Operating Systems - CSCI 402

Transactions
ﬁ} Group disk writes into transactions

ﬁ> Classic example: transfer $100 from account 1 to account 2
= need to decrease account 1 balance by $100
= need to increase account 2 balance by $100

dec(acc1, $100)

inc(acc2, $100)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Transactions
ﬁ} Group disk writes into transactions

ﬁ> Classic example: transfer $100 from account 1 to account 2
= need to decrease account 1 balance by $100
= need to increase account 2 balance by $100
= do this while satisfying ACID property

Transaction

a dec(acc1, $100)

inc(acc2, $100)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Transactions

) A transaction has the "ACID" property: Transaction
= atomic dec(acc1, $100)
Q all or nothing a
& commitment time determines inc(acc2, $100)
whether it’s going to be "all” or
"nothing”

= consistent
Q take the file system from one consistent state to another

= jsolated
Q have no effect on other transactions until committed

= durable
Q persists

ﬁ} Once you start running transactions to modify the file system,
the only way to modify the file system is to run transactions

Copyright © William C. Cheng

Operating Systems - CSCI 402

How?

ﬁ} Journaling
= before updating disk with steps of transaction:

Q record previous contents: undo journaling

& "before images” of disk blocks are written into the journal
Q record new contents: redo journaling

& "after images” of disk blocks are written into the journal

) Shadow paging
— steps of transaction written to disk, but old values remain
= single write switches old state to new

Copyright © William C. Cheng

Operating Systems - CSCI 402

Journaling

_) A journalis a separate part of the disk
= can add journaling to any file system

) A journalis append-only, like a log
= for a redo journal, append what you are going to write to the
main part of the disk (i.e., the file system)
= append a commit record
Q a commit record is one disk block in size
Q the disk guarantees that a commit record is either written
to the disk or not (nothing in between)

Journal > X,V, 2 L
commit record

ﬁ> When it’s time to update the file system, write to journal first
= write data to file system asynchronously only after the commit

record has been written to the journal |
o,
AN/

Copyright © William C. Cheng

Operating Systems - CSCI 402

Journaling
_) Let’s say that you are appending to file A Buffer Cache
y X Z
//'
write after commit
40 record is written
Z
_ X N Jdata
|n9de y
offile A indirect

) The journal is in a separate part of the disk

Journal >V, X, 2 L
commit record

= periodically:
Q find all transactions in the buffer cache
Q append to journal, one transaction at a time
Q release dirty blocks to disk update thread after commit ¢ @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Recovery

_) The system can crash at any time
= data in the file system may be inconsistent when the system

reboots
= recovery will take the file system into a consistent state
Q at a transaction boundary

_) If a redo journal is used, recovery involves
= finding all committed transactions
= redo (replay) all these transactions
Q if system crashes in the middle of a recovery, no harm is done
Q can perform recovery again and again
& copying a disk block to the file system is idempotent, i.e.,
doing it twice has the same effect as doing it once
& dec(acci, $100) is not idempotent

ﬁ> After recovery, the state of the file system is what it was at the
end of the last committed transaction |
= by ACID property, in a consistent state y @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Back To The Example

_) Let’s say that you are appending to file A

Buffer Cache
J = <
y X z
B] write later
X
. \Jdata
inode y
of file A indirect
_) The journal is on the disk % | %
Journal >y x z

= question is, did failure happen before or after the commit

Copyright © William C. Cheng

Operating Systems - CSCI 402

Back To The Example

_) Let’s say that you are appending to file A

Buffer Cache
1
y X z
B not written for sure
X
inode
of file A
_) The journal is on the disk %
Journal >y x z

= question is, did failure happen before or after the commit
= |s this bad?
Q nho

Copyright © William C. Cheng

Operating Systems - CSCI 402

Back To The Example

_) Let’s say that you are appending to file A

Buffer Cache
’/V
y X z
T] ? ? ?write later
X J
. \Jdata
inode y
of file A indirect
_) The journal is on the disk %
Journal >y x z

