
OS runs in the (virtual) privileged mode of the virtual machine

0123

25

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

How?

Privileged

User

User

Privileged

Real Machine

Virtual Machine

VMM runs in the privileged mode of the real machine

Run the entire virtual machine in user mode of the real machine

VMM keeps track of whether each virtual machine is in the 

virtual privileged mode or in the virtual user mode

VMM

"Guest" OS

Application

Applications runs in the (virtual) user mode of the virtual 

machine



0123

26

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

VMM Operations

VMM

Hardware

Virtual
Machine

Guest OSa

Applications
e.g., "add", "mul", pointer manipulation

Execute a non-privileged instruction



e
x

e
c

u
te

d

0123

27

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

VMM Operations

VMM

Hardware

Virtual
Machine

Guest OSa

Applications
e.g., "add", "mul", pointer manipulation

Execute a non-privileged instruction

executes directly on 

hardware

from application’s

perspective, no 

difference running in VM 

or on hardware



e
x

e
c

u
te

d

0123

28

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

VMM Operations

VMM

Hardware

Virtual
Machine

Guest OSa

Applications
e.g., "add", "mul", pointer manipulation

Execute a non-privileged instruction

executes directly on 

hardware

from application’s

perspective, no 

difference running in VM 

or on hardware

Note: this looks like our kernel

assignments (but quite different)

QEMU

Weenix

Applications

a emulator program
for the x86 
instruction set

Hardware

Linux

emulated

executed



0123

29

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

VMM Operations

VMM

Hardware

Virtual
Machine

Guest OSa

Applications
e.g., "trap" (system call, page fault, etc.)

Execute a privileged instruction



in a real machine, trap handler is 

indexed by the trap number into a 

hardware-mandated jump table

e.g., "trap" (system call, page fault, etc.)

0123

30

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

VMM Operations

VMM

Hardware

Virtual
Machine

Guest OSa

Applications
Execute a privileged instruction

the VMM needs to find the address 

of the virtual machine’s trap handler 

in the table and transfer control to it



e.g., "trap" (system call, page fault, etc.)

0123

31

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

VMM Operations

VMM

Hardware

Virtual
Machine

Guest OSa

Applications
Execute a privileged instruction

the VMM figures out which

VM is currently executing

the VMM is invoked



e.g., "trap" (system call, page fault, etc.)

0123

32

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

VMM Operations

VMM

Hardware

Virtual
Machine

Guest OSa

Applications
Execute a privileged instruction

the VMM figures out which

VM is currently executing

the VMM is invoked

VMM then asks the

corresponding VM to

deliver the trap to its OS

VMM should be virtual

machine independent



e.g., "trap" (system call, page fault, etc.)

0123

33

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

VMM Operations

VMM

Hardware

Virtual
Machine

Guest OSa

Applications
Execute a privileged instruction

now it’s a lot more involved (and slower)

Without VM, the application will simply traps into the OS directly

Interrupts pretty much work the same way

the VMM figures out which

VM is currently executing

the VMM is invoked

VMM then asks the

corresponding VM to

deliver the trap to its OS

VMM should be virtual

machine independent



e.g., "trap" (system call, page fault, etc.)

0123

34

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

VMM Operations

VMM

Hardware

Virtual
Machine

Guest OSa

Applications
Execute a privileged instruction

"Virtual Machine" in the picture contains:

virtual CPU, virtual disk, virtual display, virtual keyboard, etc.

data structures and code that represent hardware 

components

the VMM figures out which

VM is currently executing

the VMM is invoked

VMM then asks the

corresponding VM to

deliver the trap to its OS

VMM should be virtual

machine independent



Note that most instructions the trap handler executes are not 

privileged (such as the code to setup PCB, TCB, etc.)

clearly, these instructions can run in non-privileged mode

what type of code must execute in privileged mode? (later)

e.g., "trap" (system call, page fault, etc.)

