
0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

5.3 Scheduling

Goals

Scheduling Algorithms

Implementation Issues

Case Studies

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduling Algorithms

FIFO

Basic

SJF

SRTN

RR

Multi-level

Priority

Multi-level

w/ Feedback*

Lottery

Prortional Share

Stride*

EDF

Real Time

Rate

Monotonic

We will focus on how the run queue is managed

All these schedulers are work-conserving

if there is work to be perform, must keep CPU busy

opposite of "vacationing scheduler"

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduling Non-preemptive, Non-interactive Jobs

Scheduling "jobs"

Run one at a time

Running time is known

no preemption

considered a new job

CPU blocked (I/O)runq

 wait time
wait time is over when

job voluntarily gives

up the CPU

not realistic

if you know the running time of every job, what would you do?

jobs Ji with processing/execution time Ti for i = 0, 1, 2, ...

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

FIFO

Ex: weenix

Throughput

(Jobs/hour)

"Goodness" criterion is jobs/hour

Ex:

0.5

one 168-hour job

followed by 168 one-hour jobs

168 336

assuming that all jobs are sitting in the run queue at time 0

slightly

concave

 T1=1

 T0=168

J0J1J1J3J168

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Performance Metric: Throughput

CPUrunq

 wait time

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Another Performance Metric: Average Wait Time

Jobs Ji with processing/execution time Ti for 0 ≤ i < n

Average wait time (AWT) for FIFO

Ji started at time ti

ti = Σ
i-1

j=0
 Tj (for FIFO)

For our example (which is the worst-case for FIFO)

AWT = 252 hours (with a standard deviation of 48.79 hours)

AWT = Σ
n-1

i=0
 WTi / n = Σ

n-1

i=0
 (ti + Ti) / n

please note that this is not the same as any warmup2 "wait time"

large average and large variation (for this example)

In general, AWT for FIFO is more difficult to compute

need to look at all possible ordering of jobs and the

probability of getting each particular order

WTi = ti + Ti (for non-preemptive schedulers)

AWT = Σ
n-1

i=0
 (ti + Ti) / n

ti = Σ
i-1

j=0
 Tj

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Shortest Job First

AWT = (nT0 + (n-1)T1 + (n-2)T2 + ... + 2Tn-2 + Tn-1) / n

Minimized when Ti ≤ Ti+1 for all i

which is Shortest Job First (SJF)

if i > 0, ti = Ti-1 + ti-1

How to minimize AWT?

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

SJF and Our Example

0.5

1

168 336

AWT = 85.99 hours (with a standard deviation of 52.06 hours)

Throughput

(Jobs/hour)

Time (hours)

Instantaneous throughputs can be different for different schedulers

but throughput at time = 336 is identical for all

work-conserving schedulers

slightly

convex

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

SJF and Our Example

0.5

1

168 336

AWT = 85.99 hours (with a standard deviation of 52.06 hours)

Throughput

(Jobs/hour)

Time (hours)

What if short jobs keep arriving?

starvation

unacceptable for a scheduling policy

slightly

convex

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Scheduling Preemptive, Non-interactive Jobs

Preemption:

current job may be

preempted by others

if it goes to the runq

due to preemption, it’s

still the same job

preemption,

still the same job

CPU blocked (I/O)runq

 wait time

it doesn’t have to go to the tail of the runq

wait time is the time when this job volunterily gives up

the CPU minus the time it first entered the runq

to minimize AWT, use shortest remaining time next (SRTN)

basically SJF

same argument that SJF minimizes AWT when there is no

preemption

we reserve the term "SJF" to refer to the non-preemptive case

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Fairness

each job eventually gets processed

FIFO

a long job might have to wait indefinitely

SJF and SRTN

What’s a good measure of fairness?

that seems fair

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Round Robin

Time-slicing

q = quantum or time slice

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Round Robin

Time-slicing

q = quantum or time slice

CPU

remaining service time

T0

T2

T3

T4

T5

T1

T0T2T3T4T5 T1

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Round Robin

Time-slicing

q = quantum or time slice

Different values of q

q → 0: processor-sharing (idealized case)

q too large: some jobs appear to be not making progress

not realistic

translation lookaside buffer flushing and caching problem

not enough time to achieve good hit-rate in TLB

T0T2T3T4T5 T1

CPU

remaining service time

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Round Robin

How to calculate waiting time?

j0

j1

j2

j3

j4

j5

WT1 =
T0

T2

T3

T4

T5

T1

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Round Robin

How to calculate waiting time?

