Operating Systems - CSCI 402

Max-min Fairness

ﬁ} Max-min Fairness: a fair service maximizes the service of the
customer receiving the poorest service

ﬁ} Max-min Fairness criterion:
1) no user receives more than its request
2) no other allocation scheme satisfying condition 1 has a higher
minimum allocation
Q l.e., maximize the minimum allocation
3) condition 2 remains recursively true as we remove the minimal
user and reduce total resource accordingly

_) Ex:if the government has $1,000,000 to give to 1,000 citizens, what’s
the fair way to distribute the money?
= is it fair to give everyone $1,000?
Q no, you are not allowed to waste resources

Copyright © William C. Cheng

Operating Systems - CSCI 402

Max-min Fairness Example

) Total capacity C divided among N jobs
= X;is the request of job i
— sort jobs based on x;
= initially, assign C/N to each job

I N
X4 Xo

0

= satisfy x,, redistribute remaining capacity evenly

X3

(C-x1)/(N-1)

X2

0
= recursion

) This is basically "processor sharing”

Copyright © William C. Cheng

Operating Systems - CSCI 402

Scheduling for Interactive Systems

_) Length of "jobs" not known
= by the way, the round-robin scheduler works just fine without
knowing the length of jobs

) Threads would give up CPU voluntarily
= they block for user input

> Would like to favor interactive jobs
= use priority queueing
= what is an "interactive job"?
Q "interactive user"” can run non-interactive job (like warmup2)
Q an "interactive jobs" is a job that requires "user interaction”
(with mouse and/or keyboard)
& e.d., the command shell

Copyright © William C. Cheng

Operating Systems - CSCI 402

Round Robin with Priority

&)
&)

= how to determine priority?
Q let the threads themselves decide?

B

Copyright © William C. Cheng

Operating Systems - CSCI 402

Multi-Level Feedback Queues

= maybe it makes more sense to have dynamic priority
Copyright © William C. Cheng

Operating Systems - CSCI 402

Multi-Level Feedback Queues

ﬁ} When a thread arrives to the run queue, it gets highest priority
= observe what it does when it uses the CPU
Q if it uses a full time slice
<& decrease its priority
Q Iif it blocks before using up a full time slice
<& update information (statistics?) in thread control block

) To avoid starvation, use aging
= if a job hasn’t been run for a long time, increase its priority

) Clearly, not a fair scheduling algorithm

) Priority used in this scheme is dynamic priority
= this is "short term priority"
= when we use the word "priority"”, we typically mean that "priority
would reflect how "important” a job is
Q this is a different kind of priority, but is it the right kind?

Q it igh i hing th '
:ﬂm:y r]ot- be right to give everything the user runs 3
g priority 35

Copyright © William

Cheng

Operating Systems - CSCI 402

Multi-Level Feedback Queues

= cah have variations 4

Copyright © William C. Cheng

VA VAR VIR VIR VAR V.

Copyright © William C. Cheng

Operating Systems - CSCI 402

Real-Life Example

Your iPod is broken
= run mp3 player on your PC

The baseball playoffs are on
— streaming video

An OS assignment is due
= editor, compiler, debugger

You've got to do everything
on one computer

Can your scheduler hack it?

What scheduler is suitable for a
general purpose system?

static int msync_interval (struct vm_area_struct * vma,

unsigned long start, unsigned long end, int flags)

int ret = 0;
struct file * file = vma->vm_file;

if ((flags & MS_INVALIDATE) && (vma—>vm_flags & VM_LOCKED))
return -EBUSY;

if (file && (vma->vm_flags & VM_SHARED))
ret = filemap_sync(vma, start, end-start, flags);

if (!'ret && (flags & MS_SYNC)) {
struct address_space *mapping = file->f_mapping;
int err;

Operating Systems - CSCI 402

Interactive Scheduling

_) Time-sliced, priority-based, preemptive
= e.g., multi-level feedback queues
Q every time slice, pick the thread with the highest priority to
run in the CPU for the next time slice

) Priority depends on expected time to block
= interactive threads should have high priority
= compute threads should have low priority

ﬁ} Other heuristics
= e.g., determine priority using long term history (not just
immediate history)
Q processor usage causes decrease
Q sleeping causes increase

Copyright © William C. Cheng

Operating Systems - CSCI 402

Scheduling for Fairness
ﬁ} If fairness is really important, what would you do?

_, Ex: shared servers

= you and four friends each contribute $1000 towards a server
Q vyou, rightfully, feel you own 20% of it

= your friends are into threads, you’re not
Q they run 4-threaded programs
Q you run a 7-threaded program

= their programs each get 4/77 of the processor

= your programs get 7/77 of the processor

Copyright © William C. Cheng

Operating Systems - CSCI 402

Lottery Scheduling

ﬁ} 20 lottery tickets are distributed equally to you and your four
friends
= you give 4 tickets to your one thread
= they give one ticket each to their threads

_) Alottery is held for every scheduling decision
= your thread is 4 times more likely to win than the others

ﬁ> But how do you implement a fair and efficient lottery scheme in
the kernel if there are lots of jobs at the run queue?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Proportional-Share Scheduling

) Stride scheduling
= 1995 paper by Waldspurger and Weihl

) Completely fair scheduling (CFS)
= added to Linux in 2007

Copyright © William C. Cheng

Operating Systems - CSCI 402

Metered Processors

= the textbook presented Siride Scheduling differently |
% Q as far as exam goes, you must follow /lecture slides 4

