
0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple OS Structure

EIP

ESP

EBP

...

idx regs gen regs

EAX

...

CS

SS

...

seg regs other

x86 Processor

32

A0-A31

D0-D31

32

RD

WR

INT

LOCK

processor

mode

flags

...

interrupt

enabled

Memory

Device

Controller

Bus

Address Space

data

text
(code)

dynamic
(heap)

stackEBX

Review of "Computer Organization"

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple OS Structure

EIP

ESP

EBP

...

idx regs gen regs

EAX

...

CS

SS

...

seg regs other

x86 Processor

32

A0-A31

D0-D31

32

RD

WR

INT

LOCK

processor

mode

flags

...

interrupt

enabled

Memory

Device

Controller

Bus

Address Space

data

text
(code)

dynamic
(heap)

stackEBX

Review of "Computer Organization"

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple OS Structure

EIP

ESP

EBP

...

idx regs gen regs

EAX

...

CS

SS

...

seg regs other

x86 Processor

32

A0-A31

D0-D31

32

RD

WR

INT

LOCK

processor

mode

flags

...

interrupt

enabled

Memory

Device

Controller

Bus

Address Space

data

text
(code)

dynamic
(heap)

stackEBX

Review of "Computer Organization"

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple OS Structure

EIP

ESP

EBP

...

idx regs gen regs

EAX

...

CS

SS

...

seg regs other

x86 Processor

32

A0-A31

D0-D31

32

RD

WR

INT

LOCK

processor

mode

flags

...

interrupt

enabled

Memory

Device

Controller

Bus

Address Space

data

text
(code)

dynamic
(heap)

stackEBX

Review of "Computer Organization"

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple OS Structure

EIP

ESP

EBP

...

idx regs gen regs

EAX

...

CS

SS

...

seg regs other

x86 Processor

32

A0-A31

D0-D31

32

RD

WR

INT

LOCK

processor

mode

flags

...

interrupt

enabled

Memory

Device

Controller

Bus

Address Space

data

text
(code)

dynamic
(heap)

stackEBX

Review of "Computer Organization"

z = x + y

mov &x → eax
mov &y → ebx
add(eax,ebx)

mov eax → &z

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple OS Structure

EIP

ESP

EBP

...

idx regs gen regs

EAX

...

CS

SS

...

seg regs other

x86 Processor

32

A0-A31

D0-D31

32

RD

WR

INT

LOCK

processor

mode

flags

...

interrupt

enabled

Memory

Device

Controller

Bus

Address Space

data

text
(code)

dynamic
(heap)

stackEBX

Review of "Computer Organization"

interrupt pending

interrupt delivery

interrupt context

thread context

Some important terms:

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple OS Structure

EIP

ESP

EBP

...

idx regs gen regs

EAX

...

CS

SS

...

seg regs other

x86 Processor

32

A0-A31

D0-D31

32

RD

WR

INT

LOCK

processor

mode

flags

...

interrupt

enabled

Memory

Device

Controller

Bus

EBX

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Traps

although we usually think of traps as errors

Traps are the general means for invoking the

kernel from user code

divide by zero, segmentation fault, bus error, etc.

but they don’t have to be

system calls, page fault, etc.

for programming errors, the default action is to terminate

the user program

Traps always elicit some sort of response

for system calls, the OS is asked to perform some service

for page faults, the OS need to fix the virtual memory map

Appl.

OS

HW

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Special Kind Of Trap - System Calls

must be done carefully and correctly

Invoking OS functionality in the kernel is more complex

but we want to make it look simple to applications

really cannot trust the application programmers to do the

right thing every time

Provide system calls through which user code can access the

kernel in a controlled manner

any necessary checking on whether the request should be

permitted can be done in the system call

if all goes well

all done in user mode

sets things up

traps into the kernel by executing a special machine

instruction, i.e., the "trap" machine instruction

the kernel figures out why it was invoked and handles

the trap

more in Ch 3

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupts

An interrupt is a request from an external device

for a response from the processor

interrupts are handled independently of any user program

unlike a trap, which is handled as part of the program that

caused the trap where response to a trap directly affects

that program

response to an interrupt may or may not indirectly affect the

currently running program

often has no direct effect on the currently running

program

Appl.

OS

HWmost hardware interrupts are I/O completion

interrupts

an I/O device is telling the CPU, "I am done" (and "what do

you want me to do next?")