WT1 = 6 × T1

CPU

remaining service time

j0

j1

j2

j3

j4

j5

T1

T0

T2

T3

T4

T5

why not 6 × T1 - 4 × q

q → 0, we are doing

calculus, not algebra

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Round Robin

How to calculate waiting time?

WT1 = 6 × T1

CPU

remaining service time

j0

j1

j2

j3

j4

j5

T1

T0

T2

T3

T4

T5

WT4 = ?

T4 - T1

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Round Robin

How to calculate waiting time?

WT1 = 6 × T1

CPU

remaining service time

j0

j1

j2

j3

j4

j5

T1

T0

T2

T3

T4

T5

WT4 = 5 × (T4 - T1) + WT1

T4 - T1

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Round Robin

How to calculate waiting time?

WT1 = 6 × T1

CPU

remaining service time

j0

j1

j2

j3

j4

j5

T1

T0

T2

T3

T4

T5

WT4 = 5 × (T4 - T1) + WT1

T0 - T4

WT0 = ?

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Round Robin

How to calculate waiting time?

WT1 = 6 × T1

CPU

remaining service time

j0

j1

j2

j3

j4

j5

T1

T0

T2

T3

T4

T5

WT4 = 5 × (T4 - T1) + WT1

T0 - T4

WT0 = 4 × (T0 - T4) + WT4

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Round Robin

How to calculate waiting time?

WT1 = 6 × T1

CPU

remaining service time

j0

j1

j2

j3

j4

j5

T1

T0

T2

T3

T4

T5

WT4 = 5 × (T4 - T1) + WT1

T2 - T0

WT0 = 4 × (T0 - T4) + WT4

WT2 = ?

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Round Robin

How to calculate waiting time?

WT1 = 6 × T1

CPU

remaining service time

j0

j1

j2

j3

j4

j5

T1

T0

T2

T3

T4

T5

WT4 = 5 × (T4 - T1) + WT1

T2 - T0

WT0 = 4 × (T0 - T4) + WT4

WT2 = 3 × (T2 - T0) + WT0

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Round Robin

How to calculate waiting time?

WT1 = 6 × T1

CPU

remaining service time

j0

j1

j2

j3

j4

j5

T1

T0

T2

T3

T4

T5

WT4 = 5 × (T4 - T1) + WT1

T5 - T2

WT0 = 4 × (T0 - T4) + WT4

WT2 = 3 × (T2 - T0) + WT0

WT5 = ?

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Round Robin

How to calculate waiting time?

WT1 = 6 × T1

CPU

remaining service time

j0

j1

j2

j3

j4

j5

T1

T0

T2

T3

T4

T5

WT4 = 5 × (T4 - T1) + WT1

T5 - T2

WT0 = 4 × (T0 - T4) + WT4

WT2 = 3 × (T2 - T0) + WT0

WT5 = 2 × (T5 - T2) + WT2

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Round Robin

How to calculate waiting time?

WT1 = 6 × T1

CPU

remaining service time

j0

j1

j2

j3

j4

j5

T1

T0

T2

T3

T4

T5

WT4 = 5 × (T4 - T1) + WT1

T3 - T5

WT0 = 4 × (T0 - T4) + WT4

WT2 = 3 × (T2 - T0) + WT0

WT5 = 2 × (T5 - T2) + WT2

WT3 = ?

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Round Robin

How to calculate waiting time?

WT1 = 6 × T1

CPU

remaining service time

j0

j1

j2

j3

j4

j5

T1

T0

T2

T3

T4

T5

WT4 = 5 × (T4 - T1) + WT1

T3 - T5

WT0 = 4 × (T0 - T4) + WT4

WT2 = 3 × (T2 - T0) + WT0

WT5 = 2 × (T5 - T2) + WT2

WT3 = 1 × (T3 - T5) + WT5

Does it check out?

WT3 = T0 + T1 + T2 + T3 + T4 + T5

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Round Robin + FIFO

let quantum approach 0 (and pretend that it’s realistic)

AWT?

169 jobs sharing the processor

run at 1/169th speed for first week

short jobs receive one hour of processor time in 169 hours

long job completes in 336 hours

AWT = 169.99 hours

average deviation = 12.81 hours

different from SJF since all short jobs finish at about the

same time

recall that AWT is 252 hours for FIFO in our example and

85.99 hours for SJF

recall that average deviation = 48.79 hours for FIFO in our

example and 52.06 hours for SJF

no starvation

RR + FIFO appears to be "fair"