= question is, did failure happen before or after the commit
= |s this bad?
Q no

Copyright © William C. Cheng

Back To Example 2

) Create a new file with one data block

Operating Systems - CSCI 402

4—> '*T‘
44— x y |
. ___ data
Dir Dir File
inode data inode write later
X|X X, X
Journal zyx File System

Copyright © William C. Cheng

Operating Systems - CSCI 402

Journaling

) Journaling options

= journal everything
Q everything on disk made consistent after crash
Q last few updates possibly lost
Q expensive

= journal metadata only
QO metadata made consistent after a crash

<& user data not

Q last few updates possibly lost
Q relatively cheap

ﬁ> In general, it’s extremely costly if you want to make sure that
data is never lost
= If you lose power at the same time you save a document, did
you click on "save'" before or after you lost power?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Ext3

_) A journaled file system used in Linux
= same on-disk format as Ext2 (except for the journal)
Q (Ext2 is an FFS clone)
= supports both full journaling and metadata only journaling

ﬁ> File-oriented system calls divided into subtransactions
= Updates go to file system cache only
— subtransactions grouped together

ﬁ} When sufficient quantity collected or 5 seconds elapsed,

commit processing starts

— Updates (new values) written to journal

= once entire batch is journaled, end-of-transaction record is
written

— cached updates are then checkpointed, i.e., written to
file system

= journal cleared after checkpointing completes

Copyright © William C. Cheng

Operating Systems - CSCI 402

Journaling vs. Log-structured file system

) Some people confuse journaling with log-structured file system
= log-structured file system: good write performance
Q coarse-grained recovery using checkpoint file
Q it’s afile system
= journaling: crash resiliency
Q can be added to any existing file system
Q use checkpointing to perform write-back
& then clear the journal

Copyright © William C. Cheng

Operating Systems - CSCI 402

Shadow Paging
) Refreshingly simple
_, Based on copy-on-write ideas

_, Examples
= WAFL (Network Appliance)

= ZFS (Sun)

Copyright © William C. Cheng

Root

Inode file
indirect
blocks

Inode file
data blocks

Regular file
indirect
blocks

Regular file
data blocks

Copyright © William C. Cheng

Shadow-Page Tree

\v\
i

Operating Systems - CSCI 402

\k\

N T

s

Operating Systems - CSCI 402

Shadow-Page Tree: Modifying a Node

Root

Inode file v

indirect

blocks \' \‘ \\k\\‘

Inode file
data blocks

Regular file \\'\‘ \V

indirect

blocks \\v \‘ v/ \\v

Regular file
data blocks

Copyright © William C. Cheng

Operating Systems - CSCI 402

Shadow-Page Tree: Propagating Changes

Root

Inode file
indirect
blocks

Inode file
data blocks

Regular file
indirect
blocks

Regular file
data blocks

Copyright © William C. Cheng

S

Y

i

N T

s

Operating Systems - CSCI 402

Shadow-Page Tree: Propagating Changes

Root
Inode file y
indirect
blocks \' \‘ \\v\'\'
Inode file
data blocks

Regular file \R‘

indirect /—«
[

Regular file
data blocks

Copyright © William C. Cheng

Operating Systems - CSCI 402

Shadow-Page Tree: Propagating Changes

Root

Inode file
indirect
blocks

Inode file
data blocks

Regular file
indirect
blocks

Regular file
data blocks

Copyright © William C. Cheng

S

Y

i

N T

s

Operating Systems - CSCI 402

Shadow-Page Tree: Propagating Changes

Root

Inode file
indirect
blocks

Inode file
data blocks

Regular file
indirect
blocks

Regular file
data blocks

Copyright © William C. Cheng

i

N T

s

Operating Systems - CSCI 402

Shadow-Page Tree: Propagating Changes

Root

Inode file
indirect

blocks \v \‘

Inode file
data blocks

Regular file \\'R‘ /_«

indirect

blocks \\v \‘

Regular file
data blocks

|
) When root location is written to disk, it’s like a commit record} § Dy

4
Copyright © William C. Cheng

