
0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Transactions

need to decrease account 1 balance by $100

Classic example: transfer $100 from account 1 to account 2

need to increase account 2 balance by $100

dec(acc1, $100)

inc(acc2, $100)

Group disk writes into transactions

Transaction

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Transactions

need to decrease account 1 balance by $100

Classic example: transfer $100 from account 1 to account 2

need to increase account 2 balance by $100

do this while satisfying ACID property

dec(acc1, $100)

inc(acc2, $100)

Group disk writes into transactions

atomic

all or nothing

A transaction has the "ACID" property:

consistent

take the file system from one consistent state to another

isolated

have no effect on other transactions until committed

durable

persists

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Transactions

commitment time determines

whether it’s going to be "all" or

"nothing"

Once you start running transactions to modify the file system,

the only way to modify the file system is to run transactions

Transaction

dec(acc1, $100)

inc(acc2, $100)

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

How?

before updating disk with steps of transaction:

Journaling

steps of transaction written to disk, but old values remain

Shadow paging

single write switches old state to new

record previous contents: undo journaling

record new contents: redo journaling

"before images" of disk blocks are written into the journal

"after images" of disk blocks are written into the journal

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Journaling

can add journaling to any file system

A journal is a separate part of the disk

for a redo journal, append what you are going to write to the

main part of the disk (i.e., the file system)

A journal is append-only, like a log

append a commit record

a commit record is one disk block in size

the disk guarantees that a commit record is either written

to the disk or not (nothing in between)

Journal x, y, z

commit record

write data to file system asynchronously only after the commit

record has been written to the journal

When it’s time to update the file system, write to journal first

Journal y, x, z

commit record

find all transactions in the buffer cache

Let’s say that you are appending to file A

indirect

data
inode

of file A

Buffer Cache

x

y

z

xy z

periodically:

write after commit
record is written

The journal is in a separate part of the disk

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Journaling

append to journal, one transaction at a time

release dirty blocks to disk update thread after commit

finding all committed transactions

if system crashes in the middle of a recovery, no harm is done

If a redo journal is used, recovery involves

copying a disk block to the file system is idempotent, i.e.,

doing it twice has the same effect as doing it once

redo (replay) all these transactions

After recovery, the state of the file system is what it was at the

end of the last committed transaction
0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Recovery

data in the file system may be inconsistent when the system

reboots

The system can crash at any time

recovery will take the file system into a consistent state

at a transaction boundary

can perform recovery again and again

dec(acc1, $100) is not idempotent

by ACID property, in a consistent state

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Back To The Example

Let’s say that you are appending to file A

indirect

data
inode

of file A

Buffer Cache

x

y

z

xy z

Journal xy z

question is, did failure happen before or after the commit

write later

The journal is on the disk

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Back To The Example

Let’s say that you are appending to file A

inode
of file A

Buffer Cache

x

xy z

Journal xy z

question is, did failure happen before or after the commit

not written for sure

is this bad?

no

The journal is on the disk

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Back To The Example

Let’s say that you are appending to file A

indirect

data
inode

of file A

Buffer Cache

x

y

z

xy z

Journal xy z

question is, did failure happen before or after the commit

write later

The journal is on the disk

is this bad?

no

?? ?

Create a new file with one data block

data
File

inode

y
z

Dir
data

Dir
inode

x

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Back To Example 2

Journal File Systemyz x

write later

journal everything

Journaling options

everything on disk made consistent after crash

last few updates possibly lost

expensive

journal metadata only

metadata made consistent after a crash

last few updates possibly lost

relatively cheap

user data not

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Journaling

In general, it’s extremely costly if you want to make sure that

data is never lost

if you lose power at the same time you save a document, did

you click on "save" before or after you lost power?

updates go to file system cache only

File-oriented system calls divided into subtransactions

subtransactions grouped together

updates (new values) written to journal

When sufficient quantity collected or 5 seconds elapsed,

commit processing starts

once entire batch is journaled, end-of-transaction record is

written

cached updates are then checkpointed, i.e., written to

file system

journal cleared after checkpointing completes

same on-disk format as Ext2 (except for the journal)

(Ext2 is an FFS clone)

A journaled file system used in Linux

supports both full journaling and metadata only journaling

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Ext3

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Journaling vs. Log-structured file system

log-structured file system: good write performance

Some people confuse journaling with log-structured file system

journaling: crash resiliency

coarse-grained recovery using checkpoint file

can be added to any existing file system

it’s a file system

use checkpointing to perform write-back

then clear the journal

WAFL (Network Appliance)

Examples

Based on copy-on-write ideas

Refreshingly simple

ZFS (Sun)

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Shadow Paging

Regular file
data blocks

Regular file
indirect
blocks

Inode file
data blocks

Inode file
indirect
blocks

Root

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Shadow-Page Tree

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Shadow-Page Tree: Modifying a Node

Regular file
data blocks

Regular file
indirect
blocks

Inode file
data blocks

Inode file
indirect
blocks

Root

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Shadow-Page Tree: Propagating Changes

Regular file
data blocks

Regular file
indirect
blocks

Inode file
data blocks

Inode file
indirect
blocks

Root

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Shadow-Page Tree: Propagating Changes

Regular file
data blocks

Regular file
indirect
blocks

Inode file
data blocks

Inode file
indirect
blocks

Root

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Shadow-Page Tree: Propagating Changes

Regular file
data blocks

Regular file
indirect
blocks

Inode file
data blocks

Inode file
indirect
blocks

Root

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Shadow-Page Tree: Propagating Changes

Regular file
data blocks

Regular file
indirect
blocks

Inode file
data blocks

Inode file
indirect
blocks

Root

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Shadow-Page Tree: Propagating Changes

Regular file
data blocks

Regular file
indirect
blocks

Inode file
data blocks

Inode file
indirect
blocks

Root

When root location is written to disk, it’s like a commit record!

