Operating Systems - CSCI 402

Utilizing Multiple Processors

ﬁ} Dedicate processors to important threads?

) Restrict interrupt handling to certain processors?

_) Windows:
= processor affinity masks

ﬁ} Solaris:

= processor sets

Copyright © William C. Cheng

Operating Systems - CSCI 402

Cache Affinity

ﬁ} After a thread has run on a particular processor, next time it
runs, it would be cheaper to run it on the same processor

= cache affinity @ @ @ @

ﬁ} This means that if you use a shared run queue for multiple
processors, you will not be able to take advantage of cache affinity
= therefore, you should use one run queue per processor

SISOV

Copyright © William C. Cheng

Operating Systems - CSCI 402

Cache Affinity

ﬁ} After a thread has run on a particular processor, next time it
runs, it would be cheaper to run it on the same processor

= cache affinity @ @ @ @

ﬁ} This means that if you use a shared run queue for multiple
processors, you will not be able to take advantage of cache affinity
= therefore, you should use one run queue per processor
= scheduler may do /oad balancing occasionally

SISOV

Copyright © William C. Cheng

Operating Systems - CSCI 402

Solaris: Processor Sets

IV OV

) Somewhere between the two extremes
= reducing the frequency of requiring load balancin (A
q y q g g @’

Copyright © William C. Cheng

Operating Systems - CSCI 402

5.3 Scheduling

) Goals

) Scheduling Algorithms
_, Implementation Issues

_) Case Studies

Copyright © William C. Cheng

Linux Scheduling

) Policies mandated by POSIX

= SCHED_FIFO (highest)
Q "real time"
Q infinite time quantum

= SCHED_RR
Q "real time"
Q adjustable time quantum

= SCHED_OTHER
Q "normal" scheduler
Q parameterized allocation of processor time

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Linux Scheduler Evolution

) Old scheduler
= very simple
= poor scaling

) O(1) scheduler
= Introduced in 2.5
= less simple
= better scaling

_, Completely fair scheduler (CFS)
= even better
= simpler in concept
= much less so in implementation
—= based on stride scheduling

Copyright © William C. Cheng

Operating Systems - CSCI 402

Old Scheduler

_ Four per-process scheduling variables
= policy: which one
= rt_priority: real-time priority
Q 0 for SCHED OTHER
Q 1-99 for others
= priority: time-slice parameter ("'nice” value)
= counter: records processor consumption

|
% = see "extra slides” at the end @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Scheduling in Windows

ﬁ} Handling "normal” interactive and compute-bound threads
) Real-time threads
_) Multiple processors

Copyright © William C. Cheng

Operating Systems - CSCI 402

Windows Priority Classes and Levels

2l | - ' = these are user thread priority levels

g_:g e Q notrelated to interrupt priority levels
AL = longer time slice for foreground threads
7 5 (i.e., belonging to the "active” window)
g—_g = a real-time thread gets a fixed priority

el Real Time = not exactly the same rules for multi-level
}3 . feedback queues than what we have

}g talked about for non-real-time threads

15
14
13 13 I
High 10 I

§ I
Above 5

Normal

Normal

>

ol=Ivw|s oo \llm"-o.s = |-\;|

Copyright © William C. Cheng

Operating Systems - CSCI 402

3.4 Linking & Loading

) Static Linking & Loading
_) Shared Libraries

Copyright © William C. Cheng

Operating Systems - CSCI 402

Libraries

) Alibrary is just a collection of .o files
= the linker is used to create libraries

> Two types of libraries
= static library
= dynamic (or shared) library

Copyright © William C. Cheng

Creating a Static Library

% cat subl.c
void subl () { puts("subl"); }
% cat sub2.c
void sub2() { puts("sub2"),; }
% cat sub3.c
void sub3() { puts("sub3"),; 1}
% gcc —c subl.c sub2.c sub3.c

o
-
n

subl.c sub2.c sub3.c

subl.o sub2.0 sub3.o0

% ar cr libprivl.a subl.o sub2.0 sub3.o
$ ar t libprivl.a

subl.o

sub2.0

sub3.0

ﬁ> puts () is unresolved in 1libprivl.a

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Using a Static Library

% cat prog.c
int main() {
subl () ;
sub2 () ;
sub3 () ;

