Operating Systems - CSCI 402

6.5 Flash Memory

) Flash Technology
) Flash-Aware File Systems
_> Augmenting Disk Storage

Copyright © William C. Cheng

Beyond Disks: Flash

_) Pro

= Flash block = file-system block
—= Random access

Q no seek, no rotational latency
= Low power
= Vibration-resistant

ﬁ} Con

= Limited lifetime (compared to disks)
= Write is expensive
= Cost more than disks

Q 128GB SSD: ~$300

Q 1TB disk: ~$60

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Flash Memory

_, Two technologies
= NOR
Q byte addressable
= NAND
Q page addressable (about 1-4KB per page and 512KB per
block)
Q cheaper
<& suitable for file systems use
Q limit on P/E (program/erase) cycle, about 10,000

) Writing
= newly "erased"” block contains all 1’s
= "programming" changes some 1’'sto 0’s
Q per byte in NOR; per page in NAND (multiple pages/block)
Q to change zeroes to ones, must erase entire block
Q can erase no more than ~100k times/block

Copyright © William C. Cheng

Operating Systems - CSCI 402

Coping

_) Wear leveling
= spread writes (erasures) across entire drive

— approaches:
Q flash translation layer (FTL)

Q log-structured file system
& blocks on the flash drive are used sequentially

ﬁ} FTL: Flash translation layer (on a separate device, in memory, etc.)

= specification from 1994
—= provides disk-like block interface (firmware on device controller)

= maps disk blocks to flash blocks
Q mapping changed dynamically to effect wear-leveling

YW 20

FTL

flash [log

Copyright © William C. Cheng

Operating Systems - CSCI 402

Coping

_) Wear leveling
= spread writes (erasures) across entire drive
= approaches:
Q flash translation layer (FTL)

Q log-structured file system
& blocks on the flash drive are used sequentially

ﬁ} FTL: Flash translation layer (on a separate device, in memory, etc.)

= specification from 1994
—= provides disk-like block interface (firmware on device controller)

= maps disk blocks to flash blocks
Q mapping changed dynamically to effect wear-leveling

yw 20
\ FTL 20 65
flash [log >

Copyright © William C. Cheng

Operating Systems - CSCI 402

Coping

_) Wear leveling
= spread writes (erasures) across entire drive
= approaches:
Q flash translation layer (FTL)

Q log-structured file system
& blocks on the flash drive are used sequentially

ﬁ} FTL: Flash translation layer (on a separate device, in memory, etc.)

= specification from 1994
—= provides disk-like block interface (firmware on device controller)

= maps disk blocks to flash blocks
Q mapping changed dynamically to effect wear-leveling

yw 20 4R 20
\ FTL 20 65
flash [log >
65 96 3 @

Copyright © William C. Cheng

Operating Systems - CSCI 402

Coping

_) Wear leveling
= spread writes (erasures) across entire drive

— approaches:
Q flash translation layer (FTL)

Q log-structured file system
& blocks on the flash drive are used sequentially

ﬁ} FTL: Flash translation layer (on a separate device, in memory, etc.)

= specification from 1994
—= provides disk-like block interface (firmware on device controller)

= maps disk blocks to flash blocks
Q mapping changed dynamically to effect wear-leveling

yW 20 4R 20 yw 20

\ FTL 20 65
flash | |
s >65 96 : @

Copyright © William C. Cheng

Operating Systems - CSCI 402

Coping

_) Wear leveling
= spread writes (erasures) across entire drive

— approaches:
Q flash translation layer (FTL)

Q log-structured file system
& blocks on the flash drive are used sequentially

ﬁ} FTL: Flash translation layer (on a separate device, in memory, etc.)

= specification from 1994
—= provides disk-like block interface (firmware on device controller)

= maps disk blocks to flash blocks
Q mapping changed dynamically to effect wear-leveling

yW 20 4R 20 yw 20

\ FTL 20 - 96
flash | |
s >65 %6 : %?7

Copyright © William C. Cheng

Operating Systems - CSCI 402

Coping

_) Wear leveling
= spread writes (erasures) across entire drive

— approaches:
Q flash translation layer (FTL)

Q log-structured file system
& blocks on the flash drive are used sequentially

ﬁ} FTL: Flash translation layer (on a separate device, in memory, etc.)

= specification from 1994
—= provides disk-like block interface (firmware on device controller)

= maps disk blocks to flash blocks
Q mapping changed dynamically to effect wear-leveling

yW 20 4R 20 yw 20 yD 202

\ FTL 20 - 96
flash | |
s >65 %6 : %?7

Copyright © William C. Cheng

Operating Systems - CSCI 402

Coping

_) Wear leveling
= spread writes (erasures) across entire drive

— approaches:
Q flash translation layer (FTL)

Q log-structured file system
& blocks on the flash drive are used sequentially

ﬁ} FTL: Flash translation layer (on a separate device, in memory, etc.)

