Operating Systems - CSCI 402

Log-Structured File Systems

) Main principles
= append only filet
= never delete / update

file2 —~

— log —™

012..
Copyright © William C. Cheng

Operating Systems - CSCI 402

Log-Structured File Systems

) Main principles
= append only filet
= never delete / update

file2 —~

— log — inode | data @!,2

012..
Copyright © William C. Cheng

Operating Systems - CSCI 402

Log-Structured File Systems

ﬁ} How does "append only"” and "never delete / update” help with
write performance?
= minimize seek latency
Q one seek followed by many many writes
= minimize rotational latency
Q write a cylinder at a time

) Sprite FS (a log-structured file system)
= through batching, a single, long write can write out everything

Copyright © William C. Cheng

Operating Systems - CSCI 402

LFS Data Placement Example

File On-disk

_ inode
Representation:

LFS:

012..

Copyright © William C. Cheng

Operating Systems - CSCI 402

LFS Data Placement Example

> What happens if you want to modify the file?
= how does "append-only" really work?

) Ex: you create file A and then file B

LFS: > E i

012.. / | \
Inode Map: A B

= you modify file A, e.g., append to the last block of file A

Copyright © William C. Cheng

Operating Systems - CSCI 402

LFS Data Placement Example

> What happens if you want to modify the file?
= how does "append-only" really work?

) Ex: you create file A and then file B

LFS: - X i

012.. / | \
Inode Map: A B

= you modify file A, e.g., append to the last block of file A

Copyright © William C. Cheng

Operating Systems - CSCI 402

LFS Data Placement Example

> What happens if you want to modify the file?
= how does "append-only" really work?

) Ex: you create file A and then file B

N

LFS: ~ %X

012.. /<
B

Inode Map: A

= you modify file A, e.g., append to the last block of file A
= the updated file is still file A
Q but the inode has changed

Copyright © William C. Cheng

Operating Systems - CSCI 402

LFS Data Placement Example

> What happens if you want to modify the file?
= how does "append-only" really work?

) Ex: you create file A and then file B/\‘

| | inode

[|
LFS: > XIX | | I A B map piece

L/

012... | \t/

= you modify file A, e.g., append to the last block of file A
= the updated file is still file A
Q but the inode has changed
— a piece of the inode map is appended to the log
Q this piece is the one that contains the disk address of inode A

Inode Map:

Copyright © William C. Cheng

Operating Systems - CSCI 402

LFS Data Placement Example

> What happens if you want to modify the file?
= how does "append-only" really work?

) Ex: you create file A and then file B/\‘

| | inode

| !
LFS: X|X | | I A B map piece

L/

012.. \)
\ N -

Inode Map: CheckPt File

= you modify file A, e.g., append to the last block of file A

= the updated file is still file A
Q but the inode has changed

— a piece of the inode map is appended to the log
Q this piece is the one that contains the disk address of inode A
Q fixed regions (previous version and current version) on the

disk keeps track of all the inode map pieces |
<& known as checkpoint file 5534

Copyright © William C. Cheng

Operating Systems - CSCI 402

More On Inode Map

_) Inode Map cached in primary memory
= indexed by inode number
points to inode on disk
written out to disk in pieces as updated
checkpoint file contains locations of pieces
Q written to disk occasionally
Q two copies: current and previous
Q outside of the "log" part of the LFS

! L | inode
— X|X | | I A B map piece

0 0 [

N

/

012..)
7 7 I~ Y - 4

CheckPt File A | CheckPt File B

ﬁ> Commonly/Recently used inodes and other disk blocks cached
in primary memor IS\
P y y s @,

Copyright © William C. Cheng

Operating Systems - CSCI 402

LFS Summary

) Advantages
= good performance for writes
= can recover from crashes easily through the use of
checkpoint files

_, Disadvantages
= can waste a lot of disk space
Q cannot reclaim disk space and will run out of disk space

Copyright © William C. Cheng

Operating Systems - CSCI 402

Extents in FAT16 & FAT 32

_) Windows’ equivalent of disk map in S5FS is extent
= an extentis a list of runs (consecutive disk blocks)

runlist

length | offset | length | offset |length | offset |length | offset

3 11728 | 4 10624

11728 0 1 2 10624 3 4 5 6

1
‘. 1
1

block numbers within a file

Copyright © William C. Cheng

Operating Systems - CSCI 402

I-list} Data

Region Recall S5FS Disk Map
= assuming blocksize = 1KB

= up to 10KB+256KB+64MB+16GB
Q limit set at 2GB

|
. |
inode

WIN|=|O

~N|:

g M

\

10
11
12

256 max
entries 256 max
entries j

256 max 256 max
\ entries —"" lenttles /295I16t:ineasx
256 max 256 max
2::tmezx ™| entries —"" " | entries i ;ﬁ!’)_

