Operating Systems - CSCI 402

Virtual Machines
Part 2: Now

Copyright © William C. Cheng

Operating Systems - CSCI 402

Copyright © William C. Cheng

Operating Systems - CSCI 402

How They Are Different

IBM 360
—= Two execution modes
Q supervisor and problem
(user)
Q all sensitive instructions
are privileged instructions
—= Memory is protectable:
2k-byte granularity
= All interrupt vectors and the
clock are in first 512 bytes
of memory
= |/O done via channel programs
in memory, initiated with
privileged instructions
—= Dynamic address translation
(virtual memory) added for
Model 67

Copyright © William C. Cheng

Intel x86
—= Four execution modes
Q rings 0 through 3
Q not all sensitive instructions
are privileged instructions
—= Memory is protectable:
segment system + virtual
memory
= Special register points to
interrupt table
= |/O done via memory-mapped I/O
Q i.e., I/O operations look like
memory accesses
= Virtual memory is standard

Operating Systems - CSCI 402

_> An x86 processor can be in one of 4 modes/rings

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Sensitive x86 Instruction

ﬁ} popf

= pops flags (word) off stack, setting processor flags according to
word’s content
Q sets all flags if in ring 0
& including interrupt-disable flag
Q just some of them if in other rings
& ignores interrupt-disable flag
= bad news: if invoked in user mode, does not cause a trap!
Q therefore, this instruction will execute differently in the
guest OS when it’s running on top of a VM (as compared to
running on a real machine)
& since the OS is running in user mode under the virtual
machine scheme
Q this (and a few other instructions) is one of the major problem
to virtualize x86 systems

There is another major problem related to device 1/0 (later (AR
=) jor p (ater) (b

Copyright © William C. Cheng

Operating Systems - CSCI 402

x86 CPU Virtualization - What to Do?

_) Binary rewriting
= rewrite kernel binaries of guest OSes
Q replace sensitive instructions with “"hypercalls”
Q do so dynamically (i.e., dynamic binary rewriting)
<& VMware does this
Q no need to modify guest OS

ﬁ} Hardware virtualization
= fix the hardware so it’s virtualizable

_) Paravirtualization
= virtual machine differs from real machine
Q provides more convenient interfaces for virtualization
Q hypervisor interface between virtual and real machines
& we use the terms "hypervisor” and "VMM" interchangeably

Q guest OS source code is modified (and recompiled)

&

Copyright © William C. Cheng

Operating Systems - CSCI 402

Binary Rewriting

) Privilege-mode code run via binary translator
= guest OS is unmodified
= replaces sensitive instructions with hypercalls
= translated code is cached

Q usually translated just once

VMWare

= U.S. patent 6,397,242

[

ﬁ> VirtualBox appears to do something similar to VMWare
= see https://www.virtualbox.org/manual/ch10.html#idp58764736
for more details

Copyright © William C. Cheng

Operating Systems - CSCI 402

Fixing the Hardware

) Intel Vanderpool technology: VT-x
= hew processor mode
Q "ring -1"
& root mode
& other modes are non-root
— certain operations and events in hon-root mode cause VM-exit
to root mode
Q essentially a hypercali
Q code in root mode specifies which operations and events
cause VM-exits
& e.g., popf, page fault
= non-VMM OSes must not be written to use root mode!

Copyright © William C. Cheng

1/0 Virtualization

ﬁ} Channel programs were generic for IBM 360
= canh be emmulated in the VMM

ﬁ} I/0 via memory-mapped registers is not
= |ots and lots and lots of device drivers
= must VMM handle all of them?

Q problem: scalability

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Real-Machine OS Structure

process process process process process

Processor(s) Devices

E> Lots of devices need to be supported by desktop OSes (such as

Windows and Mac OS X)
11

Copyright © William C. Cheng

Operating Systems - CSCI 402

On a Virtual Machine ...

process process process process
(013) (013)
Device drivers Device drivers
Virtual Virtual Virtual Virtual
processor(s) devices processor(s) devices
VMM
Device drivers
Processor(s) Devices

_> Who is going to write all the device drives for the new 0S?

Copyright © William C. Cheng

Operating Systems - CSCI 402

On a Virtual Machine ...

process process process process
OoS oS
Device drivers Device drivers
Virtual Virtual Virtual Virtual
processor(s) devices processor(s) devices

Device drivers

Processor(s) Devices

ﬁ> This is more suitable for server machines (higher performance)
— scalability problem: who is going to write device drivers |
for VMM in lower-end machines? 3
Copyright © William C. Cheng

VMware Workstation - Host/Guest Model

Operating Systems - CSCI 402

process| |process process| |[process
process process VMApp Guest OS Guest OS
Device Device
drivers drivers
~\ Virtual Virtual Virtual Virtual
~ callback functions are processor(s) | devices processor(s)| devices
registered with host OS VMDriver
during VMDriver initialization
y,
Host OS Device drivers
Processor(s) Devices

_, VMware’s solution is to use a guest/host model
—= VMDriver takes the place of the VMM |
= plenty of device drivers already available on host OS 3 @;

Copyright © William C. Cheng

VMware Workstation - Host/Guest Model

Operating Systems - CSCI 402

process process process process

process process VMApp Guest OS Guest OS
Device Device
drivers drivers
Virtual Virtual Virtual Virtual
processor(s) | Jdevices processor(s)| devices