0123

35

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

VMM Operations

VMM

Hardware

Virtual
Machine

Guest OSa

Applications
Execute a privileged instruction

the VMM figures out which

VM is currently executing

the VMM is invoked

VMM then asks the

corresponding VM to

deliver the trap to its OS

VMM should be virtual

machine independent

what if "return from interrupt" is not privileged?



e.g., read()

What about I/O?

0123

36

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

VMM Operations

VMM

Hardware

Guest OSa

Applications

Disk

Virtual
Machine



e.g., read()

What about I/O?

0123

37

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

VMM Operations

VMM

Hardware

Virtual
Disk

Guest OSa

Applications

each VM has a virtual disk

real disk is divvy up among

the virtual machines

Disk



e.g., read()

What about I/O?

0123

38

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

VMM Operations

VMM

Hardware

Guest OSa

Applications

read() eventually reaches the OS

the OS asks for a block on the 

virtual disk Virtual
Diskin x86: memory-mapped I/O

Disk



Disk

e.g., read()

What about I/O?

0123

39

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

VMM Operations

VMM

Hardware

Guest OSa

Applications

read() eventually reaches the OS

the OS asks for a block on the 

virtual disk

the VMM emulates the

instruction (i.e., translates

it into a request for the

real disk)

memory-mapped I/O causes a 

trap into VMM

there’s really no disk in 

the VM

Virtual
Disk

there is no "handler" in

the guest OS for I/O

instructions

in x86: memory-mapped I/O



Disk

e.g., read()

What about I/O?

0123

40

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

VMM Operations

VMM

Hardware

Guest OSa

Applications

read() eventually reaches the OS

the OS asks for a block on the 

virtual disk

the VMM emulates the

instruction (i.e., translates

it into a request for the

real disk)

memory-mapped I/O causes a 

trap into VMM

there’s really no disk in 

the VM

Virtual
Disk

there is no "handler" in

the guest OS for I/O

instructions

in x86: memory-mapped I/O

the guest OS is expecting 

an interrupt



0123

41

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

Why Virtual Machine?

It’s a good structuring technique for a multi-user system

OS debugging and testing

Multiple OSes on one machine

Adapt to hardware changes in software

Server consolidation and service isolation

run a production OS in a VM, accessible to users

test a new OS in a separate VM, accessible to developers

one type of applications run really well in one OS

another type of applications run really well in a different OS

one physical machine can support both, no user need to suffer

today, it’s common that a machine in the cloud would run 

multiple Linux OS instances and multiple Windows OS instances

web hosting, security concerns

cloud computing

many advantages



it is probably aware that it’s not running on a real machine

A virtual machine is an efficient, isolated duplicate of real 

machine

requires faithful virtualization of pretty much all components

processor

memory

interval timers

I/O devices

etc.

this is "pure" virtualization

costly

Paravirtualization:

virtualized entity is a bit different from the real entity

0123

42

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

Virtualization Requirements

so as to enhance scalability, performance, and simplicity



0123

43

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

Pure Processor Virtualization Requirements

1)

Virtualizing the processor requires:

multiplexing the real processor among the virtual machines

2) making each virtual machine behaves just like a real machine

relatively straightforward

all instructions must work identically

generation of and response to traps and interrupts 

must be identical as well

Can all processors be virtualized?



0123

44

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

Pure Processor Virtualization Requirements

Processor in the virtual machine is the real processor

instructions are executed (and not interpreted or emulated)

in a real machine, trap handler is indexed by the trap number

into a hardware-mandated jump table

traps are generated just as they are on real machines

the VMM needs to find the address of the virtual machine’s 

trap handler in the table and transfer control to it

interrupts pretty much work the same way

Pretty much everything can be worked out except for one problem

if a virtual machine is executing in the virtual privileged mode, 

what’s to prevent it from changing things like memory-mapping 

(which can affect the execution the virtual machine)?

or what if "return from interrupt" is not privileged?

this may not be a realistic example because, clearly, 

"return from interrupt" must be privileged

such instructions must be identified and make sure that 

they work properly under virtualization



0123

45

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

Pure Processor Virtualization Requirements

Under virtualization, we must distinguish between sensitive 

instructions and privileged instructions

cause privileged-instruction trap when executed in user mode 

but execute fully when the processor is in privileged mode

Privileged instructions:

Sensitive Instructions:

?