}
% gcc —o prog prog.c -L. -lprivl
) Where does puts () come from?
% gcc —o prog prog.c -L. -lprivl -L/1lib -1lc

) The order of the libraries matter
= Wwill try to resolve references first in the priv1 library (either
libprivl.a or libprivl. so) and then in the c library (either
libc.a Ofr libc. s0)

_, Running it

% ./prog
sublsub2sub3% @?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Substitution

ﬁ} Want to use my version of puts () instead of what’s in the C
library

% cat myputs.c

int puts(char *s) {
write(l, "My puts: ", 9);
write(l, s, strlen(s));
write(1, "\n", 1);
return 1;

0O

gcc —c myputs.c
ar cr libmyputs.a myputs.o
gcec —o prog prog.c -L. -lprivl -lmyputs

o

o

= Will try to resolve puts () first in the priv1l library, then in the
myputs library, then in the c library

% ./prog

My puts: subl

My puts: sub2 (AN
My puts: sub3 75 @’

Copyright © William C. Cheng

Operating Systems - CSCI 402

Shared Libraries

) prog must contain everything needed for execution
= duplicate code, may be lots of duplicate code, e.g., print £ ()
Q take up disk space
Q take up memory

> Need a way to share things like print£ ()

= oh disk, and
= in memory printf() printf () { printf ()

}

Process A C Library Process B

_) lf print£ () required no relocation, then it's easy
= just make sure 1d use the right address consistently

ﬁ> If print £ () required relocation, then it’'s more complicated
—= problem: processes want a shared function to be at
different addresses

Copyright © William C. Cheng

Operating Systems - CSCI 402

Sharing

C Library

printf () printf ()

printf ()

Process A Process B

Copyright © William C. Cheng

Operating Systems - CSCI 402

Sharing

C Library
printf () printf ()
printf ()
Process A Process B
) Looks like it can work
call 10000 printf () { call 20000

}

3 k : ’,
Process A Process B |
1N
Shared C Library 73

Copyright © William C. Cheng

Operating Systems - CSCI 402

Sharing
C Library

printf () printf ()
print£ ()

Process A Process B

—, What about this?
= with static linking, should doprint () be relocated to 11000 or
21000 (we must use virtual address)?

printf () {
doprint ()
}

2200| doprint () {

i I,I. I II %- | "L
3 k : ’,
Process A y Process B (T\
ol
Shared C Library 79

Copyright © William C. Cheng

call 10000 call 20000

Operating Systems - CSCI 402

Relocation and Shared Libraries

_) Approaches
—= Limited sharing: relocate separately for each process

Q have a single copy of print £ () on disk
Q as printf () gets copied into memory, perform relocation
Q this would work, but still end up with too many copies of
printf£ () in memory
= Prerelocation: relocate libraries ahead of time
Q difficult to prerelocate all shared functions
< may need to preform rerelocation

printf () 1200| printf () { printf ()
doprint ()
}
Process A C Library Process B

= Position-Independent Code: no need for relocation
Q producing code that can be placed anywhere in memory
without requiring modification JA7N\Y
2

Q hneed indirection
Copyright © William C. Cheng

Operating Systems - CSCI 402

Position-Independent Code

1d r2,rl[printf] O|printf () { 1d r2,rl[printf]
call r2 1d r2,rl[doprint] call r2
call r2
r1—»| printf 10000 } r1—»| printf 20000
doprint 11000 doprint 21000
1000 | doprint () {
Process A L Process B
}

— each process maintains a private table, pointed to by register r1
Q table contains addresses of shared routines
= don’t call functions directly
QO make a position-independent call (i.e., a register-indirect call)
Q i.e., call the function located at a fixed index into the table
pointed by r1
& Iimplemented as two instructions in the above example

Please note that 1d is not the same as mov in x86 CPU (A
~ S8

Copyright © William C. Cheng

Operating Systems - CSCI 402

Position-Independent Code

1d r2,printf(rl) O|printf () { 1d r2,printf(rl)
call r2 1d r2,doprint (rl) call r2
call r2
r1—»| printf 10000 } r1—»| printf 20000
doprint 11000 doprint 21000
1000 | doprint () {
Process A L Process B
}

