
0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Machines

Part 2: Now

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

How They Are Different

Four execution modes

rings 0 through 3

Intel x86

not all sensitive instructions

are privileged instructions

Memory is protectable:

segment system + virtual

memory

Special register points to

interrupt table

I/O done via memory-mapped I/O

Virtual memory is standard

Two execution modes

supervisor and problem

(user)

IBM 360

all sensitive instructions

are privileged instructions

Memory is protectable:

2k-byte granularity

All interrupt vectors and the

clock are in first 512 bytes

of memory

I/O done via channel programs

in memory, initiated with

privileged instructions

Dynamic address translation

(virtual memory) added for

Model 67

i.e., I/O operations look like

memory accesses

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Rings

0

kernel

1

2

3 apps

An x86 processor can be in one of 4 modes/rings

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Sensitive x86 Instruction

pops flags (word) off stack, setting processor flags according to

word’s content

sets all flags if in ring 0

popf

just some of them if in other rings

ignores interrupt-disable flag

including interrupt-disable flag

bad news: if invoked in user mode, does not cause a trap!

therefore, this instruction will execute differently in the

guest OS when it’s running on top of a VM (as compared to

running on a real machine)

since the OS is running in user mode under the virtual

machine scheme

this (and a few other instructions) is one of the major problem

to virtualize x86 systems

There is another major problem related to device I/O (later)

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

x86 CPU Virtualization - What to Do?

rewrite kernel binaries of guest OSes

Binary rewriting

fix the hardware so it’s virtualizable

Hardware virtualization

virtual machine differs from real machine

Paravirtualization

replace sensitive instructions with "hypercalls"

do so dynamically (i.e., dynamic binary rewriting)

provides more convenient interfaces for virtualization

hypervisor interface between virtual and real machines

guest OS source code is modified (and recompiled)

VMware does this

no need to modify guest OS

we use the terms "hypervisor" and "VMM" interchangeably

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Binary Rewriting

replaces sensitive instructions with hypercalls

Privilege-mode code run via binary translator

translated code is cached

VMWare

U.S. patent 6,397,242

usually translated just once

guest OS is unmodified

VirtualBox appears to do something similar to VMWare

see https://www.virtualbox.org/manual/ch10.html#idp58764736

for more details

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Fixing the Hardware

new processor mode

Intel Vanderpool technology: VT-x

"ring -1"

certain operations and events in non-root mode cause VM-exit

to root mode

non-VMM OSes must not be written to use root mode!

root mode

other modes are non-root

essentially a hypercall

code in root mode specifies which operations and events

cause VM-exits

e.g., popf, page fault

lots and lots and lots of device drivers

I/O via memory-mapped registers is not

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

I/O Virtualization

Channel programs were generic for IBM 360

must VMM handle all of them?

can be emmulated in the VMM

problem: scalability

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Real-Machine OS Structure

processprocessprocessprocessprocess

OS

DevicesProcessor(s)

Device drivers

Lots of devices need to be supported by desktop OSes (such as

Windows and Mac OS X)

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

On a Virtual Machine ...

Virtual
devices

VMM

DevicesProcessor(s)

Device drivers

Virtual
processor(s)

OS
Device drivers

processprocess

Virtual
devices

Virtual
processor(s)

OS
Device drivers

processprocess

Who is going to write all the device drives for the new OS?

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

On a Virtual Machine ...

Virtual
devices

VMM

DevicesProcessor(s)

Device drivers

Virtual
processor(s)

OS
Device drivers

processprocess

Virtual
devices

Virtual
processor(s)

OS
Device drivers

processprocess

This is more suitable for server machines (higher performance)

scalability problem: who is going to write device drivers

for VMM in lower-end machines?

VMAppprocessprocess

VMware’s solution is to use a guest/host model

VMDriver takes the place of the VMM
0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

VMware Workstation - Host/Guest Model

Host OS

DevicesProcessor(s)

Device drivers

Virtual
devices

Virtual
processor(s)

Guest OS

Device
drivers

processprocess

Virtual
devices

Virtual
processor(s)

Guest OS

Device
drivers

processprocess

VMDriver

plenty of device drivers already available on host OS

callback functions are

registered with host OS

during VMDriver initialization

convenience over performance

This is more suitable for "workstations" - more variety of devices

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

VMware Workstation - Host/Guest Model

Host OS

DevicesProcessor(s)

Device drivers

VMApp

Virtual
devices

Virtual
processor(s)

Guest OS

Device
drivers

processprocess

Virtual
devices

Virtual
processor(s)

