
0123

47

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Log-Structured File Systems

file2

file1

file3

0 1 2 ...

 log

append only

Main principles

never delete / update

0123

48

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Log-Structured File Systems

inode

0 1 2 ...

data log

file2

file1

file3

append only

Main principles

never delete / update

0123

49

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Log-Structured File Systems

minimize seek latency

write a cylinder at a time

How does "append only" and "never delete / update" help with

write performance?

minimize rotational latency

through batching, a single, long write can write out everything

Sprite FS (a log-structured file system)

one seek followed by many many writes

0123

50

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

LFS Data Placement Example

File On-disk

Representation:
inode

LFS:

0 1 2 ...

you modify file A, e.g., append to the last block of file A

0123

51

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

LFS Data Placement Example

What happens if you want to modify the file?

how does "append-only" really work?

LFS:

0 1 2 ...

Ex: you create file A and then file B

Inode Map: A B

you modify file A, e.g., append to the last block of file A

0123

52

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

LFS Data Placement Example

What happens if you want to modify the file?

how does "append-only" really work?

LFS:

Ex: you create file A and then file B

Inode Map:

0 1 2 ...

A B

you modify file A, e.g., append to the last block of file A

the updated file is still file A

0123

53

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

LFS Data Placement Example

What happens if you want to modify the file?

how does "append-only" really work?

LFS:

Ex: you create file A and then file B

Inode Map:

0 1 2 ...

A B

but the inode has changed

the updated file is still file A

but the inode has changed

you modify file A, e.g., append to the last block of file A

0123

54

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

LFS Data Placement Example

What happens if you want to modify the file?

how does "append-only" really work?

LFS:

Ex: you create file A and then file B

Inode Map:

0 1 2 ...

inode
map piece

a piece of the inode map is appended to the log

A B

this piece is the one that contains the disk address of inode A

the updated file is still file A

but the inode has changed

you modify file A, e.g., append to the last block of file A

0123

55

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

LFS Data Placement Example

What happens if you want to modify the file?

how does "append-only" really work?

LFS:

Ex: you create file A and then file B

Inode Map:

0 1 2 ...

inode
map piece

a piece of the inode map is appended to the log

fixed regions (previous version and current version) on the

disk keeps track of all the inode map pieces

A B

known as checkpoint file

CheckPt File

...

this piece is the one that contains the disk address of inode A

indexed by inode number

Inode Map cached in primary memory

points to inode on disk

written out to disk in pieces as updated

checkpoint file contains locations of pieces

Commonly/Recently used inodes and other disk blocks cached

in primary memory

written to disk occasionally

two copies: current and previous

0123

56

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

More On Inode Map

outside of the "log" part of the LFS

0 1 2 ...

inode
map pieceA B

CheckPt File B

...

CheckPt File A

...

good performance for writes

Advantages

can recover from crashes easily through the use of

checkpoint files

0123

57

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

LFS Summary

can waste a lot of disk space

Disadvantages

cannot reclaim disk space and will run out of disk space

11728 10624

Windows’ equivalent of disk map in S5FS is extent

an extent is a list of runs (consecutive disk blocks)

block numbers within a file

block numbers within a file system

0123

58

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Extents in FAT16 & FAT 32

3 4 5 60 1 2

runlist

length offset length offset length offset length offset

3 11728 4 10624

12

0

1

2

3

...

7

8

9

10

11

inode

...

256 max
entries

256 max
entries

256 max
entries

256 max
entries

256 max
entries

256 max
entries

256 max
entries

assuming blocksize = 1KB

up to 10KB+256KB+64MB+16GB

limit set at 2GB

256 max
entries

Data
Region

i-list

0123

59

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Recall S5FS Disk Map

lots of small areas of free space

Could result in highly fragmented disk space

solution: use a defragmenter to coalesce free space

linear search through a long list of extents

Random access

solution: multiple levels

external fragmentation

usually two levels

O(n) to find a disk block, recall that a disk map in S5FS is O(1)

0123

60

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Problems with Extents in FAT16 & FAT 32

Two-level runlists

Top-level runlist

0123

61

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Extents in NTFS

9738

11728

runlist

10624

length offset length offset length offset length offset

84 9738 132 1076 98 124

length offset length offset length offset length offset

3 11728 4 10624

0 1 2 3 4 5 6

make sure that every runlist fits inside one disk block

better performance, but still needs de-frag

0123

62

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

6.2 Crash Resiliency

What Goes Wrong

Dealing with Crashes

0123

63

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Buffer Cache With Write-back

read()

OS

Buffer Cache

write()

FS

later

Dirty/modified blocks in buffer cache

disk blocks are read in and cached in the buffer cache

originally "clean/unmodified"

a write operation would modify a disk block in the buffer cache

the block is labeled "dirty/modified"

disk update: the file system periodically gathers all the dirty

blocks, update the disk, and clear the "dirty bits"

update is done one disk block at a time

0123

64

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

In the Event of a Crash ...

is this a big problem?

but you may have received (and believed) a message:

Most recent updates did not make it to disk

"file successfully updated"

equivalent to crash happening slightly earlier

"homework successfully handed in"

"stock successfully purchased"

there’s worse ...