Copyright © William C. Cheng

Operating Systems - CSCI 402

Stride Scheduling Algorithm

_) Time-sliced, priority-based, preemptive
= every time slice, pick the thread with the highest priority to run
in the CPU for the next time slice
= every thread is assighed a (dynamic) priority, called a pass value
Q single queue, sorted based on pass values, smallest first
= every thread is assigned a siride value
Q stride values are computed according to distribution of
tickets in a lottery scheduling scheme
& stride values are integers

) In every iteration / time-slice
1) shedule the thread with the smallest pass value (at the head

of the queue) and set the global pass value to be the pass

value of this thread
2) when time-slice is over, increment the thread’s pass value by

its stride value (i.e., pass += stride)
|
&

3) loop

Copyright © William C. Cheng

Operating Systems - CSCI 402

Stride Scheduling Example

) Stride o< 1/ number of tickets Thread | Tickets | Stride
A 3
B 2
C 1

Copyright © William C. Cheng

Stride Scheduling Example

) Stride o< 1/ number of tickets

Operating Systems - CSCI 402

Thread | Tickets | Stride
A 3 1/3
B 2 1/2
C 1 1

then multiply by smallest common /T
multiplier of denominators to get

interger stride widths (here and for exams)

Copyright © William C. Cheng

Stride Scheduling Example

) Stride o< 1/ number of tickets

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread | Tickets | Stride
A 3 2
B 2 3
C 1 6

Stride Scheduling Example

) Stride o< 1/ number of tickets
= every thread is initialized
with a pass value

can start with any pass values
(e.g., determined by the current
state of the stride scheduler)

l CPU

Operating Systems - CSCI 402

Thread | Tickets | Stride
A 3 2
B 2 3
C 1 6

l)

(2)

l)

(2)

{)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Stride Scheduling Example

ﬁ} Stride o< 1 / number of tickets Thread | Tickets | Stride
= every thread is initialized A 3 5
with a pass value
B 2 3
C 1 6

keep track of
scheduling history

can start with any pass values |—> 1 1 2 3

(this is just an arbitrary example)

l CPU

Q) [)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Stride Scheduling Example

ﬁ} Stride o< 1 / number of tickets Thread | Tickets | Stride
= every thread is initialized A 3 5

with a pass value
B 2 3

3)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Stride Scheduling Example

ﬁ} Stride o< 1 / number of tickets Thread | Tickets | Stride
= every thread is initialized A 3 5

with a pass value

G [@

Copyright © William C. Cheng

Operating Systems - CSCI 402

Stride Scheduling Example

ﬁ} Stride o< 1 / number of tickets Thread | Tickets | Stride
= every thread is initialized A 3 5

with a pass value

3)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Stride Scheduling Example

ﬁ} Stride o< 1 / number of tickets Thread | Tickets | Stride
= every thread is initialized A 3 5

with a pass value

®) [G

Copyright © William C. Cheng

Operating Systems - CSCI 402

Stride Scheduling Example

ﬁ} Stride o< 1 / number of tickets Thread | Tickets | Stride
= every thread is initialized A 3 5

with a pass value

)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Stride Scheduling Example

ﬁ} Stride o< 1 / number of tickets Thread | Tickets | Stride
= every thread is initialized A 3 5

with a pass value

9 [O

Copyright © William C. Cheng

Operating Systems - CSCI 402

Stride Scheduling Example

ﬁ} Stride o< 1 / number of tickets Thread | Tickets | Stride
= every thread is initialized A 3 5

with a pass value
B 2 3

(9)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Stride Scheduling Example

ﬁ} Stride o< 1 / number of tickets Thread | Tickets | Stride
= every thread is initialized A 3 5

with a pass value
B 2 3

9 [O

Copyright © William C. Cheng

Operating Systems - CSCI 402

Stride Scheduling Example

ﬁ} Stride o< 1 / number of tickets Thread | Tickets | Stride
= every thread is initialized A 3 5

with a pass value
B 2 3

(9)

Copyright © William C. Cheng

Stride Scheduling Example

) Stride o< 1/ number of tickets
= every thread is initialized
with a pass value

9 [()

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread | Tickets | Stride
A 3 2
B 2 3
C 1 6

Stride Scheduling Example

) Stride o< 1/ number of tickets
= every thread is initialized
with a pass value

(9)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread | Tickets | Stride
A 3 2
B 2 3
C 1 6

Stride Scheduling Example

) Stride o< 1/ number of tickets
= every thread is initialized
with a pass value

9 [()

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread | Tickets | Stride
A 3 2
B 2 3
C 1 6

Stride Scheduling Example

) Stride o< 1/ number of tickets
= every thread is initialized
with a pass value

) Conforms to the distribution

of tickets!

CPU

(9)

(8)

(7)

{)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thread | Tickets | Stride
A 3 2
B 2 3
C 1 6

itr A B C
1 (1) 2 3
2 3 (2 3
3 3 5 (3
4 3 5 9
5 5 (5 9
6 B 8 9
7 7 8 9

Operating Systems - CSCI 402

Stride Scheduling - Additional Details

_) New thread
= allocate the global pass value
Q so it gets to run first

) Thread uses less than its quantum
= let 0 < f < 1 be the fraction of the quantum actually used
= pass += f x stride
= the result is that interactive threads get higher priority

) Is this better than Multi-level Feedback Queue?
= unless you can assign dollar amount to threads, you still have
the same problem with how to allocate lottery tickets to threads

) Isn’t sorting pass values slow?
= you canh use a "heap" (data structure) to implement a priority

queue
Q Insertion and deleting_minis O(log,n) where n is the number
of jobs at the priority queue 3

62

Copyright © William C. Cheng

