Operating Systems - CSCI 402

Modularization

ﬁ} Device independence consideration (figure out the common part)
— for many different serial-line devices, character processing
IS common
Q actually, character processing is performed in situations
where the source and sink of characters aren’t even a
serial line
& e.g., bit-mapped display, network connection
—= therefore, it makes sense to separate the device dependent
part from the common, device independent part
Q promotes reusability

ﬁ> A separate module, known as the /ine-discipline module in some
systems, provides the common character-handling code
= |t can interact with any device driver capable of handling
terminals
= cah even use a different line-discipline module to deal with
an alternative character set gy

Copyright © William C. Cheng

Operating Systems - CSCI 402

Terminals

Application

Applications

Line discipline I

\]
[(TIT1T111] : Completed-line
Output ; queue
queue :
_ _ (TII111]
Terminal driver Partial-line queue

..- -

= Line discipline processes a line from the
partial-line queue and add to completed-line

ueue Iin a device-independent wa SN\
Interrupt vector q P y 3 @,

Copyright © William C. Cheng

Operating Systems - CSCI 402

Terminals

Application

Applications

Barebone line discipline
A

Interrupt vector

Copyright © William C. Cheng

Output . Input
queue . _queue

Terminal driver

~ -’
L -
e mmm--

= many applications turn off some processing of
the line discipline
Q e.g., a command shell might do command

completion, text editor may correct N
spelling 4 /"2’

Operating Systems - CSCI 402

Where to Put the Modules?

ﬁ} Where to put the terminal driver and the line-discipline module?
1) kernel
2) separate user process
3) library routines that are linked into application processes
= driver should be in the kernel since device registers access
needs to be protected from arbitrary manipulation by
application programs
= line-discipline may be shared by multiple applications
Q putting it in library routines will make it difficult to share
one terminal with many user applications
Q can it go into a separate user process?
<& but can have serious performance problems
& would need to transfer characters into the line-discipline
process, then transfer to another process
Q putting it in the kernel seems to be the best choice
& although kernel code is hard to modify, replace, and (\
@ —

3

debug 5 Q’

Copyright © William C. Cheng

Terminals and Pseudo Terminals

) Modern systems do not have terminals

= they often have bit-mapped displays, keyboards and mice

connected via USB

= a window manager implements windows on the display and
determines which applications receive typed input (input focus)

Operating Systems - CSCI 402

~

Other
App

Window
Manager

|11

J

Display -
(')
Y
Terminal :
App
------------- gemsesacs o
& v, _

I ya’ (dx,dy)

—

e |

Copyright © William C. Cheng

Operating Systems - CSCI 402

Terminals and Pseudo Terminals

) Modern systems do not have terminals
= they often have bit-mapped displays, keyboards and mice
connected via USB
= a window manager implements windows on the display and
determines which applications receive typed input (input focus)
Q the window manager is a user space program
Q a server might support remote sessions where applications
receive input and send output over a network
= they use pseudoterminals
Q which implements a line discipline whose input comes
from and output goes to a controlling application (and not
a physical device)
Q two types of pseudoterminal (pseudo-)device drivers
& window manager interacts with pseudoterminal master
& line discipline module interacts with pseudoterminal slave

&

Copyright © William C. Cheng

Operating Systems - CSCI 402

Pseudo Terminals

Window manager Application 1
Applications
;7 OS
A |
[Keyboard]] S [
device driver Line discipline Completed-line
A queue
[TTTTTT1] —
Output ——
queue Partial-line queue
y
Pseudoterminal |_ .| Pseudoterminal
master slave

= the OS provides a pair of entities (pseudoterminal master and
pseudoterminal slave) that appear to applications as |
devices ‘9}

Copyright © William C. Cheng

Operating Systems - CSCI 402

Pseudo Terminals

Window manager Application 2

Applications

}

Keyboard] o
device driver Barebone line discipline
A
[(TTIT111] [T 11111
Output Input
queue queue
y
Pseudoterminal |_ .| Pseudoterminal
master slave

= pseudoterminal slave acts like a terminal device driver to
the rest of the OS

|
= choose barebone line discipline module if desired 3 ..’
Copyright © William C. Cheng

Operating Systems - CSCI 402

Network Communication

ﬁ} Network communication and terminal handling are very similar, in
architecture and implementation
= device is called a Network Interface Card (NIC)
= data arrives in a packet (instead of a character)
= incoming data must be processed via network-protocol modules
similar to line-discipline module

_, Main difference
= performance is crucial in network communication
Q data from keyboard can go at tens of characters per second
Q data going to display can go at a few thousand characters
per second (for character-based display)
= protocols are layered on top of one another
Q datain lower layer is views as header + body in higher layer
= cannot afford to copy network data from queue to queue!
Q no copying allowed inside the kernel!
Q must pass by memory addresses! 3 @’_

Copyright © William C. Cheng

Network Communication
_) Ex: TCP (details in Ch 9 which we will not cover)

= |P body = TCP hdr+body
Q TCP splits IP body into
TCP hdrand TCP body

o

Browser

B

J

read()) 4 Applications
o

() :/)
Processor ; Memory
Management . Management
\ y, \ ! y,
A
.
'E .
o TCP |hdr|body]
& Network : :
g IP |hdr| body J
= DMA
m]
= d Driver b
@) interrupt
(= NIC

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Network Communication
ﬁ} Ex: TCP (details in Ch 9 which we will not cover)

