
0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Modularization

for many different serial-line devices, character processing

is common

actually, character processing is performed in situations

where the source and sink of characters aren’t even a

serial line

Device independence consideration (figure out the common part)

e.g., bit-mapped display, network connection

therefore, it makes sense to separate the device dependent

part from the common, device independent part

it can interact with any device driver capable of handling

terminals

A separate module, known as the line-discipline module in some

systems, provides the common character-handling code

can even use a different line-discipline module to deal with

an alternative character set

promotes reusability

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Terminals

Interrupt vector

Line discipline

Terminal driver

Line discipline processes a line from the

partial-line queue and add to completed-line

queue in a device-independent way

Applications

OS

Output
queue

Partial-line queue

Completed-line
queue

Application

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Terminals

Interrupt vector

Barebone line discipline

Terminal driver

many applications turn off some processing of

the line discipline

Applications

OS

Output
queue

Application

Input
queue

e.g., a command shell might do command

completion, text editor may correct

spelling

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Where to Put the Modules?

driver should be in the kernel since device registers access

needs to be protected from arbitrary manipulation by

application programs

putting it in library routines will make it difficult to share

one terminal with many user applications

Where to put the terminal driver and the line-discipline module?

1) kernel

2) separate user process

3) library routines that are linked into application processes

line-discipline may be shared by multiple applications

can it go into a separate user process?

would need to transfer characters into the line-discipline

process, then transfer to another process

but can have serious performance problems

putting it in the kernel seems to be the best choice

although kernel code is hard to modify, replace, and

debug

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Terminals and Pseudo Terminals

they often have bit-mapped displays, keyboards and mice

connected via USB

Modern systems do not have terminals

a window manager implements windows on the display and

determines which applications receive typed input (input focus)

Keyboard Mouse

Window

Manager
Other
App

Terminal
App

Display

x

y

(dx,dy)’a’’a’

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Terminals and Pseudo Terminals

they often have bit-mapped displays, keyboards and mice

connected via USB

Modern systems do not have terminals

a window manager implements windows on the display and

determines which applications receive typed input (input focus)

they use pseudoterminals

which implements a line discipline whose input comes

from and output goes to a controlling application (and not

a physical device)

the window manager is a user space program

a server might support remote sessions where applications

receive input and send output over a network

two types of pseudoterminal (pseudo-)device drivers

window manager interacts with pseudoterminal master

line discipline module interacts with pseudoterminal slave

the OS provides a pair of entities (pseudoterminal master and

pseudoterminal slave) that appear to applications as

devices 0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Pseudo Terminals

Application 1

Line discipline

Pseudoterminal
slave

Completed-line
queue

Pseudoterminal
master

Window manager
Applications

OS

Keyboard
device driver

Output
queue Partial-line queue

Barebone line discipline
Keyboard

device driver

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Pseudo Terminals

Application 2

Pseudoterminal
slave

Pseudoterminal
master

Window manager

pseudoterminal slave acts like a terminal device driver to

the rest of the OS

Applications

OS

choose barebone line discipline module if desired

Output
queue

Input
queue

Network communication and terminal handling are very similar, in

architecture and implementation

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Network Communication

device is called a Network Interface Card (NIC)

data arrives in a packet (instead of a character)

incoming data must be processed via network-protocol modules

similar to line-discipline module

Main difference

performance is crucial in network communication

data from keyboard can go at tens of characters per second

data going to display can go at a few thousand characters

per second (for character-based display)

cannot afford to copy network data from queue to queue!

no copying allowed inside the kernel!

must pass by memory addresses!

protocols are layered on top of one another

data in lower layer is views as header + body in higher layer

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Network Communication

Processor
Management

Memory
Management

I/
O

 M
a
n

a
g

e
m

e
n

t
Ex: TCP (details in Ch 9 which we will not cover)

Applications

OS

Browser

Driver

TCP

NIC

DMA

interrupt

read()

hdr body

Network
IP hdr body

IP body = TCP hdr+body

TCP splits IP body into

TCP hdr and TCP body

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Network Communication

need to be able to pass blocks from one module to the next

without copying data

Ex: TCP (details in Ch 9 which we will not cover)

append headers to the beginning of outgoing packets;

remove headers from incoming packets (known as layering)

hold on to packets for possible retransmission

request and respond to time-out notifications

To accomplish all this in our simple OS, we use a data structure

adapted from Linux

sk_buff (socket buffer)