— each process maintains a private table, pointed to by register r1
Q table contains addresses of shared routines
= don’t call functions directly
QO make a position-independent call (i.e., a register-indirect call)
Q i.e., call the function located at a fixed index into the table
pointed by r1
& Iimplemented as two instructions in the above example

Please note that 1d is not the same as mov in x86 CPU (N\

Copyright © William C. Cheng

Position-Independent Code Details
) Processor-dependent; x86 32-bit version:

ﬁ> ELF requires 3 data structures for each dynamic executable
and shared object
= the procedure linkage table (PLT)
Q read-only executable code, shared by all processes
Q essentially stubs for calling subroutines
= the global offset table (GOT)
Q read-write data, private (to each process)
Q relocated dynamically for each process
= the dynamic structure
Q read-only data, shared by all processes
Q contains relocation info and symbol table

% = see "extra slides" at the end
Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Shared Libraries In Practice

ﬁ} Shared libraries are used extensively in many modern systems
= often implemented with position-independent code
= in Windows, they are known as Dynamic-Link Libraries (DLLs)
= in Unix, they are known as shared objects (. so files)
Q vs. static libraries (. a files)
— they need not be loaded when a program starts up
Q can be loaded when needed, i.e., on-demand
Q this way, the startup time of a program may be reduced

_, Disadvantages of DLLs and shared objects
= they can have dependencies
= different versions of the same library

Copyright © William C. Cheng

Operating Systems - CSCI 402

Linking and Loading on Linux with ELF

) x86 ELF (Excutable and Linking Format)
= used in Unix/Linux systems
Q not used in either MacOS X or Windows

G> Creating and using a shared library
ﬁ> Substitution

ﬁ} Shared library details

ﬁ} Versioning

> Dynamic linking

) Interpositioning

Copyright © William C. Cheng

Shared Library Details

Operating Systems - CSCI 402

ﬁ> When a program is invoked via the exec system call
= the code that is first given control is 1d. so, the run-time linker
= the job of 1d. so is to complete the linking and relocation steps,

If necessary

Q it does some initial set up of linkages (details in "extra slides")
Q then calls the actual program code
Q it may be called upon later to do some further dynamic

loading and linking

rl—p

1d r2,printf(rl) 0
call r2

printf 10000
doprint 11000

1000

Copyright © William C. Cheng

Process A

printf () {
1d r2,doprint (rl)
call r2

}

doprint () ({

}

Operating Systems - CSCI 402

Creating a Shared Library (1)

o°

gcc —fPIC —-c myputs.c

ld -shared -o libmyputs.so myputs.o

gce —o prog prog.c -L. -lprivl -lmyputs

. /prog

./prog: error while loading shared libraries:
libmyputs.so: cannot open shared object file: No
such file or directory

% l1ldd prog

libmyputs.so => not found

libc.so.6 => /1lib/tls/i686/cmoc/libc.so.6
/1lib/ld-linux.so0.2 => /lib/ld-linux.so.2

o° o°

o

= 1dd prints shared library dependencies

Copyright © William C. Cheng

Operating Systems - CSCI 402

Creating a Shared Library (2)

gcec —-o prog prog.c -L. -lprivl -lmyputs -Wl, -rpath
ldd prog

libmyputs.so => ./libmyputs.so

libc.so.6 => /l1lib/tls/i686/cmoc/libc.so.6
/lib/l1d-linux.so.2 => /lib/ld-linux.so.2

% ./prog

My puts: subl

My puts: sub2

My puts: sub3

o°

o°

= "-W1l, -rpath ." means that what comes after -w1 are
linker options (i.e., pass them to the linker)
Q in this example, the linker will be invoked with "-rpath
= also try "-w1, -rpath, ." if the space character is giving you

trouble

Copyright © William C. Cheng

Operating Systems - CSCI 402

Versioning

o°

gcc —fPIC -c myputs.c

1ld -shared —-soname libmyputs.so.l \
—o libmyputs.so.1.0 myputs.o

ldconfig -v —-n

In -s libmyputs.so.l libmyputs.so

gcec —o progl progl.c -L. -lprivl —-lmyputs \
-W1l, —rpath

vi myputs.c

gcc —fPIC -c myputs.c

1ld -shared —-soname libmyputs.so.2 \
—o0 libmyputs.so.2 myputs.o

rm —-f libmyputs.so

ldconfig -v —-n .

