Operating Systems - CSCI 402

Copy-on-write & Fork

_) Shadow Objects
= indirection

— keep track of pages that were originally
*[vm_area_struct]‘

Process A

copy-on-write but have been modified 8000-1afff
_ _ _ rw, private
_) A page in a memory map, into which an FTob

object was mapped private (e.g., data

region), has an associated shadow object Y
= |f a page is "managed by a shadow Shadow
object” (or "referenced in a shadow object

object"), it has been modified
= otherwise, the page is managed by
the original object (file or a
"zero/anonymous" object) x| ly| [z
= X, Y, z on the right are pages / page frames

Private-mapped
ﬁ} Shadow object tells you where to copy from file object
when you need to perform copy-on-write 4

36

Copyright © William C. Cheng

Operating Systems - CSCI 402

Address-Space Representation
_, Remember this?

vm_area_struct vm_area_struct vm_area_struct vm_area_struct vm_area_struct
1000-7fff 8000-1afff 1b000-1bfff 200000-41fffff 7£1fd000-7Fffff
X, shared rw, private rw, prlvate rw, private rw, prlvate

Copyright © William C. Cheng

Operating Systems - CSCI 402

Address-Space Representation
_, Remember this?

vm_area_struct vm_area_struct vm_area_struct vm_area_struct vm_area_struct
1000-7fff 8000-1afff 1b000-1bfff 200000-41 ffffff 7fffd000-7fffffff
X, shared rw, private rw, prlvate rw, private rw, private

anon anon

= now we have to start with (mmob 3 Is used In weenix):

vmarea_t vmarea_t vmarea_t vm_area_struct vmarea_t
1000-7fff 8000-1afff 1b000-1bfff 200000-41ffffff 7tifd000-7fffff

X, shared rw, private rw, private rw, private rw, private

5
file Y
S_tI'UCt
mmobj anon file

mmobj

Copyright © William C. Cheng

Operating Systems - CSCI 402

Share Mapping (1)

Process A

r

@ in weenix
shared = instead of pointing to a
File object, it’s pointing

Process A has to an mmobj inside a
vnode inside a File

shared-mapped a file object

into its address space = mmobj is used to manage
page frames

X |_y_| Z File object

Copyright © William C. Cheng

Operating Systems - CSCI 402

Share Mapping (2)

Process A

Process B

Process A has

shared-mapped a file
into its address space

A forks, creating B.

Process B also has
the same shared mapping

Share-mapped
file object

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping (1)

Process A
cow
Shadow object
Private-mapped
X |_y_| < file object

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping (1)

A’s Pagetable X

pagey RO 1]
pagez_R/O ~

page x__R/O é L1
/
/
/

Copyright © William C. Cheng

Process A

cow

Shadow object

Private-mapped
file object

Operating Systems - CSCI 402

Private Mapping (1)

A’s Pagetable X
y
page x__R/O / adE
pagey R/O ’//
— Process A
//
/ / cow
! i/ Pages
ge | [
A modlfle§ page x.
\ \\ \\
NN :
NN Shadow object
\\\\ N e
\\\\ \\
\\\ \\\

Private-mapped
X |_y_| < file object

Copyright © William C. Cheng

Operating Systems - CSCI 402

x Private Mapping (1)

A’s Pagetablg X
y
page x _R/W) ’z
pagey R/O ’//
R Process A
//
/ / cow
! i/ Pages
cpr | [
A mod|f|e§ page X.
\ \\ \\
NN :
NN Shadow object
\\\\\\\

Private-mapped
X |_y_| < file object

Copyright © William C. Cheng

Operating Systems - CSCI 402

x Private Mapping (1)

A’s Pagetabl

11
X
7

\
page x _R/W) /" z \

pagey R/O ’/ \

> \
R— \Process A
\

/ /

! i/ Pages
po | :

A mod|f|e§ Aag\e X.

Shadow object

Private-mapped
file object

Copyright © William C. Cheng

Operating Systems - CSCI 402

x Private Mapping (1)

A’s Pagetabl

11
X
7

\
page x _R/W) /" z \

pagey R/O ’/ \\

pagez_R/O ~

‘Process A

I/ /
, ! / Pages

A mOdIerS Aage X.