Copyright © William C. Cheng

Operating Systems - CSCI 402

Problems with Extents in FAT16 & FAT 32

) Could result in highly fragmented disk space
= |ots of small areas of free space
Q external fragmentation
= solution: use a defragmenter to coalesce free space

_, Random access
= linear search through a long list of extents
Q O(n)to find a disk block, recall that a disk map in S5FS is O(7)
= solution: multiple levels
Q usually two levels

Copyright © William C. Cheng

ﬁ} Two-level runlists
= make sure that every runlist fits inside one disk block
= better performance, but still needs de-frag

Extents in NTFS

Top-level runlist

Operating Systems - CSCI 402

.

11728

0

Copyright © William C. Cheng

length | offset |length | offset |length | offset | length | offset
84 | 9738 | 132 | 1076 | 98 124
|
9738 runlist
length | offset |length | offset |length | offset |length | offset
3 11728 | 4 10624
| Al J

Operating Systems - CSCI 402

6.2 Crash Resiliency

> What Goes Wrong
) Dealing with Crashes

Copyright © William C. Cheng

Buffer Cache With Write-back

read () write ()

—

\ v /

Buffer Cache .= _ FS

later

) Dirty/modified blocks in buffer cache

= disk blocks are read in and cached in the buffer cache
Q originally "clean/unmodified”

= a write operation would modify a disk block in the buffer cache
Q the block is labeled "dirty/modified"

= disk update: the file system periodically gathers all the dirty
blocks, update the disk, and clear the "dirty bits" |
Q update is done one disk block at a time 3 @

Copyright © William C. Cheng

Operating Systems - CSCI 402

In the Event of a Crash ...

) Most recent updates did not make it to disk
= is this a big problem?
= equivalent to crash happening slightly earlier
Q but you may have received (and believed) a message:

& "file successfully updated”
< "homework successfully handed in"
& "stock successfully purchased"

—= there’s worse ...

Copyright © William C. Cheng

Operating Systems - CSCI 402

File-System Consistency (1)

C C]
on
disk V
N
1 4
~ A ~

_ How to go from 1 to 4 atomically?

Copyright © William C. Cheng

Operating Systems - CSCI 402

File-System Consistency (1)

i
-

on
disk vV

1
N~————

_ How to go from 1 to 4 atomically?
= release dirty blocks to disk update thread

Copyright © William C. Cheng

Operating Systems - CSCI 402

File-System Consistency (1)

i
-

on
disk vV

N—
_ How to go from 1 to 4 atomically?

= write the "new block" first

Copyright © William C. Cheng

Operating Systems - CSCI 402

File-System Consistency (1)

C C]
on
disk V
N
1 4
~ A ~

_ How to go from 1 to 4 atomically?
= write the "new block" first |
= then write new values into the old block 3 @;

Copyright © William C. Cheng

Operating Systems - CSCI 402

File-System Consistency (1)

i
-

on
disk vV

N—
ﬁ> If crash occurs before the modified old block is written to the disk

693

Copyright © William C. Cheng

Operating Systems - CSCI 402

File-System Consistency (1)

on on

disk disk YV
Block
Not on
disk

1 1’

N—

ﬁ> If crash occurs before the modified old block is written to the disk

= is this okay? (i\

Copyright © William C. Cheng

Operating Systems - CSCI 402

File-System Consistency (2)

i
-

on
disk vV

1
N~————

ﬁ> Problem: in S5FS and FFS, the disk update thread can sequence
disk writes in any order |
= it may use an elevator algorithm 3 @;

Copyright © William C. Cheng

Operating Systems - CSCI 402

File-System Consistency (2)

i
C o+ [| =

on Not on
disk Y ||disk V

Block

Not on
disk vV

2

N— A
ﬁ> Problem: in S5FS and FFS, the disk update thread can sequence

disk writes in any order

Copyright © William C. Cheng

Operating Systems - CSCI 402

File-System Consistency (2)

i
-

on
disk vV

N~————

Not on
disk

Block

Not on
disk

2

-

N

N4

ﬁ> Problem: in S5FS and FFS, the disk update thread can sequence
disk writes in any order