0123

65

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File-System Consistency (1)

How to go from 1 to 4 atomically?

1

on

disk

4

New
Block

release dirty blocks to disk update thread
0123

66

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File-System Consistency (1)

How to go from 1 to 4 atomically?

1 2

Not on

disk

New
Block

Not on

disk

on

disk

write the "new block" first
0123

67

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File-System Consistency (1)

How to go from 1 to 4 atomically?

1 2 3

New
Block

on

disk

Not on

disk

New
Block

Not on

disk

Not on

disk

on

disk

0123

68

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File-System Consistency (1)

How to go from 1 to 4 atomically?

write the "new block" first

then write new values into the old block

1 2 3

New
Block

on

disk

Not on

disk

New
Block

Not on

disk

Not on

disk

on

disk

4

New
Block

Crash

0123

69

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File-System Consistency (1)

If crash occurs before the modified old block is written to the disk

1 2 3

New
Block

on

disk

Not on

disk

New
Block

Not on

disk

Not on

disk

on

disk

If crash occurs before the modified old block is written to the disk

Crash

0123

70

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File-System Consistency (1)

is this okay?

1 2 3

New
Block

on

disk

Not on

disk

New
Block

Not on

disk

Not on

disk

on

disk

1’

on

disk

Not on

disk

New
Block

Problem: in S5FS and FFS, the disk update thread can sequence

disk writes in any order
0123

71

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File-System Consistency (2)

1

on

disk

it may use an elevator algorithm

0123

72

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File-System Consistency (2)

1 2

Not on

disk

New
Block

Problem: in S5FS and FFS, the disk update thread can sequence

disk writes in any order

Not on

disk

on

disk

Problem: in S5FS and FFS, the disk update thread can sequence

disk writes in any order
0123

73

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File-System Consistency (2)

1 2 3

New
Block

Not on

disk

Not on

disk

New
Block

what if it writes new values into the old block first?

Not on

disk

on

disk

on

disk

Problem: in S5FS and FFS, the disk update thread can sequence

disk writes in any order
0123

74

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File-System Consistency (2)

1 2 3

New
Block

Not on

disk

Not on

disk

New
Block

Crash

what if it writes new values into the old block first?

Not on

disk

on

disk

on

disk

Problem: in S5FS and FFS, the disk update thread can sequence

disk writes in any order
0123

75

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

File-System Consistency (2)

1 2 3 3’

New
Block

Not on

disk

Not on

disk

New
Block

Crash

?

what if it writes new values into the old block first?

Not on

disk

on

disk

on

disk

on

disk

Let’s say that you are appending to 10KB file A

indirect

data
inode

of file A

x

y

z

0123

76

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A More Realistic Example

inode

of file A

old x

⇒

append

x, y, and z are dirty blocks

techniques like locking (i.e., lock the disk or file system so that it

cannot crash when it’s locked) won’t work

Let’s say that you are appending to 10KB file A

indirect

data
inode

of file A

Buffer Cache

x

y

z

yx z

crash

the buffer cache does not know about the relationship

among blocks x, y, and z

0123

77

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A More Realistic Example

inode

of file A

old x

⇒

append

but how? there are different approaches

it’s obvious that the solution is to make the disk update

thread aware of the relationship among these blocks

x, y, and z are dirty blocks

Let’s say that you are appending to 10KB file A

indirect

data
inode

of file A

Buffer Cache

x

y

z

xz y

crash

what about this order and crash timing?

0123

78

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A More Realistic Example

what about other combinations?

inode

of file A

old x

⇒

append

does order matter?

should order matter?

x, y, and z are dirty blocks

0123

79

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

How to Cope ...

Don’t crash

Perform multi-step disk updates in an order such that disk is

always consistent, i.e., the consistency-preserving approach

Perform multi-step disk updates as transactions, i.e.,

implemented so that either all steps take effect or none do

not realistic

0123

80

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

How to Cope ...