l1n -s libmyputs.so.2 libmyputs.so

gcc —o prog2 prog2.c -L. -lprivl -lmyputs \
-W1l, —-rpath

o°

o o°

o

o o°

o°

o° o° o°

o

= "libmyputs.so.1l" Is the soname
= "libmyputs.so.1.0" is the real name

I
= "libmyputs.so" is the linker name y ..’
Copyright © William C. Cheng

Operating Systems - CSCI 402

Dynamic Substitution: Interpositioning

Prog

Y

puts ()

= prog thinks it’s calling puts ()

Copyright © William C. Cheng

Operating Systems - CSCI 402

Dynamic Substitution: Interpositioning

Prog

wrapper

puts ()

= prog thinks it’s calling puts ()

= interpose your puts ()

Q you can call the original puts () that prog thought it

was calling
Q security problem?!

|
o "DLL injection” if you pick up a DLL unknowningly (%

Copyright © William C. Cheng

Operating Systems - CSCI 402

How To ...

5 cat myputs.c
#include <dlfcn.h>

int puts (const char *s) {
int (*pptr) (const char *);

pptr = (int (*) (const char*))dlsym (RTLD_NEXT, "puts");

write (2, "intercepted by myputs: ", 23);
return (*pptr) (s);
}

= dlsym () returns a function pointer for the named function
— RTLD_NEXT asks for the next occurrence of the nhamed function
Q RTLD_DEFAULT Will get you the first occurrence of the named

function using the default library search order |

Copyright © William C. Cheng

Operating Systems - CSCI 402

Compiling/Linking It

o°

gcc —fPIC —-c myputs.c —-D_GNU_SOURCE

1ld -shared —-soname libmyputs.so.l \
—o0 libmyputs.so0.1.0 myputs.o -1dl

ldconfig -v —-n

cat tputs.c

int main() {

puts ("This is a boring message.");

return O;

o°

o

o

}

% gcc —o tputs tputs.c ./libmyputs.so.l -W1l,-rpath
% ./tputs

intercepted by myputs: This is a boring message.

%

— —D_GNU_SOURCE is heeded or won’t recognize RTLD_NEXT
= ldconfig may be in /sbin

Copyright © William C. Cheng

Operating Systems - CSCI 402

Delayed Wrapping

_, Some environment variables are checked by 1d. so
= potential security problem

) LD_PRELOAD
— specifies additional shared objects to search (first) when
program is started

o°

gcc —-o tputs tputs.c

./tputs

This is a boring message.

% setenv LD_PRELOAD ./libmyputs.so.l

% ./tputs

intercepted by myputs: This is a boring message.

%

o°

ﬁ} LD LIBRARY_PATH
= list of directories to search for dynamic libraries

% setenv LD_LIBRARY PATH /usr/lib:/lib:.

Copyright © William C. Cheng

Operating Systems - CSCI 402

Summary

I:> gcc/ld

= compiles code

= does static linking

= searches list of libraries

= adds references to shared objects

ﬁ} runtime

= program invokes 1d. so (Or 1d-linux.so on Linux) to finish
linking

= maps in shared objects

— does relocation and procedure linking as required

—= dlsym () invokes 1d.so to do more linking

Copyright © William C. Cheng

Operating Systems - CSCI 402

Wrap Up

> We are done for the semester!

Copyright © William C. Cheng

Operating Systems - CSCI 402
Wrap Up

ﬁ} The final exam coverage will be posted on the class web site
= the coverage does not overlap the midterm coverage
= but since the 2nd half of the semester depends on the 1st half, |
cannot say that | will not ask anything that was covered in the
midterm coverage
Q it would be more appropriate to say that the final exam will
focus on the material not covered by the midterm

ﬁ> No office hours after this week

) lapologize again for going so fast
= but as you can see, there is no time left!
= the only way | can slow down is to cut lecture materials
Q but there is really nothing | can think of to cut

Copyright © William C. Cheng

