
0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

6.5 Flash Memory

Flash Technology

Flash-Aware File Systems

Augmenting Disk Storage

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Beyond Disks: Flash

Flash block ≈ file-system block

Pro

Random access

Low power

Vibration-resistant

Limited lifetime (compared to disks)

Con

Write is expensive

Cost more than disks

128GB SSD: ~$300

1TB disk: ~$60

no seek, no rotational latency

page addressable (about 1-4KB per page and 512KB per

block)

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Flash Memory

NOR

Two technologies

NAND

byte addressable

newly "erased" block contains all 1’s

Writing

"programming" changes some 1’s to 0’s

cheaper

per byte in NOR; per page in NAND (multiple pages/block)

to change zeroes to ones, must erase entire block

can erase no more than ~100k times/block

limit on P/E (program/erase) cycle, about 10,000

suitable for file systems use

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Coping

spread writes (erasures) across entire drive

Wear leveling

specification from 1994

FTL: Flash translation layer (on a separate device, in memory, etc.)

provides disk-like block interface (firmware on device controller)

maps disk blocks to flash blocks

mapping changed dynamically to effect wear-leveling

approaches:

log-structured file system

flash translation layer (FTL)

blocks on the flash drive are used sequentially

log

FTL

65

W 20

flash

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Coping

spread writes (erasures) across entire drive

Wear leveling

specification from 1994

FTL: Flash translation layer (on a separate device, in memory, etc.)

provides disk-like block interface (firmware on device controller)

maps disk blocks to flash blocks

mapping changed dynamically to effect wear-leveling

approaches:

log

FTL

65

W 20

20 → 65

log-structured file system

flash translation layer (FTL)

blocks on the flash drive are used sequentially

flash

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Coping

spread writes (erasures) across entire drive

Wear leveling

specification from 1994

FTL: Flash translation layer (on a separate device, in memory, etc.)

provides disk-like block interface (firmware on device controller)

maps disk blocks to flash blocks

mapping changed dynamically to effect wear-leveling

approaches:

log

FTL

65

W 20

20 → 65

R 20

96

log-structured file system

flash translation layer (FTL)

blocks on the flash drive are used sequentially

flash

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Coping

spread writes (erasures) across entire drive

Wear leveling

specification from 1994

FTL: Flash translation layer (on a separate device, in memory, etc.)

provides disk-like block interface (firmware on device controller)

maps disk blocks to flash blocks

mapping changed dynamically to effect wear-leveling

approaches:

log

FTL

65

W 20

20 → 65

R 20

96

W 20

log-structured file system

flash translation layer (FTL)

blocks on the flash drive are used sequentially

flash

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Coping

spread writes (erasures) across entire drive

Wear leveling

specification from 1994

FTL: Flash translation layer (on a separate device, in memory, etc.)

provides disk-like block interface (firmware on device controller)

maps disk blocks to flash blocks

mapping changed dynamically to effect wear-leveling

approaches:

log

FTL

65

W 20

20 → 96

R 20

96

W 20

log-structured file system

flash translation layer (FTL)

blocks on the flash drive are used sequentially

flash

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Coping

spread writes (erasures) across entire drive

Wear leveling

specification from 1994

FTL: Flash translation layer (on a separate device, in memory, etc.)

provides disk-like block interface (firmware on device controller)

maps disk blocks to flash blocks

mapping changed dynamically to effect wear-leveling

approaches:

log

FTL

65

W 20

20 → 96

R 20

96

W 20 D 20?

log-structured file system

flash translation layer (FTL)

blocks on the flash drive are used sequentially

flash

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Coping

spread writes (erasures) across entire drive

Wear leveling

specification from 1994

FTL: Flash translation layer (on a separate device, in memory, etc.)

provides disk-like block interface (firmware on device controller)

maps disk blocks to flash blocks

mapping changed dynamically to effect wear-leveling

approaches:

log

FTL

65

W 20

20 → 96

R 20

96

W 20 D 20? (a lot more complicated)

log-structured file system

flash translation layer (FTL)

blocks on the flash drive are used sequentially

flash

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Flash with FTL

FAT32 (sort of like S5FS, but from Microsoft)

Which file system?

NTFS

FFS

Ext3

much of what they do are irrelevant for flash

All were designed to exploit disks

0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Flash without FTL

software wear-leveling

Known as memory technology device (MTD)

perhaps other tricks

0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

JFFS and JFFS2

log-based: no journal!

Journaling flash file system

each log entry contains inode info and some data

entire file system must be read when mounted

garbage collection copies info out of partially obsoleted

blocks, allowing block to be erased

complete index of inodes (i.e., meta-data) kept in RAM

0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

UBI / UBIFS

supports multiple logical volumes on one flash device

UBI (unsorted block images)

performs wear-leveling across entire device

handles bad blocks

file system layered on UBI

UBIFS

it really has a journal (originally called JFFS3)

file map kept in flash as B+ tree

no need to scan entire file system when mounted

0123

35

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Flash as Part of the Hierarchy

aggregate write throughput sufficient, but latency is bad

Flash as log device

large level-2 cache

integrated into ZFS

Flash as cache

augment with DRAM and a "super-capacitor"

can use cheaper (slower) disks with no loss of performance

reduced power consumption

0123

36

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

6.6 Case Studies

FFS

Ext3

Reiser FS

NTFS

WAFL

ZFS

0123

37

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Linux

ext2

FFS

ext3 (journaling - crash resiliency)

Linux had 57 file systems built for it to date!

ext4

extents (optimize read/write)

LVM

hash trees for directories

ReiserFS (B-tree everywhere)

BtrFS (Oracle)

HFS+ (planned to use ZFS but dropped the idea)

Mac OS X

extents (optimize read/write)

B*-trees (optimize directory lookup)

journaling (crash resiliency)

0123

38

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Windows NT

extents (optimize read/write)

NTFS

B-trees (optimize directory lookup)

journaling (crash resiliency)

Mac OS X

0123

39

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Journaling

journaling can be added to any existing file system

Why did everyone choose journaling and not shadow pages?

