell)

pid 0

??

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

49

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(shell)

pid 0

??

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

50

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(shell)

execl()

??

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

51

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(shell)

trap

execl()

?

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

52

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

trap

?

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

53

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

wait()

?

main()

?

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

54

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

wait()

? ?

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

55

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

trap

wait()

?

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

56

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

trap

wait()
exit()

?

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

57

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

trap

wait()

trap

exit()

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

58

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

trap

wait()

trap

exit()

Process
Subsystem

Files
Subsystem

context(P) context(C)

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1);

}

while(pid != wait(0))

 ;

0123

59

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Applications

Parent
(shell)

fork()

OS

Child
(primes)

wait()

trap

pid

?

exit()

int pid;

if ((pid = fork()) == 0) {

 execl("/home/bc/bin/primes",

 "primes", "300", 0);

 exit(1); /* never here */

}

while(pid != wait(0))

 ;

0123

60

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Put It All Together

Process
Subsystem

Files
Subsystem

Applications

Parent
(shell)

fork()

OS

Child
(primes)

exit()
wait()

trap

pid

context(P) context(C)

?