= specification from 1994
—= provides disk-like block interface (firmware on device controller)

= maps disk blocks to flash blocks
Q mapping changed dynamically to effect wear-leveling

yW 20 4R 20 yW 20 yD 202 (a lot more complicated)

\ FTL 20 - 96
flash (|
e >65 %6 3 %?7

Copyright © William C. Cheng

Operating Systems - CSCI 402

Flash with FTL

—> Which file system?
= FAT32 (sort of like S5FS, but from Microsoft)
= NTFS
= FFS
= Ext3

) All were designed to exploit disks
= much of what they do are irrelevant for flash

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Flash without FTL

> Known as memory technology device (MTD)
—= software wear-leveling
= perhaps other tricks

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

JFFS and JFFS2

ﬁ} Journaling flash file system
—= |og-based: no journal!
Q each log entry contains inode info and some data
Q garbage collection copies info out of partially obsoleted
blocks, allowing block to be erased
QO complete index of inodes (i.e., meta-data) kept in RAM
& entire file system must be read when mounted

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

UBI / UBIFS

) UBI (unsorted block images)
= supports multiple logical volumes on one flash device
= performs wear-leveling across entire device
= handles bad blocks

_) UBIFS

= file system layered on UBI

= it really has a journal (originally called JFFS3)

= file map kept in flash as B+ tree

= nho need to scan entire file system when mounted

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Flash as Part of the Hierarchy

) Flash as log device
= aggregate write throughput sufficient, but latency is bad
= augment with DRAM and a "super-capacitor”

) Flash as cache
= large level-2 cache
Q integrated into ZFS
Q can use cheaper (slower) disks with no loss of performance
& reduced power consumption

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

6.6 Case Studies

Copyright © William C. Cheng

Operating Systems - CSCI 402

Linux
) Linux had 57 file systems built for it to date!

= ext3 (journaling - crash resiliency)
Q ReiserFS (B-tree everywhere)
= ext4
Q extents (optimize read/write)
Q LVM
Q hash trees for directories
= BtrFS (Oracle)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Windows NT

) NTFS

= extents (optimize read/write)
— B-trees (optimize directory lookup)
= journaling (crash resiliency)

Mac OS X

) Mac OS X
= HFS+ (planned to use ZFS but dropped the idea)

Q extents (optimize read/write)
Q B*-trees (optimize directory lookup)
Q Journaling (crash resiliency)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Journaling

ﬁ} Why did everyone choose journaling and not shadow pages?
= journaling can be added to any existing file system

Copyright © William C. Cheng

User

OS

HW

Operating Systems - CSCI 402

File System Summary

Applications

—> abstraction of files, directories,

System Calls

etc.

File System

Buffer Cache

I abstraction that the device

LVM

is very fast

Block Device Interface

_|—> presents multiple devices

Device Driver

as one large array of blocks

DMA, Interrupt

Disks, SSD

— presents the abstraction

that the device is simply
an array of blocks

— maps blocks to device
addresses

—= [N weenix, a "block device" only

I
supports read_block () and write_block () Y l,l
Copyright © William C. Cheng

Operating Systems - CSCI 402

4.1 A Simple System
(Monolithic Kernel)

ﬁ} A Framework for Devices
ﬁ} Low-level Kernel

_) Processes & Threads
ﬁ> Storage Management

Copyright © William C. Cheng

Operating Systems - CSCI 402

Low-Level Kernel

ﬁ} Let’s talk about how devices are handled, starting at the lowest
levels of the kernel
= (although bottom-up is not a good way to design an OS)
Q but it may be a reasonable way to implement OS components

_> We will start by looking at two such devices
= terminals
—= network communication

Copyright © William C. Cheng

Operating Systems - CSCI 402

Terminals

—) VT100

= type "echo $TERM" on Unix/Linux
Copyright © William C. Cheng

Operating Systems - CSCI 402

Terminals

) Long obsolete, but still relevant
= oh Linux, you would probably use a "terminal” program (such
as xterm Or gnome-terminal) to interact with the system
= oh Windows, putty or xwin-32 brings up a "terminal” for you
to interact with a remote system
Q ssh client program interact with sshd on a server
<& once authenticated, sshd forks to exec tesh/bash
Q you login session is on the target machine
& l.e., if you login as root and type "halt", you would halit
the machine!

