Operating Systems - CSCI 402

User Application

User

Privileged "Guest"” OS

Virtual Machine
VMM Privileged

Real Machine

ﬁ} Run the entire virtual machine in user mode of the real machine
= VMM runs in the privileged mode of the real machine

> VMM keeps track of whether each virtual machine is in the
virtual privileged mode or in the virtual user mode
= OSruns in the (virtual) privileged mode of the virtual machine
= Applications runs in the (virtual) user mode of the virtual
machine 3

25

Copyright © William C. Cheng

Operating Systems - CSCI 402

VMM Operations

_) Execute a non-privileged instruction
= e.g., 'add”, "mul”, pointer manipulation

Applications

Guest OSa

Virtual
Machine

VMM

Hardware

Copyright © William C. Cheng

Operating Systems - CSCI 402

VMM Operations

_) Execute a non-privileged instruction
= e.g., 'add”, "mul”, pointer manipulation

Applications

()
executes directly on Guest OSa
hardware 3 :
= from application’s 3 Virtual
perspective, no o Machine
difference running in VM ®
or on hardware VMM
_ J
Hardware

Copyright © William C. Cheng

Operating Systems - CSCI 402

VMM Operations

_) Execute a non-privileged instruction .
W A A W ol o : : Applications
= e.g., 'add”, "mul”, pointer manipulation
()
executes directly on Guest OSa
hardware 2 -
= from application’s 3 V|rtu_al
perspective, no o Machine
difference running in VM ®
or on hardware VMM
_ J
: : Hardwar
_, Note: this looks like our kernel ardware
assignments (but quite different)
T Applications
emulated, Weenix a emulator program
QEMU for the x86
executed Linux Instruction set
Hardware / (5!,)_

Copyright © William C. Cheng

Operating Systems - CSCI 402

VMM Operations

_) Execute a privileged instruction S
= e.g., 'trap” (system call, page fault, etc.) / pplications

Guest OSa

Virtual
Machine

[

Hardware

Copyright © William C. Cheng

VMM Operations

_) Execute a privileged instruction
= e.g., trap" (system call, page fault, etc.)

Q in areal machine, trap handler is
indexed by the trap humber into a
hardware-mandated jump table

Q the VMM needs to find the address
of the virtual machine’s trap handler
in the table and transfer control to it

Copyright © William C. Cheng

Operating Systems - CSCI 402

Applications

/

Guest OSa

Virtual
Machine

VMM

Hardware

Operating Systems - CSCI 402

VMM Operations

_) Execute a privileged instruction ot
= e.g., trap" (system call, page fault, etc.) / pplications
the VMM is invoked Guest OSa
= the VMM figures out which -
VM is currently executing Virtual
Machine
—
L) Hardware

Copyright © William C. Cheng

Operating Systems - CSCI 402

VMM Operations

_) Execute a privileged instruction L
" " Applications
= e.g., trap" (system call, page fault, etc.)
()
the VMM is invoked Guest OSa
= the VMM figures out which - >
VM is currently executing Vlrtu_al
= VMM then asks the Machine
corresponding VM to
deliver the trap to its OS VMM
3 VMM should be virtual
L machine independent) e e

Copyright © William C. Cheng

VMM Operations

_) Execute a privileged instruction
= e.g., 'trap"” (system call, page fault, etc.)

r

the VMM is invoked

= the VMM figures out which
VM is currently executing

= VMM then asks the
corresponding VM to
deliver the trap to its OS
3 VMM should be virtual

machine independent

~

Operating Systems - CSCI 402

Applications

Guest OSa

Virtual
Machine

VMM

Hardware

_, Without VM, the application will simply traps into the OS directly

= how it’s a lot more involved (and slower)

) Interrupts pretty much work the same way

Copyright © William C. Cheng

VMM Operations

_) Execute a privileged instruction
= e.g., 'trap"” (system call, page fault, etc.)

r

the VMM is invoked

= the VMM figures out which
VM is currently executing

= VMM then asks the
corresponding VM to
deliver the trap to its OS
3 VMM should be virtual

machine independent

~

) "Virtual Machine" in the picture contains:
= virtual CPU, virtual disk, virtual display, virtual keyboard, etc.

Q data structures and code that represent hardware
components

Copyright © William C. Cheng

Operating Systems - CSCI 402

Applications

Guest OSa

Virtual
Machine

VMM

Hardware

Operating Systems - CSCI 402

VMM Operations

_) Execute a privileged instruction L
" " Applications
= e.g., trap" (system call, page fault, etc.) /
()
the VMM is invoked Guest OSa
= the VMM figures out which - >
VM is currently executing Vlrtu_al
= VMM then asks the Machine
corresponding VM to
deliver the trap to its OS VMM
3 VMM should be virtual
L machine independent) e e

ﬁ> Note that most instructions the trap handler executes are not
privileged (such as the code to setup PCB, TCB, etc.)
= clearly, these instructions can run in non-privileged mode
= What type of code must execute in privileged mode? (later)
Q what if "return from interrupt” is not privileged? 353

Copyright © William C. Cheng

Operating Systems - CSCI 402

VMM Operations

—> What about /0?