ﬁ> Performance challenge:
= heed to be able to pass blocks from one module to the next
without copying data
Q copying came from
& splitting data into "header™ and "body"
<& copying data into application-provided buffer
— append headers to the beginning of outgoing packets;
remove headers from incoming packets (known as layering)
= hold on to packets for possible retransmission
= request and respond to time-out notifications

ﬁ> To accomplish all this in our simple OS, we use a data structure
adapted from Linux

= sk_buff (socket buffer)

Q we will described the high-level ideas and not go into
details
Copyright © William C. Cheng

Operating Systems - CSCI 402

Two Queued Segments

head
body \
tail

end

next —
sk_buff header body desc

head ————-\\\\\\\

body

tail N
end

next
sk_buff

Copyright © William C. Cheng

Operating Systems - CSCI 402

Passed to the Another Module...

head
body
tail
end
next -
sk_buff

W

head
body
tail
end
next
sk_buff

/ﬁ%

Copyright © William C. Cheng

Operating Systems - CSCI 402

Passed to the Next Module at Higher Level...

IP
head
body \
TCP tail
head end \ I —
next - * *

/J

sk_buff

body

tail sk_buff header [— bOdC‘I’ desclzl
end —5\\\\\\55_;

hext - 7

head
body
tail
end
next
sk_buff

/ﬁﬂ

Copyright © William C. Cheng

Operating Systems - CSCI 402

Support Timeout

) Lots of timers in network programming!
= if you send a message/packet that needs a response or an

acknowledgement (such as in TCP internal), and
= if it’s possible for the message/packet to be lost
Q you need to set a "reasonable” timeout

ﬁ} To implement timeout, can use a callback mechanism
— use a function pointer and pass it to the interval timer
Q when timeout occurs, call the callback function
= |f the acknowledgement was received before timeout occurred

Q need to cancel the timer
Q can also specify a cancel routine

Copyright © William C. Cheng

Operating Systems - CSCI 402

4.2 Rethinking
Operating-System
Structure

ﬁ} Virtual Machines
ﬁ} Microkernel

Copyright © William C. Cheng

Monolithic Kernel

_) Major advantage of monolithic kernel
—= performance

> Major down side of monolithic kernel
= reliability (i.e., buggy kernel)

) Proposal to fix the reliability problem
= shrink the code in "privileged mode"

_, Two major approaches
= Virtual machines
= microkernel

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Virtual Machines

ﬁ} A nicely designed and implemented monolithic OS is great
= but that’s not the reality

ﬁ} Major problem with a monolithic OS implementation
= bugs in one component can adversely affect another component
Q worse if large nhumber of programmers contribute code
& some coders are not as good as others
& good coders have bad days

ﬁ} Modern OSs isolate applications from one another
= code executing in the privileged mode can do things the
user mode code cannot
Q e.g., invoking privileged instructions
= if you invoke a privileged instruction in user mode, you will
cause a violation and trap into the kernel

ﬁ> Can the same kind of isolation be provided for OS components?

= if yes, at what cost? (there is no free lunch) 7NN
S

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Machines
Part 1: > 50 Years Ago

_, Had a different motivation

Copyright © William C. Cheng

Operating Systems - CSCI 402

It’s 1964 ...

) IBM has a single-user time-sharing system called CMS
= |BM wants to build a multiuser time-sharing system

) TSS (Time-Sharing System) project
it’s a very difficult system to build
large, monolithic system

lots of people working on it

for years

total, complete flop

_) CP67

= Virtual machine monitor (VMM)
= supports multiple virtual IBM 360s

[

) Put the two together ...
= a (working) multiuser time-sharing system

Copyright © William C. Cheng

Virtual Machines

Applications Applications Applications
OSa OSb OSc
Virtual Virtual Virtual
Machine Machine Machine

Operating Systems - CSCI 402

Virtual Machine Monitor (VMM)

Hardware

ﬁ> A "monitor” is a synchronization construct that allows executing
entities to have both mutual exclusion and the ability to
wait (block) for a certain condition to become true

_, What abstraction does a virtual machine provide?
= hardware

Copyright © William C. Cheng

Virtual Machines

Applications Applications Applications
OSa OSb OSc
Virtual Virtual Virtual
Machine Machine Machine

Operating Systems - CSCI 402

Virtual Machine Monitor (VMM)

Hardware

G> A single user time-sharing system could be developed
independently of the VMM
= and it can be tested on a real machine (which behaves
identical to the VM)
= no ambiguity about the interface VMM must provide to
its applications - identical to the real machine!
Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Machines

ﬁ} What is considered a virtual machine (for this class)?
= run (not emulate/simulate) OSx "inside" / "on-top-of" OSy
Q we will refer to OSx as the "guest OS" and OSy as the
"host OS" (these terms came from VMware)
Q a virtual machine is not an OS emulator
& must execute "guest OS" on the real CPU directly
= make "guest OS" think that it’s running on hardware, but in
reality, it is running inside a virtual machine
Q therefore, the code and data structures you put into "host OS"
so that you can run "guest OS" in it is called "virtual machine"
= "host OS" may be a specialized OS

ﬁ> Different types of virtualization technologies
= pure virtualization: "guest OS" is unmodified
Q "guest OS" thinks it’s running directly on hardware
= para-virtualization: "guest OS" is modified

Q modified "guest OS" can only run inside virtual machine [@J

= something else: we shouldn’t call it a virtual machine 24
Copyright © William C. Cheng