> How to interact with a terminal device?
= what is the right amount of device independence for your kernel?
= characters to be displayed are simply sent to the output
routine of the serial-line driver
Q to fetch characters that have been typed at the keyboard,
. : |
a call can be made to its input routine 443

= as it turns out, not so simple
Copyright © William C. Cheng

Operating Systems - CSCI 402

Terminals

ﬁ} In implementing a device driver, need to take device-specific
characteristics into account
= but how device-specific does it have to be?

) Issues for terminals
1) terminals are slow and characters generation are too fast
& need to tell the application to slow down and wait for
the terminal to catch up
<& so, we need an output buffer to buffer the output and send
characters to the terminal from the buffer
<& we have an instance of the producer-consumer problem!
2) characters arrive from the keyboard even though there isn’t
a waiting read request from an application
& so0, we need an input buffer to buffer incoming characters
and wait for an application to issue a read request
<& we have another instance of the producer-consumer
problem! s

Copyright © William C. Cheng

Operating Systems - CSCI 402

Terminals
App Shell c o o
) 7 t \ ’ Applications
4 1) OS
Input Output

/(_)S/‘ :
Keyboard Display
device driver device driver

[Keyboard] [Display]

= in the old days, only one "terminal driver" i @_

Copyright © William C. Cheng

Operating Systems - CSCI 402

Terminals

) To deal with concerns (1) and (2)
= use two queues, one for input and one for output
— characters are placed on the output queue and taken from
the input queue in the context of the application thread
Q l.e., application write to the output queue and read from
the input queue
Q a thread producing output would block if output queue is full
Q a thread consuming input would block if input queue is empty
= what about the other ends of these queues? who are
handling them?

()

Input Output

il

Keyboard g D_iSPLay I
device driver evice driver

Copyright © William C. Cheng

Terminals

) To deal with concerns (1) and (2)

= how about using a keyboard reading thread (that would do the

following)?
1) issue a read to the device

2) block itself and wait for interrupt from the device

3) when interrupt occurs, the thread is woken up

4) the thread reads from the device and move one

character from the device to the input queue

5) goto step 1

= this approach of using thread context seems to be an overkill

and may be inefficient

r

Keyboard
device driver

Copyright © William C. Cheng

Input

Output

] 0S ‘ Display J_/
device driver

~

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Terminals

) To deal with concerns (1) and (2)
= how about just using an interrupt handler?

Q in the read-completion interrupt, the handler moves one
character from the device to the input queue and issue
another read request to the device and blocks
<& if the queue is full, the character is thrown away

(is this okay?!)
& the application thread must mask interrupts when it’s
taking a character from the queue
= can do the same for the output queue ...

()

Input Output

il

Keyboard g D_iSPLay I
device driver evice driver

Copyright © William C. Cheng

Operating Systems - CSCI 402

Terminals

) To deal with concerns (1) and (2)
= how about just using an interrupt handler?

= cah do the same for the output queue
Q In the write-completion interrupt, the handler moves one

character from the output queue and issue a write request to

the device

<& if the application writes to an empty queue, it would
setup the write-completion interrupt handler and issue
a write request to the device

& for output, losing characters is not permitted

()
Input Output

il

Keyboard g PiSpLay I
device driver evice driver

Copyright © William C. Cheng

Operating Systems - CSCI 402

Terminal

) Additional issue for a terminal driver
3) input characters may need to be processed in some way

before they reach the application

a) characters may be grouped into lines of text and
subject to simple editing (such as backspace)

b) some applications prefer to process all characters
themselves, including their editing

c) e.g., characters typed at the keyboard are echoed back
to the display

Copyright © William C. Cheng

Operating Systems - CSCI 402

Terminals

) To deal with concern (3a)
= remember, once you allow an application to take a character,
you cannot ask for it back
Q can only give it to the application when there is ho chance
that you will want it back

& this happens when a line is completed N
= therefore, we need two input queues '
Q one for the partial-line
< subject to editing / *
O the other contain characters from { Keyboard]_[Display
. device driver [device driver
completed lines

Q in the read-completion interrupt, the handler moves one
character from the device to the partial-line queue
<& if the input character is a carriage-return, the entire
content of the partial-line queue is moved to the
completed-line queue

Copyright © William C. Cheng

Operating Systems - CSCI 402

Terminals

) To deal with concern (3b)
= use a system call to select single vs. multiple input queues

> To deal with concern (3c)
= when a character is typed, it should go to the display
immediately (due to the echoing requirement)
Q it may be competing with the output thread, but it’s okay
(and that’s how it’s done in Unix)

QO Windows handle this differently N
& typed characters are only [:
echoed when an application b
consumes them /‘ i

& therefore, echoing is not done { Keyboard]_[Display
)] device driver device driver
in the interrupt context
& echoing is done in the context of the thread consuming
the characters (i.e., the one that calls read ())
|
S

Copyright © William C. Cheng