0123

46

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

Pure Processor Virtualization Requirements

Sensitive Instructions:

Control-sensitive instructions:

instructions that affect allocation of (real) system resources1)

such as insturctions that change the mapping of virtual to 

real memory

instructions whose effect depends on the allocation of (1)2)

such as insturctions that returns the real address of a 

location in virtual memory

instructions whose effect depends on the current processor

mode

3)

Behavior-sensitive instructions:

such as x86’s popf insturctions that sets a set of processor 

flags when run in privileged mode, but set a different set of 

flags otherwise



0123

47

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

Sensitive Instruction Example

e.g., insturctions that change the 

mapping of virtual to real memory

A sensitive instruction must execute in the 

privilege mode (in the kernel)

VMM

Hardware

Virtual
Machine

Guest OSa

Applications

executing a sensitive instruction 

will cause a trap into the VMM

Guest OS runs in the user mode of 

the real processor

the VMM emulates the instruction

must not execute such instruction cr3

CPU

cr3



you cannot build a virtual machine for this processor

e.g., insturctions that change the 

mapping of virtual to real memory

A sensitive instruction must execute in the 

privilege mode (in the kernel)

but what if it’s not?

All sensitive instructions must also be 

privileged

it’s an instruction that if it’s not privileged, it will cause the 

guest OS (inside a virtual machine) to execute incorrectly

this gives us another definition of "sensitive instruction"

this operational definition may be more useful for an 

introductory class like ours 0123

48

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

Sensitive Instruction Example

VMM

Hardware

Virtual
Machine

Guest OSa

Applications

cr3

CPU

cr3



0123

49

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

Pure Processor Virtualization Requirements

[Popek and Goldberg, 1974] proved that the sufficient condition to

be able to construct a virtual machine is simply the following:

a computer’s set of sensitive instructions is a subset of its 

privileged instructions

The above theorem holds for the

IBM 360

virtual machines can be

constructed for it

i.e., if you execute a sensitive insturction in user mode, you 

will trap into the kernel

more importantly, if you execute a sensitive insturction in 

virtual user or virtual privileged mode, you will trap into VMM

The above theorem does not 

hold for the x86 processors

cannot build virtual 

machines for x86



0123

50

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

The (Real) 360 Architecture

supervisor and problem (user)

Two execution modes

all sensitive instructions are privileged instructions

Memory is protectable: 2KB granularity

All interrupt vectors and the clock are in first 512 bytes of memory

I/O done via channel programs in memory, initiated with privileged 

instructions

Dynamic address translation (virtual memory) added for Model 67



Privileged

User

User

Privileged

Real Machine

Virtual Machine

0123

51

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

Actions on Real 360

User Mode Privileged Mode

non-sensitive
instruction

"errant"
instruction

sensitive
instruction

executes fine

traps to kernel

traps to kernel

executes fine

traps to kernel

executes fine

kernel

since all sensitive instructions are privileged for IBM 360

privileged but not sensitive



0123

52

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

Actions on Virtual 360

traps to VMM; VMM
delivers trap to the 
Guest OS

traps to VMM; VMM
delivers trap to the 
Guest OS

Virtual User Mode Virtual Privileged Mode

non-sensitive
instruction

"errant"
instruction

sensitive
instruction

executes fine executes fine

traps to VMM; VMM
delivers trap to the 
Guest OS

traps to VMM;
VMM verifies and
emulates instruction

Privileged

User

User

Privileged

Real Machine

Virtual MachineVMM

Application

"Guest" OS



0123

53

 Operating Systems - CSCI 402 

 Copyright © William C. Cheng 

Virtual Devices?

connecting (real) people

Terminals

didn’t exist in the 60s

Networks

CP67 supported "mini disks"

Disk drives

virtual or real?

Interval timer

(how did virtual machines communicate?)

extended at Brown into "segment system"


