
0123

61

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Utilizing Multiple Processors

Dedicate processors to important threads?

Restrict interrupt handling to certain processors?

processor affinity masks

Windows:

processor sets

Solaris:

0123

62

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Cache Affinity

cache affinity

After a thread has run on a particular processor, next time it

runs, it would be cheaper to run it on the same processor

This means that if you use a shared run queue for multiple

processors, you will not be able to take advantage of cache affinity

therefore, you should use one run queue per processor

0123

63

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Cache Affinity

cache affinity

After a thread has run on a particular processor, next time it

runs, it would be cheaper to run it on the same processor

This means that if you use a shared run queue for multiple

processors, you will not be able to take advantage of cache affinity

therefore, you should use one run queue per processor

scheduler may do load balancing occasionally

0123

64

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Solaris: Processor Sets

Somewhere between the two extremes

reducing the frequency of requiring load balancing

0123

65

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

5.3 Scheduling

Goals

Scheduling Algorithms

Implementation Issues

Case Studies

0123

66

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Linux Scheduling

SCHED_FIFO (highest)

Policies mandated by POSIX

SCHED_RR

SCHED_OTHER

"real time"

infinite time quantum

"real time"

adjustable time quantum

"normal" scheduler

parameterized allocation of processor time

0123

67

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Linux Scheduler Evolution

very simple

Old scheduler

poor scaling

introduced in 2.5

O(1) scheduler

less simple

even better

Completely fair scheduler (CFS)

simpler in concept

better scaling

much less so in implementation

based on stride scheduling

0123

68

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Old Scheduler

policy: which one

0 for SCHED_OTHER

Four per-process scheduling variables

rt_priority: real-time priority

1 - 99 for others

priority: time-slice parameter ("nice" value)

counter: records processor consumption

see "extra slides" at the end

0123

69

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduling in Windows

Handling "normal" interactive and compute-bound threads

Real-time threads

Multiple processors

0123

70

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Windows Priority Classes and Levels
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

24

Real Time

13

High 10

Above

Normal

8

Normal

6

Below

Normal

4

Low

these are user thread priority levels

not related to interrupt priority levels

a real-time thread gets a fixed priority

not exactly the same rules for multi-level

feedback queues than what we have

talked about for non-real-time threads

longer time slice for foreground threads

(i.e., belonging to the "active" window)

0123

71

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

3.4 Linking & Loading

Static Linking & Loading

Shared Libraries

0123

72

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Libraries

A library is just a collection of .o files

the linker is used to create libraries

Two types of libraries

static library

dynamic (or shared) library

0123

73

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Creating a Static Library

% cat sub1.c
void sub1() { puts("sub1"); }
% cat sub2.c
void sub2() { puts("sub2"); }
% cat sub3.c
void sub3() { puts("sub3"); }
% gcc -c sub1.c sub2.c sub3.c
% ls
sub1.c sub2.c sub3.c
sub1.o sub2.o sub3.o
% ar cr libpriv1.a sub1.o sub2.o sub3.o
% ar t libpriv1.a
sub1.o
sub2.o
sub3.o
%

puts() is unresolved in libpriv1.a

0123

74

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Using a Static Library

% cat prog.c
int main() {
 sub1();
 sub2();
 sub3();
}
% gcc -o prog prog.c -L. -lpriv1

Where does puts() come from?

% gcc -o prog prog.c -L. -lpriv1 -L/lib -lc

The order of the libraries matter

will try to resolve references first in the priv1 library (either

libpriv1.a or libpriv1.so) and then in the c library (either

libc.a or libc.so)

Running it

% ./prog
sub1sub2sub3%

% cat myputs.c
int puts(char *s) {
 write(1, "My puts: ", 9);
 write(1, s, strlen(s));
 write(1, "\n", 1);
 return 1;
}
% gcc -c myputs.c
% ar cr libmyputs.a myputs.o
% gcc -o prog prog.c -L. -lpriv1 -lmyputs

will try to resolve puts() first in the priv1 library, then in the

myputs library, then in the c library

Want to use my version of puts() instead of what’s in the C

library

0123

75

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Substitution

% ./prog
My puts: sub1
My puts: sub2
My puts: sub3

0123

76

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Shared Libraries

duplicate code, may be lots of duplicate code, e.g., printf()

prog must contain everything needed for execution

take up disk space

take up memory

on disk, and

Need a way to share things like printf()

in memory

just make sure ld use the right address consistently

If printf() required no relocation, then it’s easy

If printf() required relocation, then it’s more complicated

problem: processes want a shared function to be at

different addresses

printf() printf()printf() {

 ...