A forks, créqt)’ng\B

AN
AN AN
SN

Shadow object

Private-mapped
file object

Copyright © William C. Cheng

Operating Systems - CSCI 402

ivate Mapping (2)

A’s Pagetablg X Child Pagetable
y

pagex RW Y| = ad P i‘ page x RW |

pagey RO 1] ~N— I pagey RO |

pagez R/O ’/ pagez R/O

-
but this is not right
= need to reset for

copy-on-write
—= how?

A mod|f|e§ daqe X.
A forks, cr\%a’t\lng

B.
\

Copyright © William C. Cheng

A’s Pagetabl

A%

page x__R/O
pagey RO 7]
pagez_R/O]

Copyright © William C. Cheng

Operating Systems - CSCI 402

ivate Mapping (2)

Child Pagetable

\

Cpagex R/O |
~N—_ \‘ pagey RO |
pagez_R/O

-

reset for copy-on-write

= change PTEs for privately
mapped segments to R/O

= add an empty shadow
object since nothing has
been modified, yet (i.e.,
it’s been "reset")

Operating Systems - CSCI 402

ivate Mapping (2)

A’s Pagetablp X \ Child Pagetable
y

pagex RO Y| B ad W\~ pagex RO _|
pagey R/O ’/ ~N— \‘ pagey R/O |
pagez R/O -] cow pagez R/O

//

/ / 4

’ / weenix does it in two steps

= it does not change these
PTEs to R/O

= instead, it unmaps the
entire user space

A mod|f|e§ daqe X.
A forks, cr\ga‘ung B.
\

\\ \\\ AN page table (i.e., sets V=0
ARG for all user space PTEs)
AN = set PTE to R/O on the next

page fault if reading
O wat if the next page fault
is for writing?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping (2)

Process A Process B

A modifies page x.

A forks, creating B.

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping (2)

Process A Process B
4)
. g to find a page to copy from
A modifies page X. = start with the process’
. memory map and follow
A forks_’ _creatlng B. the chain of shadow
A modifies page z. objects
B modifies page y. % = if not in a shadow object,
will find it in the mapped
file or "zero/anonymous"
Y object

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping (2)

Process A

A modifies page x.

A forks, creating B.
A modifies page z.
B modifies pagey.

Copyright © William C. Cheng

Process B

]

4)
to find a page to copy to
= must be managed by the
first shadow object (after
you have performed

llcopyl!)

Operating Systems - CSCI 402

Private Mapping (2)

Process A Process B

A modifies page Xx. ° @

A forks, creating B.
A modifies page z.
B modifies pagey.

B forks, creating C.

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping (3)

Process A Process B Process C

A modifies page Xx. Q

A forks, creating B.
A modifies page z.
B modifies pagey.

B forks, creating C.

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping (3)

Process A Process B Process C

>{Loow }>

A modifies page x.

A forks, creating B.
A modifies page z.
B modifies pagey.

B forks, creating C.

A modifies page x. y
B modifies page x. X .
C modifies page z. Y

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping (3)

Process A Process B Process C

A modifies page x. ° @
A forks, creating B.

A modifies page z.
B modifies pagey.

X
B forks, creating C.

A modifies page x. y

B modifies page x. X .
C modifies page z. Y

Copyright © William C. Cheng

Operating Systems - CSCI

Private Mapping (3)

Process A

402

Process B

Process C

A modifies page x.

A forks, creating B.
A modifies page z.
B modifies pagey.

B forks, creating C.
A modifies page x.
B modifies page x.
C modifies page z.

Copyright © William C. Cheng

-
This is known as "bottom
object” in weenix
= it does NOT have to be

associated with a file
= cah be associated with
Zero/anonymous memory

= polymorphism used
L

3(2(1

57

/

()

Operating Systems - CSCI 402

Private Mapping (4)

Process A Process B Process C

o

= a slightly
different example
Q for the bottom

bject, not all [)
object, not a for this bottom object

page have to be = x and z are "resident"”

resident and Yy is not

- . . = the bottom object knows
Q 1IN weenix, pages In Y how to "get" y

a shadow object = what does shadow object

- g X y 4 : :
"resident” 9

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Copy

) Local RPC
= "copy" arguments from one process to another

—= assume arguments are page-alighed and page-sized
= map pages into both caller and callee, copy-on-write
Q works in most cases, except when the page corresponds

to a shared memory-mapped file
% in this case, the sender does not have a shadow object!