]
= what if it writes new values into the old block first? 3 @;

Copyright © William C. Cheng

Operating Systems - CSCI 402

File-System Consistency (2)

i
C o+ [| =

on Not on
disk Y ||disk V

Block

Not on
disk vV

2

N— A
ﬁ> Problem: in S5FS and FFS, the disk update thread can sequence

disk writes in any order

|
= what if it writes new values into the old block first? 3 @;
Copyright © William C. Cheng

Operating Systems - CSCI 402

File-System Consistency (2)

i
-

on
disk vV

N~————

Not on
disk

Block

Not on
disk

2

-

N

N4

ﬁ> Problem: in S5FS and FFS, the disk update thread can sequence
disk writes in any order

]
= what if it writes new values into the old block first? 3 @;

Copyright © William C. Cheng

A More Realistic Example
_) Let’s say that you are appending to 10KB file A

’/V ’/V
T — T
append z
old x PP x L ="
_ _ - data
inode inode y
of file A of file A indirect

= X, Y, and z are dirty blocks

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

A More Realistic Example
_) Let’s say that you are appending to 10KB file A

Buffer Cache
,/' ’/V
X Yy z
| |
i B I 5 i B l lx crash
appen y
old x X
: : ~a Jdata
inode inode y
of file A of file A indirect
s—

X, Y, and z are dirty blocks

the buffer cache does not know about the relationship

among blocks x, y, and z

= techniques like locking (i.e., lock the disk or file system so that it
cannot crash when it's locked) won’t work

= [t’s obvious that the solution is to make the disk update

thread aware of the relationship among these blocks

|
Q but how? there are different approaches 3 }‘UJ
Copyright © William C. Cheng

[

Operating Systems - CSCI 402

A More Realistic Example
_) Let’s say that you are appending to 10KB file A

Buffer Cache
,/' ’/V
z X Yy
|
i B I 5 i B lx crash
appen y
old x X
: : ~a Jdata
inode inode y
of file A of file A indirect

= X, Y, and z are dirty blocks

what about this order and crash timing?
QO what about other combinations?
does order matter?

should order matter?

[

[

[

Copyright © William C. Cheng

Operating Systems - CSCI 402

How to Cope ...

_, Don’tcrash
= not realistic

ﬁ} Perform multi-step disk updates in an order such that disk is
always consistent, i.e., the consistency-preserving approach

) Perform multi-step disk updates as transactions, i.e.,
implemented so that either all steps take effect or none do

Copyright © William C. Cheng

Operating Systems - CSCI 402

How to Cope ...

Performance
A
FFS
X
soft-updates
X
Journaling (meta-data)
Shadow paging
S5FS
X

—
Consistency

= soft-update provides recoverable consistency
= journaling and shadow paging provide

|
transactional consistency 3 ..’
Copyright © William C. Cheng

Operating Systems - CSCI 402

Soft Update

_) Main idea
— order disk operations to preserve meta-data consistency

Q "innocuous inconsistency” is considered ok

= synchronous write can be slow
Q use data structure to describe dependencies and pass

the data structure to disk update task

Copyright © William C. Cheng

Operating Systems - CSCI 402

Maintaining Consistency

Before After
A New A (

B(OldNode) ¢ (NewNode }—

%

Copyright © William C. Cheng

Operating Systems - CSCI 402

Maintaining Consistency

B (OldNode) c(NewNode }— 1) In AFS, write this
synchronously
< to disk (like

write-through)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Maintaining Consistency

New A (2) Then write this
asynchronously
via the cache
(i.e., send to disk
update task)

B (OldNode) c(NewNode }— 1) In AFS, write this
synchronously
to disk (like
write-through)

%

Copyright © William C. Cheng

Operating Systems - CSCI 402

Maintaining Consistency

New A (2) Then write this
asynchronously
via the cache
(i.e., send to disk
update task)

B (OldNode) c(NewNode }— 1) In AFS, write this
synchronously
to disk (like
write-through)

%

ﬁ> If crash happens before (2) is performed but after (1) is performed

B

= what would it look like?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Innocuous Inconsistency

B(OldNode) ¢ (NewNode }—

%

ﬁ> If crash happens before (2) is performed but after (1) is performed

863

= what would it look like?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Innocuous Inconsistency