}

Process A Process BC Library

printf()

Process A

printf()

Process B

printf()

C Library

0123

77

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Sharing

printf()

Process A

printf()

Process B

printf()

C Library

0123

78

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Sharing

call 10000 call 20000printf() {

 ...

}

1200

Process A

Shared C Library

Looks like it can work

Process B

printf()

Process A

printf()

Process B

printf()

C Library

call 10000 call 20000printf() {

 doprint()

}

doprint() {

}

1200

2200
Process A

Shared C Library

What about this?

0123

79

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Sharing

with static linking, should doprint() be relocated to 11000 or

21000 (we must use virtual address)?

Process B

0123

80

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Relocation and Shared Libraries

Prerelocation: relocate libraries ahead of time

difficult to prerelocate all shared functions

Approaches

Limited sharing: relocate separately for each process

Position-Independent Code: no need for relocation

may need to preform rerelocation

as printf() gets copied into memory, perform relocation

this would work, but still end up with too many copies of

printf() in memory

have a single copy of printf() on disk

producing code that can be placed anywhere in memory

without requiring modification

need indirection

printf() printf()printf() {

 doprint()

}

1200

Process A Process BC Library

0123

81

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Position-Independent Code

printf 10000

doprint 11000

ld r2,r1[printf]

call r2

r1 printf 20000

doprint 21000

ld r2,r1[printf]

call r2

r1

printf() {

 ld r2,r1[doprint]

 call r2

 ...

}

doprint() {

 ...

}

0

1000
Process A Process B

each process maintains a private table, pointed to by register r1

table contains addresses of shared routines

don’t call functions directly

make a position-independent call (i.e., a register-indirect call)

i.e., call the function located at a fixed index into the table

pointed by r1

implemented as two instructions in the above example

Please note that ld is not the same as mov in x86 CPU

printf 10000

doprint 11000

ld r2,printf(r1)

call r2

r1 printf 20000

doprint 21000

ld r2,printf(r1)

call r2

r1

printf() {

 ld r2,doprint(r1)

 call r2

 ...

}

doprint() {

 ...

}

0

1000
Process A Process B

each process maintains a private table, pointed to by register r1

table contains addresses of shared routines

don’t call functions directly

make a position-independent call (i.e., a register-indirect call)

i.e., call the function located at a fixed index into the table

pointed by r1

implemented as two instructions in the above example

Please note that ld is not the same as mov in x86 CPU
0123

82

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Position-Independent Code

Processor-dependent; x86 32-bit version:

the procedure linkage table (PLT)

ELF requires 3 data structures for each dynamic executable

and shared object

the global offset table (GOT)

the dynamic structure

read-only executable code, shared by all processes

essentially stubs for calling subroutines

read-write data, private (to each process)

relocated dynamically for each process

read-only data, shared by all processes

contains relocation info and symbol table

0123

83

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Position-Independent Code Details

see "extra slides" at the end

0123

84

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Shared Libraries In Practice

often implemented with position-independent code

Shared libraries are used extensively in many modern systems

in Windows, they are known as Dynamic-Link Libraries (DLLs)

in Unix, they are known as shared objects (.so files)

they need not be loaded when a program starts up

can be loaded when needed, i.e., on-demand

this way, the startup time of a program may be reduced

they can have dependencies

Disadvantages of DLLs and shared objects

different versions of the same library

vs. static libraries (.a files)

0123

85

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Linking and Loading on Linux with ELF

Creating and using a shared library

Substitution

x86 ELF (Excutable and Linking Format)

used in Unix/Linux systems

not used in either MacOS X or Windows

Shared library details

Versioning

Dynamic linking

Interpositioning

0123

86

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Shared Library Details

the code that is first given control is ld.so, the run-time linker

When a program is invoked via the exec system call

it does some initial set up of linkages (details in "extra slides")

then calls the actual program code

it may be called upon later to do some further dynamic

loading and linking

the job of ld.so is to complete the linking and relocation steps,

if necessary

printf 10000

doprint 11000

ld r2,printf(r1)

call r2

r1

printf() {

 ld r2,doprint(r1)

 call r2

 ...

}

doprint() {

 ...

