
no user receives more than its request1)

no other allocation scheme satisfying condition 1 has a higher

minimum allocation

2)

condition 2 remains recursively true as we remove the minimal

user and reduce total resource accordingly

3)

Max-min Fairness criterion:

Max-min Fairness: a fair service maximizes the service of the

customer receiving the poorest service

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Max-min Fairness

i.e., maximize the minimum allocation

is it fair to give everyone $1,000?

Ex: if the government has $1,000,000 to give to 1,000 citizens, what’s

the fair way to distribute the money?

no, you are not allowed to waste resources

xi is the request of job i

Total capacity C divided among N jobs

sort jobs based on xi

initially, assign C/N to each job

x1 x2 x3 xN0

C/N

x2 x3 xN0

(C-x1)/(N-1)

satisfy x1, redistribute remaining capacity evenly

recursion

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Max-min Fairness Example

This is basically "processor sharing"

0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduling for Interactive Systems

Length of "jobs" not known

they block for user input

Threads would give up CPU voluntarily

Would like to favor interactive jobs

use priority queueing

by the way, the round-robin scheduler works just fine without

knowing the length of jobs

what is an "interactive job"?

"interactive user" can run non-interactive job (like warmup2)

an "interactive jobs" is a job that requires "user interaction"

(with mouse and/or keyboard)

e.g., the command shell

0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Round Robin with Priority

how to determine priority?

let the threads themselves decide?

0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Multi-Level Feedback Queues

maybe it makes more sense to have dynamic priority

0123

35

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Multi-Level Feedback Queues

observe what it does when it uses the CPU

if it uses a full time slice

When a thread arrives to the run queue, it gets highest priority

decrease its priority

if it blocks before using up a full time slice

update information (statistics?) in thread control block

To avoid starvation, use aging

if a job hasn’t been run for a long time, increase its priority

Clearly, not a fair scheduling algorithm

Priority used in this scheme is dynamic priority

this is "short term priority"

when we use the word "priority", we typically mean that "priority"

would reflect how "important" a job is

this is a different kind of priority, but is it the right kind?

it may not be right to give everything the user runs

high priority

0123

36

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Multi-Level Feedback Queues

can have variations

0123

37

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Real-Life Example

run mp3 player on your PC

Your iPod is broken

streaming video

The baseball playoffs are on

editor, compiler, debugger

An OS assignment is due

You’ve got to do everything

on one computer

Can your scheduler hack it?

static int msync_interval(struct vm_area_struct * vma,
 unsigned long start, unsigned long end, int flags)

 int ret = 0;
 struct file * file = vma->vm_file;

 if ((flags & MS_INVALIDATE) && (vma->vm_flags & VM_LOCKED))
 return -EBUSY;

 if (file && (vma->vm_flags & VM_SHARED)) {
 ret = filemap_sync(vma, start, end-start, flags);

 if (!ret && (flags & MS_SYNC)) {
 struct address_space *mapping = file->f_mapping;
 int err;

What scheduler is suitable for a

general purpose system?

0123

38

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Interactive Scheduling

Time-sliced, priority-based, preemptive

compute threads should have low priority

Priority depends on expected time to block

Other heuristics

interactive threads should have high priority

e.g., determine priority using long term history (not just

immediate history)

processor usage causes decrease

sleeping causes increase

e.g., multi-level feedback queues

every time slice, pick the thread with the highest priority to

run in the CPU for the next time slice

0123

39

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduling for Fairness

Ex: shared servers

you and four friends each contribute $1000 towards a server

you, rightfully, feel you own 20% of it

your friends are into threads, you’re not

they run 4-threaded programs

you run a 1-threaded program

their programs each get 4/17 of the processor

your programs get 1/17 of the processor

If fairness is really important, what would you do?

20 lottery tickets are distributed equally to you and your four

friends

0123

40

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Lottery Scheduling

you give 4 tickets to your one thread

they give one ticket each to their threads

your thread is 4 times more likely to win than the others

A lottery is held for every scheduling decision

But how do you implement a fair and efficient lottery scheme in

the kernel if there are lots of jobs at the run queue?

Stride scheduling

0123

41

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Proportional-Share Scheduling

1995 paper by Waldspurger and Weihl

added to Linux in 2007

Completely fair scheduling (CFS)

0123

42

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Metered Processors

the textbook presented Stride Scheduling differently

as far as exam goes, you must follow lecture slides

0123

43

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Stride Scheduling Algorithm

Time-sliced, priority-based, preemptive

every thread is assigned a (dynamic) priority, called a pass value

single queue, sorted based on pass values, smallest first

In every iteration / time-slice

1) shedule the thread with the smallest pass value (at the head

of the queue) and set the global pass value to be the pass

value of this thread

2) when time-slice is over, increment the thread’s pass value by

its stride value (i.e., pass += stride)

every thread is assigned a stride value

stride values are computed according to distribution of

tickets in a lottery scheduling scheme

3) loop

every time slice, pick the thread with the highest priority to run

in the CPU for the next time slice

stride values are integers

A

Stride ∝ 1 / number of tickets

B

C

3

2

1

Tickets StrideThread

0123

44

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Stride Scheduling Example

A

0123

45

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Stride Scheduling Example

Stride ∝ 1 / number of tickets

B

C

3

2

1

Tickets

1/3

1/2

1

StrideThread

then multiply by smallest common

multiplier of denominators to get

interger stride widths (here and for exams)

A

0123

46

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Stride Scheduling Example

Stride ∝ 1 / number of tickets

B

C

3

2

1

Tickets

2

3

6

StrideThread

A

0123

47

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Stride Scheduling Example

Stride ∝ 1 / number of tickets

B

C

3

2

1

Tickets

2

3

6

StrideThread
every thread is initialized

with a pass value

?
(?)