VMDriver
Host OS Device drivers
Processor(s) Devices

ﬁ> This is more suitable for "workstations” - more variety of devices

= convenience over performance
3(2(1(0) o=
BN

Copyright © William C. Cheng

Operating Systems - CSCI 402

Paravirtualization

ﬁ} Sensitive instructions replaced with hypervisor calls
= traps to hypervisor/VMM

ﬁ} Virtual machine provides higher-level device interface
= guest machine has no device drivers
Q OS is changed already, might as well change 1/O, if there
are sufficient benefits

Copyright © William C. Cheng

Operating Systems - CSCI 402

Domain 0 Domain U1
(for I/0 virtualization) (virtual machine)
App | | App | | App App | | App
t event channel t
OS - bacnkeend -1 shared mem [frorl:te end OS
block event channel block .
bacz?and -1 shared mem [fronct’(t:end ng 1
! Ring 0

net device | | net device

driver driver VMM (for CPU virtualization)

Ring 0

Hardware

= it directly talks to the hardware \
Copyright © William C. Cheng

ﬁ> Domain 0 OS is like the Host OS in VMware but only for I/O (i\
(0) b=
=/

Operating Systems - CSCI 402

Additional Applications

) Sandboxing
—= isolate web servers
= isolate device drivers

) Migration
= VM not tied to particular hardware
= easy to move from one (real) platform to another

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Xen with Isolated Driver

Domain 0 Domain U1

Domain U2

App | | App App | | App

OS > net £ i net OS
back end > - front end

block [« block 0S
front end [> Bl back end |

Y
net device disk device
driver VM M driver

Hardware

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Summary

Virtualization

N

ylMT 7 (Q Containers
CPU /I/O\ CPU I/‘O
Dynamic Split Host/ Hypervisor No driver
binary driver Guest calls in guest

rewriting in VMM

Copyright © William C. Cheng

One More Kind Of Virtualization

) Containerized OS (or OS Containers)
= not covered in textbook

VM/Containers

App | [App | | App

Operating Systems - CSCI 402

VM/Containers

App | [App | | App

OSa

OS

OSb

= the OS provides the abstraction that each container runs on
top of a separate OS (but there is really only one OS)
= e.g., OpenVZ, Linux Containers (LXC), Docker

Copyright © William C. Cheng

Operating Systems - CSCI 402

Containerized OS

ﬁ> Within the OS, the management of resources for each container
Is separated
= e.g., processes for container A is kept separate from processes
for container B

A B

: 0S
| List of processes

for container A

|, Listof processes
for container B

Process e o o
Management

ﬁ> Others may consider this "virtual machine”, but we shouldn’t
= because "guest OS" does not run in user space here and 3
there is really no "guest OS™ 2N

Copyright © William C. Cheng

Operating Systems - CSCI 402

7.2.6 Virtualizing
Virtual Memory

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Machines Meet Virtual Memory

_) A user process thinks it’s
accessing virtual memory

App = but it’s really dealing with

virtual virtual memory

Virtual virtual
memory

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Machines Meet Virtual Memory

App
Guest OS

Virtual virtual
memory

Virtual real memory

Copyright © William C. Cheng

_) A user process thinks it’s
accessing virtual memory
= but it’s really dealing with
virtual virtual memory

—) The OS in a VM thinks it's
managing real memory
= but it’s really dealing with
virtual real memory

Operating Systems - CSCI 402

Virtual Machines Meet Virtual Memory

App
Guest OS

Virtual virtual
memory

Virtual real memory

VMM

Real memory

Copyright © William C. Cheng

_) A user process thinks it’s
accessing virtual memory
= but it’s really dealing with
virtual virtual memory

—) The OS in a VM thinks it's
managing real memory
= but it’s really dealing with
virtual real memory

> VMM needs to manage real
memory

= how can we virtualize
virtual memory?

Operating Systems - CSCI 402

Virtual Machines Meet Virtual Memory

0i
0 1 App 1 3 translates virtual real
1| i 2 1 addresses to
physical addresses
2| i : : 3 2
Virtual virtual
3 2 memory VMM’s page table
L -
1 Virtual machine’s
page table 0 3
Virtual real memory 1]
\ 2| i
3 1
translates virtual virtual addresses
to virtual real addresses Shadow page table
Real memory el e vl

_, When a VM changes its page table, VMM must update the
corresponding Shadow Page Table
= main problem: poor performance / ;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Solution 1: Paravirtualization to the Rescue

virtual
virtual

virtual

memory

memory

_> Make a hypervisor call when
page table needs to be modified

= helps a bit, but not much faster
Copyright © William C. Cheng

real memory

Operating Systems - CSCI 402

Solution 2: Hardware to the Rescue

virtual
virtual
memory

W N =0

virtual
real
memory

N|=|W

) The processor traverses the
two tables in sequence and does the

conversion all by itself
Copyright © William C. Cheng

real memory

Operating Systems - CSCI 402

x86 Paging with EPT

10 bits 10 bits 12 bits
CR3
Page Directory Page Table
(pd) (pt)
Page
EPTP — R

y

l
these translates virtual real addresses 3 ;‘0}—
to physical addresses =

Copyright © William C. Cheng

Operating Systems - CSCI 402

x86 Paging with EPT

10 bits 10 bits 12 bits

CR3

Page Directory Page Table
(pd) (pt)

Page
EPTP }——)

y

l
these translates virtual real addresses 3 ;‘0}—
to physical addresses =

Copyright © William C. Cheng