Performance challenge:

copying came from

splitting data into "header" and "body"

copying data into application-provided buffer

we will described the high-level ideas and not go into

details

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Two Queued Segments

sk_buff

head

body

tail

end

next

sk_buff

head

body

tail

end

next header body desc
1

header body desc
1

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Passed to the Another Module...

header body desc
2

header body desc
2

sk_buff

head

body

tail

end

next

sk_buff

head

body

tail

end

next

sk_buff

head

body

tail

end

next

sk_buff

head

body

tail

end

next

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Passed to the Next Module at Higher Level...

header
body

desc
2

header desc
2

sk_buff

head

body

tail

end

next

sk_buff

head

body

tail

end

next

sk_buff

head

body

tail

end

next

sk_buff

head

body

tail

end

next

dh

body
dh

IP

TCP

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Support Timeout

if you send a message/packet that needs a response or an

acknowledgement (such as in TCP internal), and

you need to set a "reasonable" timeout

Lots of timers in network programming!

if it’s possible for the message/packet to be lost

use a function pointer and pass it to the interval timer

To implement timeout, can use a callback mechanism

when timeout occurs, call the callback function

if the acknowledgement was received before timeout occurred

need to cancel the timer

can also specify a cancel routine

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

4.2 Rethinking

Operating-System

Structure

Virtual Machines

Microkernel

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Monolithic Kernel

performance

Major advantage of monolithic kernel

reliability (i.e., buggy kernel)

Major down side of monolithic kernel

shrink the code in "privileged mode"

Proposal to fix the reliability problem

virtual machines

Two major approaches

microkernel

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Machines

worse if large number of programmers contribute code

A nicely designed and implemented monolithic OS is great

some coders are not as good as others

but that’s not the reality

Major problem with a monolithic OS implementation

bugs in one component can adversely affect another component

good coders have bad days

Modern OSs isolate applications from one another

if yes, at what cost? (there is no free lunch)

Can the same kind of isolation be provided for OS components?

e.g., invoking privileged instructions

if you invoke a privileged instruction in user mode, you will

cause a violation and trap into the kernel

code executing in the privileged mode can do things the

user mode code cannot

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Machines

Part 1: > 50 Years Ago

Had a different motivation

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

It’s 1964 ...

large, monolithic system

TSS (Time-Sharing System) project

IBM wants to build a multiuser time-sharing system

IBM has a single-user time-sharing system called CMS

virtual machine monitor (VMM)

CP67

lots of people working on it

for years

total, complete flop

a (working) multiuser time-sharing system

Put the two together ...

supports multiple virtual IBM 360s

it’s a very difficult system to build

A "monitor" is a synchronization construct that allows executing

entities to have both mutual exclusion and the ability to

wait (block) for a certain condition to become true

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Machines

Virtual Machine Monitor (VMM)

Hardware

Virtual
Machine

Virtual
Machine

Virtual
Machine

OSa OSb OSc

Applications Applications Applications

What abstraction does a virtual machine provide?

hardware

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Machines

Virtual Machine Monitor (VMM)

Hardware

Virtual
Machine

Virtual
Machine

Virtual
Machine

OSa OSb OSc

Applications Applications Applications

and it can be tested on a real machine (which behaves

identical to the VM)

A single user time-sharing system could be developed

independently of the VMM

no ambiguity about the interface VMM must provide to

its applications - identical to the real machine!

What is considered a virtual machine (for this class)?

run (not emulate/simulate) OSx "inside" / "on-top-of" OSy

we will refer to OSx as the "guest OS" and OSy as the

"host OS" (these terms came from VMware)

make "guest OS" think that it’s running on hardware, but in

reality, it is running inside a virtual machine

therefore, the code and data structures you put into "host OS"

so that you can run "guest OS" in it is called "virtual machine"

Different types of virtualization technologies

pure virtualization: "guest OS" is unmodified

para-virtualization: "guest OS" is modified

"guest OS" thinks it’s running directly on hardware

modified "guest OS" can only run inside virtual machine

"host OS" may be a specialized OS

a virtual machine is not an OS emulator

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Machines

something else: we shouldn’t call it a virtual machine

must execute "guest OS" on the real CPU directly