?
(?)

?
(?)

CPU

can start with any pass values

(e.g., determined by the current

state of the stride scheduler)

A

0123

48

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Stride Scheduling Example

Stride ∝ 1 / number of tickets

B

C

3

2

1

Tickets

2

3

6

StrideThread

1 2

B

3

CA

1

itr

every thread is initialized

with a pass value

A
(1)

B
(2)

C
(3)

CPU

can start with any pass values

(this is just an arbitrary example)

keep track of

scheduling history

A

0123

49

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Stride Scheduling Example

Stride ∝ 1 / number of tickets

B

C

3

2

1

Tickets

2

3

6

StrideThread
every thread is initialized

with a pass value

1 2

B

3

CA

1

itr

A
(1)

B
(2)

C
(3)

CPU

A

0123

50

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Stride Scheduling Example

Stride ∝ 1 / number of tickets

B

C

3

2

1

Tickets

2

3

6

StrideThread
every thread is initialized

with a pass value

1 2

B

3

CA

1

itr

3 2 32

A
(3)

B
(2)

C
(3)

CPU

A

0123

51

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Stride Scheduling Example

Stride ∝ 1 / number of tickets

B

C

3

2

1

Tickets

2

3

6

StrideThread
every thread is initialized

with a pass value

1 2

B

3

CA

1

itr

3 2 32

A
(3)

B
(2)

C
(3)

CPU

A

0123

52

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Stride Scheduling Example

Stride ∝ 1 / number of tickets

B

C

3

2

1

Tickets

2

3

6

StrideThread
every thread is initialized

with a pass value

1 2

B

3

CA

1

itr

3 2 32

A
(3)

B
(5)

C
(3)

CPU 3 5 33

A

0123

53

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Stride Scheduling Example

Stride ∝ 1 / number of tickets

B

C

3

2

1

Tickets

2

3

6

StrideThread
every thread is initialized

with a pass value

1 2

B

3

CA

1

itr

3 2 32

A
(3)

B
(5)

C
(3)

CPU 3 5 33

A

0123

54

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Stride Scheduling Example

Stride ∝ 1 / number of tickets

B

C

3

2

1

Tickets

2

3

6

StrideThread
every thread is initialized

with a pass value

1 2

B

3

CA

1

itr

3 2 32

A
(3)

B
(5)

C
(9)

CPU 3 5 33

3 5 94

A

0123

55

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Stride Scheduling Example

Stride ∝ 1 / number of tickets

B

C

3

2

1

Tickets

2

3

6

StrideThread
every thread is initialized

with a pass value

1 2

B

3

CA

1

itr

3 2 32

A
(3)

B
(5)

C
(9)

CPU 3 5 33

3 5 94

A

0123

56

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Stride Scheduling Example

Stride ∝ 1 / number of tickets

B

C

3

2

1

Tickets

2

3

6

StrideThread
every thread is initialized

with a pass value

1 2

B

3

CA

1

itr

3 2 32

A
(5)

B
(5)

C
(9)

CPU 3 5 33

3 5 94

5 5 95

A

0123

57

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Stride Scheduling Example

Stride ∝ 1 / number of tickets

B

C

3

2

1

Tickets

2

3

6

StrideThread
every thread is initialized

with a pass value

1 2

B

3

CA

1

itr

3 2 32

A
(5)

B
(5)

C
(9)

CPU 3 5 33

3 5 94

5 5 95

A

0123

58

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Stride Scheduling Example

Stride ∝ 1 / number of tickets

B

C

3

2

1

Tickets

2

3

6

StrideThread
every thread is initialized

with a pass value

1 2

B

3

CA

1

itr

3 2 32

A
(5)

B
(8)

C
(9)

CPU 3 5 33

3 5 94

5 5 95

5 8 96

A

0123

59

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Stride Scheduling Example

Stride ∝ 1 / number of tickets

B

C

3

2

1

Tickets

2

3

6

StrideThread
every thread is initialized

with a pass value

1 2

B

3

CA

1

itr

3 2 32

A
(5)

B
(8)

C
(9)

CPU 3 5 33

3 5 94

5 5 95

5 8 96

A

0123

60

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Stride Scheduling Example

Stride ∝ 1 / number of tickets

B

C

3

2

1

Tickets

2

3

6

StrideThread
every thread is initialized

with a pass value

1 2

B

3

CA

1

itr

3 2 32

A
(7)

B
(8)

C
(9)

CPU 3 5 33

3 5 94

5 5 95

5 8 96

7 8 97

A

0123

61

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Stride Scheduling Example

Stride ∝ 1 / number of tickets

B

C

3

2

1

Tickets

2

3

6

StrideThread
every thread is initialized

with a pass value

1 2

B

3

CA

1

itr

3 2 32

A
(7)

B
(8)

C
(9)

CPU 3 5 33

3 5 94

5 5 95

5 8 96

7 8 97

Conforms to the distribution

of tickets!

unless you can assign dollar amount to threads, you still have

the same problem with how to allocate lottery tickets to threads

0123

62

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Stride Scheduling - Additional Details

New thread

allocate the global pass value

Thread uses less than its quantum

let 0 < f < 1 be the fraction of the quantum actually used

pass += f × stride

the result is that interactive threads get higher priority

so it gets to run first

Is this better than Multi-level Feedback Queue?

you can use a "heap" (data structure) to implement a priority

queue

Isn’t sorting pass values slow?

insertion and deleting_min is O(log2n) where n is the number

of jobs at the priority queue