= e.g., read() Applications

Guest OSa

Virtual
Machine

VMM

Hardware

Copyright © William C. Cheng

Operating Systems - CSCI 402

VMM Operations

ﬁ> What about 1/0? et
| Ion
= e.Jg., read() pplications
Guest OSa
Virtpal
- N Disk
real disk is divvy up among
the virtual machines VMM
= each VM has a virtual disk
L) Hardware

Copyright © William C. Cheng

Operating Systems - CSCI 402

VMM Operations

> What about 1/0?
= e.Jg., read()
—= read () eventually reaches the OS
= the OS asks for a block on the
virtual disk Virtual
Q in x86: memory-mapped I/O Disk

Applications

Guest OS

I/O write (to setup memory/device locations) VMM

Controller Controller Contraller Controller

Hardware

Copyright © William C. Cheng

—> What about /0?
= e.Jg., read()

VMM Operations

—= read () eventually reaches the OS
= the OS asks for a block on the

virtual disk

Q 1In x86: memory-mapped I/O

Copyright © William C. Cheng

r

memory-mapped I/O causes a

trap into VMM

= the VMM emulates the
instruction (i.e., translates
it into a request for the
real disk)

L there is no "handler"” in
the guest OS for I/O
instructions

= there’s really no disk in
the VM

~\

Operating Systems - CSCI 402

Applications

Guest OS

.

Virtual
Disk

\ VMM

I\iardware

!

Operating Systems - CSCI 402

VMM Operations

> What about 1/0? et
= e.g., read () pplications
= read () eventually reaches the OS Guest OS
= the OS asks for a block on the HES
virtual disk Virtual
Q in x86: memory-mapped I/O -
memory-mapped I/O causes a * VMM
trap into VMM
= the VMM emulates the ardware
instruction (i.e., translates

it into a request for the

real disk)

0 there is no "handler’ in
the guest OS for I/O
instructions

Q

= there’s really no disk in
the VM
= the guest OS is expecting

an interrupt 3 @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Why Virtual Machine?

ﬁ} It’'s a good structuring technique for a multi-user system
—= many advantages

) OS debugging and testing
= run a production OS in a VM, accessible to users
= test a new OS in a separate VM, accessible to developers

_) Adapt to hardware changes in software

_) Multiple OSes on one machine
= ohe type of applications run really well in one OS
= another type of applications run really well in a different OS
= ohe physical machine can support both, no user need to suffer
= today, it’'s common that a machine in the cloud would run
multiple Linux OS instances and multiple Windows OS instances

_) Server consolidation and service isolation
= web hosting, security concerns |
= cloud computing 3 @;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtualization Requirements

ﬁ} A virtual machine is an efficient, isolated duplicate of real
machine
= requires faithful virtualization of pretty much all components
Q processor
Q memory
Q interval timers
Q 1/O devices
Q etc.
= this is "pure"” virtualization
Q costly

_) Paravirtualization:
= virtualized entity is a bit different from the real entity
Q so as to enhance scalability, performance, and simplicity
Q It is probably aware that it’s not running on a real machine

Copyright © William C. Cheng

Operating Systems - CSCI 402

Pure Processor Virtualization Requirements
) Can all processors be virtualized?

_ Virtualizing the processor requires:
1) multiplexing the real processor among the virtual machines
< relatively straightforward
2) making each virtual machine behaves just like a real machine
& all instructions must work identically
& generation of and response to traps and interrupts
must be identical as well

Copyright © William C. Cheng

Operating Systems - CSCI 402

Pure Processor Virtualization Requirements

ﬁ} Processor in the virtual machine is the real processor
= instructions are executed (and not interpreted or emulated)
= traps are generated just as they are on real machines
Q in areal machine, trap handler is indexed by the trap number
into a hardware-mandated jump table
Q the VMM needs to find the address of the virtual machine’s
trap handler in the table and transfer control to it
Q iInterrupts pretty much work the same way

ﬁ> Pretty much everything can be worked out except for one problem
= |f a virtual machine is executing in the virtual privileged mode,
what’s to prevent it from changing things like memory-mapping
(which can affect the execution the virtual machine)?
Q or what if "return from interrupt” is not privileged?
<& this may not be a realistic example because, clearly,
"return from interrupt” must be privileged