Performance

Consistency

FFS

soft-updates

Journaling (meta-data)

Shadow paging

soft-update provides recoverable consistency

journaling and shadow paging provide

transactional consistency

S5FS

order disk operations to preserve meta-data consistency

Main idea

"innocuous inconsistency" is considered ok

synchronous write can be slow

use data structure to describe dependencies and pass

the data structure to disk update task

0123

81

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Soft Update

0123

82

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Maintaining Consistency

New NodeOld Node

Before After

A

B

New A

C

0123

83

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Maintaining Consistency

New Node 1) In AFS, write this

synchronously

to disk (like

write-through)

COld Node

A

B

In AFS, write this

synchronously

to disk (like

write-through)

0123

84

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Maintaining Consistency

New Node 1)

2) Then write this

asynchronously

via the cache

(i.e., send to disk

update task)

New A

COld NodeB

In AFS, write this

synchronously

to disk (like

write-through)

0123

85

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Maintaining Consistency

New Node 1)

2) Then write this

asynchronously

via the cache

(i.e., send to disk

update task)

New A

C

If crash happens before (2) is performed but after (1) is performed

what would it look like?

Old NodeB

If crash happens before (2) is performed but after (1) is performed

0123

86

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Innocuous Inconsistency

New NodeOld Node CB

what would it look like?

A

0123

87

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Innocuous Inconsistency

New NodeOld Node

although need to reclaim lost disk blocks

Innocuous inconsistency is acceptable

e.g., in FFS, use a "disk scavenger" to find all these

blocks and add them to /lost+found

CB

A

Let’s say that you are appending to file A (y and z are new blocks)

indirect

data
inode

of file A

Buffer Cache

x

y

z

yz x

0123

88

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Back To The Example

order:

async

write

sync

write

Let’s say that you are appending to file A (y and z are new blocks)

inode

of file A

Buffer Cache

x

yz x

0123

89

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Back To The Example

order:

async

write

sync

write

Let’s say that you are appending to file A (y and z are new blocks)

data
inode

of file A

Buffer Cache

x
z

yz x

0123

90

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Back To The Example

order:

is this bad?

how bad is it?

async

write

sync

write

Let’s say that you are appending to file A (y and z are new blocks)

indirect

data
inode

of file A

Buffer Cache

x

y

z

yz x

0123

91

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Back To The Example

order:

is this bad?

how bad is it?

async

write

sync

write

Let’s say that you are appending to file A (y and z are new blocks)

indirect

data
inode

of file A

Buffer Cache

x

y

z

yz x

0123

92

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Back To The Example

order:

is this bad?

no

although this is slow because it requires 2 synchronous writes

failure is uncommon

async

write

sync

write

Create a new file with one data block

Buffer Cache

y’x’ z’

0123

93

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Soft Update Example 2

order:

Dir

data

Dir
inode

w old
x

Buffer Cache

y’z’ x’order:

Choice 1 Choice 2

⇒

create data
File

inode

y’
z’

Dir

data

Dir
inode

w x’

async

write

sync

write

Move a file

File
inode

Buffer Cache

y’x’

0123

94

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Soft Update Example 3

order:

Dir

data

Dir
inode

Buffer Cache

y’ x’order:

Choice 1 Choice 2

Dir

data

Dir
inode

⇒

mv

File
inode

Dir

data

Dir
inode

Dir

data

Dir
inode

x’

y’

x

y

the idea is simple:

An implementation of the consistency-preserving approach

update cache in an order that maintains consistency

write cache contents to disk in same order in which

cache was updated

(assuming speed is important)

0123

95

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Soft Update

reality isn’t

data
File

inode

y
z

Dir

data

Dir
inode

w x

data

block

containing

directory entries

0123

96

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Which Order?

This looks like Example 2 before with simple dependencies, but...

data block

data block

directory

inode

file

inode

x

z

slightly different from

Example 2 to illustrate

a problem

in this example, directory

entry and file inode are

newly allocated blocks

if these are existing blocks,

even more complicated
dirent

y

This looks like Example 2 before with simple dependencies, but...

data

block

containing

directory entries

0123

97

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

However ...

in reality, in order to reduce the number of disk writes,

multiple objects can be packed into a disk block

directory

inode

file

inode

primary problem with soft update: circular dependency

data block

x

z dirent

y

This looks like Example 2 before with simple dependencies, but...

data

block

containing

directory entries

0123

98

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Soft Updates

directory

inode

file

inode

old

directory

inode

This is written

to disk first

breaking circular dependency

3 steps, with 2 synchronous writes

slow

This is written

to disk next

data block

dirent

old x

z

y

0123

99

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Soft Updates in Practice

Implemented for FFS in 1994

improves performance (over FFS with synchronous writes)

Used in FreeBSD’s FFS

disk updates may be many seconds behind cache updates

need to reclaim lost disk blocks as background activity after

the system restarts

