x86 Processor

A Simple OS Structure

_) Review of "Computer Organization"

Operating Systems - CSCI 402

Address Space

text
(code)

data

dynamic
(heap)

Copyright © William C. Cheng

Bus +
()
idx regs segregs genregs other *
EIP CS EAX flags ¢
ESP SS EBX (stack
EBP
: 32
interrupt
enabled A0-A31 3’2'
processor Memory
mode D0-D31 |«
RD—>»
WR—>]
LOCK |—» Device
L IN.E . Controller

Operating Systems - CSCI 402

A Simple OS Structure
Address Space
ﬁ> Review of "Computer Organization™ text
(code)
data
dynamic
(heap)
x86 Processor Bus +
()
idx regs se S genregs other *
EIP| @] CS EAX flags ¢
ESP Ss EBX A stack
EBP
: 32
interrupt
enabled A0-A31 3’2']
processor Memory
mode D0-D31 |«
RD[—>
WR[—>]
LOCK —» Device
L IN.E , Controller

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Simple OS Structure
Address Space
_) Review of "Computer Organization" text
(code)
data
dynamic
(heap)
x86 Processor Bus +
()
idx regs segregs genregs other *
EIP cs[],] EAx flags —
ESP ssf_\| EBX A stack
EBP
: 32
interrupt
enabled A0-A31 3’2']
processor Memory
mode D0-D31 |«
RD—>»
WR—>]
LOCK |—» Device
L IN.E . Controller

Copyright © William C. Cheng

A Simple OS Structure

_) Review of "Computer Organization"

x86 Processor

()
idx regs segregs genregs other
EIP CS EAX flags ¢
ESP SS EBX| | | |
EBP| @

interrupt
enabled A0-A31
processor
e D0-D31
RD
WR
LOCK
INT
_ J

Copyright © William C. Cheng

Bus

Operating Systems - CSCI 402

Address Space

text
(code)

data

dynamic
(heap)

Memory]

Device
Controller

A Simple OS Structure

_) Review of "Computer Organization"

mov &x — eax
Z=x+y |:> mov &y — ebx
add (eax, ebx)
mov eax — &z

Operating Systems - CSCI 402

Address Space

text
(code)

data

dynamic
(heap)

x86 Processor Bus +
()
idx regs segregs genregs other *
EIP CS EAX flags ¢
ESP SS EBX A stack
EBP
: 32
interrupt
enabled A0-A31 3’2 '
processor Memory
mode D0-D31 |«
RD—>»
WR—>]
LOCK |—» Device
L IN.E . Controller

Copyright © William C. Cheng

x86 Processor

A Simple OS Structure

_) Review of "Computer Organization"

Operating Systems - CSCI 402

Address Space

text
(code)

data

dynamic
(heap)

Copyright © William C. Cheng

Bus +
()
idx regs segregs genregs other *
EIP CS EAX flags ¢
ESP SS EBX (stack
EBP
: 32
interrupt
enabled A0-A31 3’2'
processor Memory
mode D0-D31 |«
RD—>»
WR—>]
LOCK |—» Device
L IN.E . Controller

A Simple OS Structure

) Some important terms:
= [nterrupt pending
= [nterrupt delivery

x86 Processor

= [nterrupt context
= thread context

Operating Systems - CSCI 402

Memory]

Bus
()
idx regs segregs genregs other
EIP CS EAX flags ¢
ESP SS EBX [
EBP
: 32
interrupt
enabled A0-A31 3’2'
processor
mode D0-D31 |«
RD—>»
WR—>»>
LOCK[—>
INT|<—
_ J

Copyright © William C. Cheng

Device
Controller

Operating Systems - CSCI 402
Traps Appl.

ﬁ> Traps are the general means for invoking the * oS

kernel from user code
= although we usually think of traps as errors

Q divide by zero, segmentation fault, bus error, etc.
= but they don’t have to be

Q system calls, page fault, etc.

HW

ﬁ} Traps always elicit some sort of response
= for programming errors, the default action is to terminate

the user program
= for system calls, the OS is asked to perform some service

= for page faults, the OS need to fix the virtual memory map

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Special Kind Of Trap - System Calls

ﬁ} Invoking OS functionality in the kernel is more complex
= but we want to make it look simple to applications
= must be done carefully and correctly
Q really cannot trust the application programmers to do the
right thing every time

ﬁ} Provide system calls through which user code can access the
kernel in a controlled manner
= any necessary checking on whether the request should be
permitted can be done in the system call
Q all done in user mode
= if all goes well
Q sets things up
Q traps into the kernel by executing a special machine
instruction, i.e., the "trap" machine instruction
Q the kernel figures out why it was invoked and handles
the trap

= motre in Ch 3
Copyright © William C. Cheng

Copyright © William C. Cheng

Operating Systems - CSCI 402

Interrupts

Appl.
_) An interruptis a request from an external device 0S
for a response from the processor -1—
= most hardware interrupts are /O completion HW

interrupts

Q an I/O device is telling the CPU, "l am done" (and "what do
you want me to do next?")

Q /O devices are also hardware, they can run in parallel
with the CPU, don’t keep them idle unless you have
nothing for them to work on

= interrupts are handled independently of any user program

Q unlike a trap, which is handled as part of the program that
caused the trap where response to a trap directly affects
that program

= response to an interrupt may or may not indirectly affect the
currently running program

Q often has no direct effect on the currently running

|
program 3 2.?2;

Operating Systems - CSCI 402

Interrupts Appl.