Guest OS

Device
drivers

processprocess

VMDriver

processprocess

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Paravirtualization

traps to hypervisor/VMM

Sensitive instructions replaced with hypervisor calls

guest machine has no device drivers

Virtual machine provides higher-level device interface

OS is changed already, might as well change I/O, if there

are sufficient benefits

event channel

event channel

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Xen

net device
driver

net device
driver

block
back end

net
back end

Ring 0

OS

block
front end

net
front end

Ring 1

OS
shared mem

shared mem

App

Ring 3

App

Ring 3

Domain U1
(virtual machine)

Domain 0
(for I/O virtualization)

App

Ring 3

App

Ring 3

App

Ring 3

Hardware

VMM (for CPU virtualization)
Ring 0

it directly talks to the hardware

Domain 0 OS is like the Host OS in VMware but only for I/O

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Additional Applications

isolate web servers

Sandboxing

isolate device drivers

VM not tied to particular hardware

Migration

easy to move from one (real) platform to another

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Xen with Isolated Driver

net device
driver

net
back end

OS

block
front end

net
front end

OS

App App

Domain U1Domain 0

App App

Hardware

VMM
disk device

driver

block
back end

OS

Domain U2

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Summary

No driver

in guest

Hypervisor

calls

Virtualization

Full (VMware)

CPU

Para (Xen)

I/OI/O CPU

Dynamic

binary

rewriting

Split
driver

in VMM

Host/
Guest

Containers

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

One More Kind Of Virtualization

not covered in textbook

Containerized OS (or OS Containers)

OS

VM/Containers

OSa

App App App

VM/Containers

App App App

OSb

the OS provides the abstraction that each container runs on

top of a separate OS (but there is really only one OS)

e.g., OpenVZ, Linux Containers (LXC), Docker

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Containerized OS

e.g., processes for container A is kept separate from processes

for container B

Within the OS, the management of resources for each container

is separated

OS

A B

Process
Management

List of processes
for container A

List of processes
for container B

because "guest OS" does not run in user space here and

there is really no "guest OS"

Others may consider this "virtual machine", but we shouldn’t

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

7.2.6 Virtualizing

Virtual Memory

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Machines Meet Virtual Memory

Virtual virtual
memory

A user process thinks it’s

accessing virtual memory

but it’s really dealing with

virtual virtual memory
App

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Machines Meet Virtual Memory

Virtual virtual
memory

Virtual real memory

A user process thinks it’s

accessing virtual memory

but it’s really dealing with

virtual virtual memory

The OS in a VM thinks it’s

managing real memory

but it’s really dealing with

virtual real memory

App

Guest OS

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Machines Meet Virtual Memory

Virtual virtual
memory

Virtual real memory

Real memory

A user process thinks it’s

accessing virtual memory

but it’s really dealing with

virtual virtual memory

The OS in a VM thinks it’s

managing real memory

but it’s really dealing with

virtual real memory

VMM needs to manage real

memory

how can we virtualize

virtual memory?

App

Guest OS

VMM

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Machines Meet Virtual Memory

Shadow page table

(for each VM)

VMM’s page table

i

i

0

1

2

3

3

1

i0

1

2

3

3

2

1

Virtual machine’s
page table

i

i

0

1

2

3

1

2
Virtual virtual

memory

Virtual real memory

Real memory

When a VM changes its page table, VMM must update the

corresponding Shadow Page Table

main problem: poor performance

translates virtual real

addresses to

physical addresses

translates virtual virtual addresses

to virtual real addresses

App

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Solution 1: Paravirtualization to the Rescue

real memory

i

i

0

1

2

3

1

2

i0

1

2

3

3

2

1

i

i

0

1

2

3

3

1

virtual

real

memoryvirtual

virtual

memory

Direct translation

Make a hypervisor call when

page table needs to be modified

helps a bit, but not much faster

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Solution 2: Hardware to the Rescue

real memory

virtual

virtual

memory

Extended Page Tables

virtual

real

memory

1

i1

0

i2

23

i

1

0

2

23

3

1

The processor traverses the

two tables in sequence and does the

conversion all by itself

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

x86 Paging with EPT

10 bits 10 bits 12 bits

Page Directory
(pd)

Page Table
(pt)

EPTP

CR3

Page

these translates virtual real addresses

to physical addresses

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

x86 Paging with EPT

10 bits 10 bits 12 bits

Page Directory
(pd)

Page Table
(pt)

EPTP

CR3

Page

these translates virtual real addresses

to physical addresses