Q such instructions must be identified and make sure that [\
S

the)é work properly under virtualization
Copyright © William C. Cheng

Operating Systems - CSCI 402

Pure Processor Virtualization Requirements

ﬁ} Under virtualization, we must distinguish between sensitive
instructions and privileged instructions

_) Privileged instructions:
= cause privileged-instruction trap when executed in user mode
but execute fully when the processor is in privileged mode

ﬁ> Sensitive Instructions:
= ?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Pure Processor Virtualization Requirements

ﬁ} Sensitive Instructions:
= Control-sensitive instructions:
1) instructions that affect allocation of (real) system resources
<& such as insturctions that change the mapping of virtual to
real memory
— Behavior-sensitive instructions:
2) instructions whose effect depends on the allocation of (1)
& such as insturctions that returns the real address of a
location in virtual memory
3) instructions whose effect depends on the current processor
mode
& such as x86’s popf£ insturctions that sets a set of processor
flags when run in privileged mode, but set a different set of
flags otherwise

Copyright © William C. Cheng

Sensitive Instruction Example

_) A sensitive instruction must execute in the
privilege mode (in the kernel)
= e.g., insturctions that change the
mapping of virtual to real memory

()

Guest OS runs in the user mode of

the real processor

= executing a sensitive instruction
will cause a trap into the VMM

= must not execute such instruction

= the VMM emulates the instruction

L

Copyright © William C. Cheng

Applications

Guest OSa

.

[cr3]] Virtual
ceu|Machine

VMM

[cr3]
Hardware

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Sensitive Instruction Example

ﬁ} A sensitive instruction must execute in the Avplicati
privilege mode (in the kernel) pplications
= e.(., Insturctions that change the
mapping of virtual to real memory [ELEBHOREE
[cr3]] Virtual
ceu|Machine
VMM
ﬁ} All sensitive instructions must also be [ci3] Hard D
privileged ardware

= but what if it’s not?
Q you cannot build a virtual machine for this processor
= this gives us another definition of "sensitive instruction"
Q 1it’s an instruction that if it’s not privileged, it will cause the
guest OS (inside a virtual machine) to execute incorrectly
& this operational definition may be more useful for an (\
0 —

introductory class like ours 1Y/

Copyright © William C. Cheng

Operating Systems - CSCI 402

Pure Processor Virtualization Requirements

ﬁ} [Popek and Goldberg, 1974] proved that the sufficient condition to
be able to construct a virtual machine is simply the following:
= a computer’s set of sensitive instructions is a subset of its
privileged instructions
= l.e., if you execute a sensitive insturction in user mode, you
will trap into the kernel
Q more importantly, if you execute a sensitive insturction in
virtual user or virtual privileged mode, you will trap into VMM

) The above theorem holds for the
IBM 360
= virtual machines can be
constructed for it
_) The above theorem does not
hold for the x86 processors
= cahnot build virtual |
machines for x86 Y 2?2;

Copyright © William C. Cheng

Operating Systems - CSCI 402

The (Real) 360 Architecture

_, Two execution modes
= supervisor and problem (user)
= all sensitive instructions are privileged instructions

> Memory is protectable: 2KB granularity
ﬁ> All interrupt vectors and the clock are in first 512 bytes of memory

ﬁ} I/0 done via channel programs in memory, initiated with privileged
instructions

ﬁ> Dynamic address translation (virtual memory) added for Model 67

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Actions on Real 360

User
User Privileged

Real Machine

User Mode Privileged Mode

non-sensitive - -
TR T executes fine executes fine
"errant”

el traps to kernel | traps to kernel
sensitive :
e ey traps to kernel | executes fine

privileged but not sensitive

since all sensitive instructions are privileged for IBM 360 3 ;}!i}—

Copyright © William C. Cheng

Operating Systems - CSCI 402

Actions on Virtual 360

User

Privileged | VMM

Real Machine

User Application

Privileged "Guest" OS

Virtual Machine

Virtual User Mode

Virtual Privileged Mode

non-sensitive : :

ey Y executes fine executes fine

"arrant” traps to VMM; VMM traps to VMM; VMM

e T e delivers trap to the delivers trap to the
Guest OS Guest OS

- traps to VMM; VMM traps to VMM;

isr?;fbté\{ﬁm delivers trap to the VMM verifies and

Guest OS emulates instruction

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Devices?

_, Terminals
= cohnhnecting (real) people

> Networks
= didn’t exist in the 60s
= (how did virtual machines communicate?)

) Disk drives
= CP67 supported "mini disks"
= extended at Brown into "segment system”

ﬁ> Interval timer
= Virtual or real?

X

Copyright © William C. Cheng