ﬁ} An interruptis an asynchronous event 0S
= it’s asynchronous with respect to the executing -1—
entity (threads or OS) HW

ﬁ> A trap occurs synchronously with respect to the executing entity
= when your thread executes a divide-by-zero instruction, we
know exactly where it happens and we know when it will happen

Copyright © William C. Cheng

Operating Systems - CSCI 402

Software Interrupt Appl.

ﬁ} There’s also something called software interrupt * 0S

= generated programmatically (i.e., not by a
device) when executing a machine instruction HW
Q e.g., executing an "interrupt” machine instruction
Q x86 CPU uses a software interrupt (i.e., "int 0x2e") to
implement the "trap” machine instruction
& other CPUs may have a separate "trap" machine instruction
= this is very different from a hardware interrupt
Q although the mechanisms of handling interrupts are all very
similar as we will see in Ch 3

Copyright © William C. Cheng

Operating Systems - CSCI 402

Upcall Appl. |

_) A program may establish a handler 0S
(i.e., a signal handler) to be invoked
in response to the error HW

= the handler might clean up after the error and then terminate
the program, or it might perform corrective action and continue
with normal execution

= motre in Ch 2

_) The upcall mechanism
= signals allow the kernel to invoke code that’s part of user
program
Q for example, you can set a timer to expire at a certain time,
when it expires, the OS can use the upcall mechanism to
call a specified user function on behalf of the user program

Copyright © William C. Cheng

Operating Systems - CSCI 402

1.3 A Simple OS

) OS Structure
_) Processes, Address Spaces, & Threads
_,> Managing Processes

_, Loading Program Into Processes

_ Files

Copyright © William C. Cheng

Operating Systems - CSCI 402

Program Execution

ﬁ} Fundamental abstraction of program execution

= memory

Q address space
& things that are addressable by the program are kept
together here

Q In Sixth-Edition Unix, processes do not share address space
Q recall that process is an abstraction of memory

= processor(s)
Q recall that thread is an abstraction of processor

= "'execution context”
Q which represents the sfate of a process and its threads
Q represents exactly "where you are" in the program
Q athread needs some sort of a context to execute

ﬁ} Note: multiple meanings of the word "context" in this class
= save (execution) context and restore (execution) context

= thread context vs. interrupt context N

2

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Program

100;

const int nprimes
int prime[nprimes];
int main() {

int 1i;

int current = 2;

prime[0] = current;

for (i=1; i<nprimes; i++) {

int j;
NewCandidate:
current++;

p
> My color codes for code
= reserved words at
in blue
= humeric and string
constants are in red
comments in green

[

[

black otherwise

.

N

for (j=0; prime[j]*prime[j] <= current; Jj++) {
== 0)

if (current % prime[j]
goto NewCandidate;

}

prime[i] = current;

}

return (0) ;

}

Copyright © William C. Cheng

ﬁ} A Turing Machine consists of
= an infinite tape which is divided

Copyright © William C. Cheng

Operating Systems - CSCI 402

Turing Machine Model of Computation

into cells, one next to the other

(i.e., infinite storage)

Q one symbol in each cell (or can
be a blank symbol)

a head that can read and write

symbols on the tape and move the tape left and right one (and

only one) cell at a time

a state register that stores the state of the Turing machine,

one of finitely many (i,e., finite state)

a finite table of instructions that, given the state the machine

is currently in and the symbol it is reading on the tape tells

the machine to do the following in sequence

Q either erase or write a symbol

Q move the head

Q assume the same or a new state as prescribed

Operating Systems - CSCI 402

The Unix Address Space

low memory
address text executable code

data } initialized data

uninitialized data

bss (block started by symbols)

dynamic

l

A

high memory

address stack

) This is part of the tape of the Turing Machine
= the rest of the tape of the Turing Machine can be reached [@’_

using the "extended address space”
Copyrlght©W| iam C. Cheng

Operating Systems - CSCI 402

Note About Naming Objects

ﬁ} How do you name objects in an address space
= "objects" is the word we use to mean any
data types (primitive, data structures, pointers)

_) Variables
= nhame each object
= a variable refers to a memory location

text

Copyright © William C. Cheng

Operating Systems - CSCI 402

Note About Naming Objects

ﬁ} How do you name objects in an address space
= "objects" is the word we use to mean any

data types (primitive, data structures, pointers) text
. child| (adam)
|:> Variables (betty)
. (chad)
= name each object -
. . eve
— a variable refers to a memory location (fred)
_) Arrays
= nhame an object with a base and an index .

SS
> Dynamically create objects do not have names dynamic
= ho variable can have a "heap address" +

= nheed pointers

Copyright © William C. Cheng

Operating Systems - CSCI 402

Note About Naming Objects

ﬁ} How do you name objects in an address space
= "objects" is the word we use to mean any

data types (primitive, data structures, pointers) text
_) Variables data
= nhame each object bss
= a variable refers to a memory location :
dynamic

_) Arrays Y

= nhame an object with a base and an index

> Dynamically create objects do not have names
= no variable can have a "heap address" A
= need pointers stack frame for family_tree() —»=| family_tree(child)

stack frame for family_tree() —®{ family_tree(child)

) For objects that lives in the
stack, same name is used
for different object instances

|
= function arguments and local variables y ..’
Copyright © William C. Cheng

stack frame for main() —»{ main()