0123

40

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File System Summary

presents the abstraction

that the device is simply

an array of blocks

System Calls

File System

Buffer Cache

LVM

Block Device Interface

Device Driver

User

OS

Applications

DMA, InterruptHW

Disks, SSD

presents multiple devices

as one large array of blocks

abstraction that the device

is very fast

maps blocks to device

addresses

abstraction of files, directories,

etc.

in weenix, a "block device" only

supports read_block() and write_block()

4.1 A Simple System

(Monolithic Kernel)

0123

41

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Framework for Devices

Low-level Kernel

Processes & Threads

Storage Management

0123

42

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Low-Level Kernel

(although bottom-up is not a good way to design an OS)

but it may be a reasonable way to implement OS components

Let’s talk about how devices are handled, starting at the lowest

levels of the kernel

network communication

We will start by looking at two such devices

terminals

0123

43

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Terminals

VT100

type "echo $TERM" on Unix/Linux

How to interact with a terminal device?

0123

44

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Terminals

Long obsolete, but still relevant

on Linux, you would probably use a "terminal" program (such

as xterm or gnome-terminal) to interact with the system

on Windows, putty or xwin-32 brings up a "terminal" for you

to interact with a remote system

ssh client program interact with sshd on a server

you login session is on the target machine

i.e., if you login as root and type "halt", you would halt

the machine!

characters to be displayed are simply sent to the output

routine of the serial-line driver

what is the right amount of device independence for your kernel?

once authenticated, sshd forks to exec tcsh/bash

to fetch characters that have been typed at the keyboard,

a call can be made to its input routine

as it turns out, not so simple

1)

Issues for terminals

0123

45

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Terminals

terminals are slow and characters generation are too fast

2) characters arrive from the keyboard even though there isn’t

a waiting read request from an application

need to tell the application to slow down and wait for

the terminal to catch up

so, we need an output buffer to buffer the output and send

characters to the terminal from the buffer

we have an instance of the producer-consumer problem!

so, we need an input buffer to buffer incoming characters

and wait for an application to issue a read request

we have another instance of the producer-consumer

problem!

In implementing a device driver, need to take device-specific

characteristics into account

but how device-specific does it have to be?

0123

46

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Terminals

Keyboard

Applications

OS

Display

OS

App Shell

Keyboard
device driver

Display
device driver

OutputInput

in the old days, only one "terminal driver"

To deal with concerns (1) and (2)

0123

47

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Terminals

use two queues, one for input and one for output

characters are placed on the output queue and taken from

the input queue in the context of the application thread

i.e., application write to the output queue and read from

the input queue

a thread producing output would block if output queue is full

a thread consuming input would block if input queue is empty

what about the other ends of these queues? who are

handling them?

OS
Keyboard

device driver

Display
device driver

OutputInput

OS
Keyboard

device driver

Display
device driver

OutputInput

To deal with concerns (1) and (2)

0123

48

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Terminals

how about using a keyboard reading thread (that would do the

following)?

1) issue a read to the device

2) block itself and wait for interrupt from the device

3) when interrupt occurs, the thread is woken up

4) the thread reads from the device and move one

character from the device to the input queue

5) goto step 1

this approach of using thread context seems to be an overkill

and may be inefficient

To deal with concerns (1) and (2)

0123

49

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Terminals

how about just using an interrupt handler?

in the read-completion interrupt, the handler moves one

character from the device to the input queue and issue

another read request to the device and blocks

if the queue is full, the character is thrown away

(is this okay?!)

the application thread must mask interrupts when it’s

taking a character from the queue

can do the same for the output queue ...

OS
Keyboard

device driver

Display
device driver

OutputInput

To deal with concerns (1) and (2)

0123

50

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Terminals

in the write-completion interrupt, the handler moves one

character from the output queue and issue a write request to

the device

can do the same for the output queue

if the application writes to an empty queue, it would

setup the write-completion interrupt handler and issue

a write request to the device

how about just using an interrupt handler?

OS
Keyboard

device driver

Display
device driver

OutputInput

for output, losing characters is not permitted

a)

3)

Additional issue for a terminal driver

input characters may need to be processed in some way

before they reach the application

characters may be grouped into lines of text and

subject to simple editing (such as backspace)

0123

51

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Terminal

b)

c) e.g., characters typed at the keyboard are echoed back

to the display

some applications prefer to process all characters

themselves, including their editing

if the input character is a carriage-return, the entire

content of the partial-line queue is moved to the

completed-line queue

To deal with concern (3a)

0123

52

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Terminals

remember, once you allow an application to take a character,

you cannot ask for it back

one for the partial-line

therefore, we need two input queues

subject to editing

can only give it to the application when there is no chance

that you will want it back

this happens when a line is completed

the other contain characters from

completed lines

in the read-completion interrupt, the handler moves one

character from the device to the partial-line queue

Keyboard
device driver

Display
device driver

typed characters are only

echoed when an application

consumes them

To deal with concern (3c)

0123

53

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Terminals

when a character is typed, it should go to the display

immediately (due to the echoing requirement)

it may be competing with the output thread, but it’s okay

(and that’s how it’s done in Unix)

Windows handle this differently

therefore, echoing is not done

in the interrupt context

echoing is done in the context of the thread consuming

the characters (i.e., the one that calls read())

Keyboard
device driver

Display
device driver

To deal with concern (3b)

use a system call to select single vs. multiple input queues