}

0

1000
Process A

0123

87

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Creating a Shared Library (1)

% gcc -fPIC -c myputs.c
% ld -shared -o libmyputs.so myputs.o
% gcc -o prog prog.c -L. -lpriv1 -lmyputs
% ./prog
./prog: error while loading shared libraries:
libmyputs.so: cannot open shared object file: No
such file or directory
% ldd prog
 libmyputs.so => not found
 libc.so.6 => /lib/tls/i686/cmoc/libc.so.6
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2

ldd prints shared library dependencies

0123

88

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Creating a Shared Library (2)

% gcc -o prog prog.c -L. -lpriv1 -lmyputs -Wl,-rpath .
% ldd prog
 libmyputs.so => ./libmyputs.so
 libc.so.6 => /lib/tls/i686/cmoc/libc.so.6
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2
% ./prog
My puts: sub1
My puts: sub2
My puts: sub3

"-Wl,-rpath ." means that what comes after -Wl are

linker options (i.e., pass them to the linker)

in this example, the linker will be invoked with "-rpath ."

also try "-Wl,-rpath,." if the space character is giving you

trouble

0123

89

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Versioning

% gcc -fPIC -c myputs.c
% ld -shared -soname libmyputs.so.1 \
 -o libmyputs.so.1.0 myputs.o
% ldconfig -v -n .
% ln -s libmyputs.so.1 libmyputs.so
% gcc -o prog1 prog1.c -L. -lpriv1 -lmyputs \
 -Wl,-rpath .
% vi myputs.c
% gcc -fPIC -c myputs.c
% ld -shared -soname libmyputs.so.2 \
 -o libmyputs.so.2 myputs.o
% rm -f libmyputs.so
% ldconfig -v -n .
% ln -s libmyputs.so.2 libmyputs.so
% gcc -o prog2 prog2.c -L. -lpriv1 -lmyputs \
 -Wl,-rpath .

"libmyputs.so.1" is the soname

"libmyputs.so.1.0" is the real name

"libmyputs.so" is the linker name

0123

90

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Dynamic Substitution: Interpositioning

Prog

puts()

prog thinks it’s calling puts()

prog thinks it’s calling puts()

0123

91

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Dynamic Substitution: Interpositioning

Prog

puts()

wrapper

interpose your puts()

you can call the original puts() that prog thought it

was calling

security problem?!

"DLL injection" if you pick up a DLL unknowningly

0123

92

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

How To ...

% cat myputs.c
#include <dlfcn.h>

int puts(const char *s) {
 int (*pptr)(const char *);

 pptr = (int(*)(const char*))dlsym(RTLD_NEXT,"puts");

 write(2, "intercepted by myputs: ", 23);
 return (*pptr)(s);
}

dlsym() returns a function pointer for the named function

RTLD_NEXT asks for the next occurrence of the named function

RTLD_DEFAULT will get you the first occurrence of the named

function using the default library search order

0123

93

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Compiling/Linking It

% gcc -fPIC -c myputs.c -D_GNU_SOURCE
% ld -shared -soname libmyputs.so.1 \
 -o libmyputs.so.1.0 myputs.o -ldl
% ldconfig -v -n .
% cat tputs.c
int main() {
 puts("This is a boring message.");
 return 0;
}
% gcc -o tputs tputs.c ./libmyputs.so.1 -Wl,-rpath .
% ./tputs
intercepted by myputs: This is a boring message.
%

-D_GNU_SOURCE is needed or won’t recognize RTLD_NEXT

ldconfig may be in /sbin

0123

94

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Delayed Wrapping

LD_PRELOAD

specifies additional shared objects to search (first) when

program is started

% gcc -o tputs tputs.c
% ./tputs
This is a boring message.
% setenv LD_PRELOAD ./libmyputs.so.1
% ./tputs
intercepted by myputs: This is a boring message.
%

list of directories to search for dynamic libraries

LD_LIBRARY_PATH

% setenv LD_LIBRARY_PATH /usr/lib:/lib:.

Some environment variables are checked by ld.so

potential security problem

compiles code

gcc/ld

does static linking

searches list of libraries

adds references to shared objects

program invokes ld.so (or ld-linux.so on Linux) to finish

linking

runtime

maps in shared objects

does relocation and procedure linking as required

dlsym() invokes ld.so to do more linking

0123

95

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Summary

0123

96

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Wrap Up

We are done for the semester!

0123

97

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Wrap Up

the coverage does not overlap the midterm coverage

The final exam coverage will be posted on the class web site

but since the 2nd half of the semester depends on the 1st half, I

cannot say that I will not ask anything that was covered in the

midterm coverage

it would be more appropriate to say that the final exam will

focus on the material not covered by the midterm

No office hours after this week

but as you can see, there is no time left!

I apologize again for going so fast

but there is really nothing I can think of to cut

the only way I can slow down is to cut lecture materials