I)
B(OldNode) ¢ (NewNgda, }

| R ——

|

1

|

1

I

|

1

1

) Innocuous inconsistency is acceptable
= although need to reclaim lost disk blocks
Q e.g., in FFS, use a "disk scavenger"” to find all these |
&

blocks and add them to /lost+found \
Copyright © William C. Cheng

Operating Systems - CSCI 402

Back To The Example
ﬁ} Let’s say that you are appending to file A (y and z are new blocks)

()
. Buffer Cache sync async
g order: z y x write write
|
™ x| xlx l
z
X o

- \Jdata L)
inode y
offile A indirect

Copyright © William C. Cheng

Operating Systems - CSCI 402

Back To The Example
ﬁ} Let’s say that you are appending to file A (y and z are new blocks)

()

Buffer Cache sync async

//') d
order: z y X write write
|

I <1 |

inode
of file A

Copyright © William C. Cheng

Operating Systems - CSCI 402

Back To The Example

ﬁ} Let’s say that you are appending to file A (y and z are new blocks)

()

Buffer Cache sync async

//') d
order: z y X write write
|

JHE X |

data

inode
of file A

= |s this bad?
Q how bad is it?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Back To The Example

ﬁ} Let’s say that you are appending to file A (y and z are new blocks)

Buffer Cache sync async

//') d
order: z y X write write
|

z
X
. Jdata
inode y
of file A

indirect

= |s this bad?
Q how bad is it?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Back To The Example

ﬁ} Let’s say that you are appending to file A (y and z are new blocks)

()

Buffer Cache sync async

//') d
order: z y X write write
|

T R |
X \\ Jdata

inode y

indirect

= is this bad?
Q no
Q although this is slow because it requires 2 synchronous writes
& failure is uncommon

)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Soft Update Example 2

) Create a new file with one data block

4)
— m [e Y P sync async
wL4—> O)I(d create w4+—| X Y’ L= write write
Dir Dir Dir Dir File
inode data inode data inode
Choice 1 Choice2 * g
Buffer Cache Buffer Cache
order: X’ y 2 order: 2 y X
|

xxl

xxi
]

Copyright © William C. Cheng

Soft Update Example 3

_) Move a file]
™ <
Dir
inode Dir
data
T~
Dir y
inode Dir
data
Choice 1
Buffer Cache
order: X’ vy’
| |

i

Copyright © William C. Cheng

Operating Systems - CSCI 402

\\ :
Dir X
— inode Dir
myv data
File T~ File
inode Dir y’ inode
inode Dir
data
Choice 2
Buffer Cache
order: vy X’

Operating Systems - CSCI 402

Soft Update

ﬁ} An implementation of the consistency-preserving approach
= the idea is simple:
Q update cache in an order that maintains consistency
Q write cache contents to disk in same order in which
cache was updated
= reality isn’t
Q (assuming speed is important)

Copyright © William C. Cheng

data block

X

directory
inode

data block
Z
file
inode

Which Order?

Operating Systems - CSCI 402 1

r

dirent

data LU

slightly different from

Example 2 to illustrate

a problem

= In this example, directory
entry and file inode are
newly allocated blocks

= if these are existing blocks
even more complicated

block

containing
directory entries

ﬁ> This looks like Example 2 before with simple dependencies, but...

Copyright © William C. Cheng

W -

.——'

Dir

inode

X

Dir
data i

4
y
File
node

Operating Systems - CSCI 402

data block However ...

X

directory
inode

dirent data

block
containing
directory entries

ﬁ} This looks like Example 2 before with simple dependencies, but...
= in reality, in order to reduce the number of disk writes,
multiple objects can be packed into a disk block
= primary problem with soft update: circular dependency / @’_

Copyright © William C. Cheng

Operating Systems - CSCI 402

data block Soft Updates

old x

old actory

directory | jode
inode

dirent data

block
containing
directory entries

This is written k This is written

to disk first to disk next
ﬁ} This looks like Example 2 before with simple dependencies, but...
= breaking circular dependency
Q 3 steps, with 2 synchronous writes
Q slow

Copyright © William C. Cheng

Operating Systems - CSCI 402

Soft Updates in Practice

_) Implemented for FFS in 1994

_) Used in FreeBSD’s FFS
= improves performance (over FFS with synchronous writes)

= disk updates may be many seconds behind cache updates
= need to reclaim lost disk blocks as background activity after

the system restarts

Copyright © William C. Cheng