I/O devices are also hardware, they can run in parallel

with the CPU, don’t keep them idle unless you have

nothing for them to work on

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interrupts

An interrupt is an asynchronous event

Appl.

OS

HW
it’s asynchronous with respect to the executing

entity (threads or OS)

A trap occurs synchronously with respect to the executing entity

when your thread executes a divide-by-zero instruction, we

know exactly where it happens and we know when it will happen

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Software Interrupt

There’s also something called software interrupt

generated programmatically (i.e., not by a

device) when executing a machine instruction

this is very different from a hardware interrupt

x86 CPU uses a software interrupt (i.e., "int 0x2e") to

implement the "trap" machine instruction

Appl.

OS

HW

although the mechanisms of handling interrupts are all very

similar as we will see in Ch 3

e.g., executing an "interrupt" machine instruction

other CPUs may have a separate "trap" machine instruction

the handler might clean up after the error and then terminate

the program, or it might perform corrective action and continue

with normal execution

A program may establish a handler

(i.e., a signal handler) to be invoked

in response to the error

signals allow the kernel to invoke code that’s part of user

program

The upcall mechanism

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Upcall

for example, you can set a timer to expire at a certain time,

when it expires, the OS can use the upcall mechanism to

call a specified user function on behalf of the user program

more in Ch 2

Appl.

OS

HW

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

1.3 A Simple OS

OS Structure

Processes, Address Spaces, & Threads

Managing Processes

Loading Program Into Processes

Files

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Program Execution

memory

Fundamental abstraction of program execution

processor(s)

recall that thread is an abstraction of processor

address space

in Sixth-Edition Unix, processes do not share address space

"execution context"

represents exactly "where you are" in the program

a thread needs some sort of a context to execute

things that are addressable by the program are kept

together here

recall that process is an abstraction of memory

which represents the state of a process and its threads

save (execution) context and restore (execution) context

Note: multiple meanings of the word "context" in this class

thread context vs. interrupt context

reserved words at

in blue

My color codes for code

numeric and string

constants are in red

comments in green

black otherwise

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Program

const int nprimes = 100;

int prime[nprimes];

int main() {

 int i;

 int current = 2;

 prime[0] = current;

 for (i=1; i<nprimes; i++) {

 int j;

 NewCandidate:

 current++;

 for (j=0; prime[j]*prime[j] <= current; j++) {

 if (current % prime[j] == 0)

 goto NewCandidate;

 }

 prime[i] = current;

 }

 return(0);

}

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Turing Machine Model of Computation

an infinite tape which is divided

into cells, one next to the other

(i.e., infinite storage)

one symbol in each cell (or can

be a blank symbol)

A Turing Machine consists of

a head that can read and write

symbols on the tape and move the tape left and right one (and

only one) cell at a time

a finite table of instructions that, given the state the machine

is currently in and the symbol it is reading on the tape tells

the machine to do the following in sequence

either erase or write a symbol

a state register that stores the state of the Turing machine,

one of finitely many (i,e., finite state)

move the head

assume the same or a new state as prescribed

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The Unix Address Space

stack

bss

data

text
low memory

address

dynamic

high memory

address

This is part of the tape of the Turing Machine

executable code

initialized data

uninitialized data

(block started by symbols)

the rest of the tape of the Turing Machine can be reached

by using the "extended address space"

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Note About Naming Objects

"objects" is the word we use to mean any

data types (primitive, data structures, pointers)

How do you name objects in an address space

Variables

name each object

stack

text

dynamic

bss

adam

betty

chad

deb

eve

fred

a variable refers to a memory location

need pointers

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Note About Naming Objects

"objects" is the word we use to mean any

data types (primitive, data structures, pointers)

How do you name objects in an address space

name each object

Variables

name an object with a base and an index

Arrays

Dynamically create objects do not have names

no variable can have a "heap address"

a variable refers to a memory location

stack

text

dynamic

bss

child (adam)

(chad)

(fred)

(betty)

(deb)
(eve)

no variable can have a "heap address"

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Note About Naming Objects

"objects" is the word we use to mean any

data types (primitive, data structures, pointers)

How do you name objects in an address space

name each object

Variables

name an object with a base and an index

Arrays

need pointers

Dynamically create objects do not have names

function arguments and local variables

For objects that lives in the

stack, same name is used

for different object instances

text

dynamic

bss

data

main()stack frame for main()

family_tree(child)stack frame for family_tree()

family_tree(child)stack frame for family_tree()

a variable refers to a memory location