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Share and Private Mapping

Process A

Copyright © William C. Cheng

Process B

Share-mapped
file object

Share and Private Mapping

Process A

A virtual copies X,

y, and z into B.

Copyright © William C. Cheng

Operating Systems - CSCI 402

Process B

Share-mapped
file object

Shadow object

Share and Private Mapping

Process A

A virtual copies X,
y, and z into B.
B modifies y.

Copyright © William C. Cheng

Operating Systems - CSCI 402

Process B

Share-mapped
file object

Shadow object

Share and Private Mapping

Process A

A virtual copies X,
y, and z into B.

B modifies y.

A modifies x.

Copyright © William C. Cheng

Operating Systems - CSCI 402

Process B

Share-mapped
file object

Shadow object

Share and Private Mapping

Process A

A virtual copies X,
y, and z into B.

B modifies y.

A modifies x.

Copyright © William C. Cheng

Operating Systems - CSCI 402

Process B

Share-mapped
file object

Shadow object

Operating Systems - CSCI 402

Shadow Objects Summary

—> Why go through all this trouble?
= because we want to implement copy-on-write together with
fork ()
Q a variable (such as Data a few slides back) can exist in many
different physical pages simultaneously
<& each contains a different version of this variable

ﬁ} To manage this mess, weenix uses the idea of Shadow Objects
= what is the "idea" of Shadow Objects?

Q organize a tree of shadow objects using an inverted tree
data structure
<& where the root is the bottom object

Q the rule for finding page frame / physical page that contains
the global variable in question for a particular process
& traversing shadow object pointers on the inverted tree

Q when and how to perform copy-on-write

= you have to implement what’s described on these slides in 3
i A5

kernel 3
Copyright © William C. Cheng

Operating Systems - CSCI 402

Memory Management Objects in weenix

_) Inweenix, an mmobjis used to manage page frames
= types of mmobj in kernel assignments are:
Q there’s one that lives inside a vnode (vn—>vn_mmob3j)
Q a shadow object is an mmobj
Q an anonymous object (meaning not associated with a file and
not a shadow object) is an mmobj
—= a vmarea IS supported by one of these 3 mmobjs

vmarea_t vmarea_t vmarea_t vim_area_struct vmarea_t
1000-7fff 8000-1afff 1b000-1bfff 200000-41 ffffff 7ffd000-7ffFfff
rx, shared rw, private rw, private rw, private rw, private

struct
file

struct
mmobj anon file anon

mmobj

Copyright © William C. Cheng

Operating Systems - CSCI 402

Memory Management Objects in weenix

_) Inweenix, an mmobjis used to manage page frames
= types of mmobj in kernel assignments are:
Q there’s one that lives inside a vnode (vn—>vn_mmob3j)
Q a shadow object is an mmobj
Q an anonymous object (meaning not associated with a file and
not a shadow object) is an mmobj
—= a vmarea IS supported by one of these 3 mmobjs

vmarea_t vmarea_t vmarea_t vim_area_struct vmarea_t
1000-7fff 8000-1afff 1b000-1bfff 200000-41 ffffff 7ffd000-7ffFfff
rx, shared rw, private rw, private rw, private rw, private

truct
file

struct
mmobj anon file anon

mmobj

ok to have a shadow object here since it won’t get used A @!’}_
since it’s read-only (i.e., no copy-on-write is possible) &
Copyright © William C. Cheng

Operating Systems - CSCI 402

Memory Management Objects in weenix

_) Inweenix, an mmobjis used to manage page frames

— a page frame is uniquely
identified by an mmobj and
d pagenum
Q notation:
(mmobj, pagenum)

Copyright © William C. Cheng

Process A

cow

-

where does pagenum

come from?

= think of a file as
an array of pages

= then pagenum is
the array index

into the file

Shadow object s

Bottom object b

683

Memory Management Objects in weenix

_) Inweenix, an mmobjis used to manage page frames

Operating Systems - CSCI 402

= a page frame is uniquely
identified by an mmobj and
d pagenum

Shadow object s

Bottom object b

Q notation: FIRERE
(mmobj, pagenum) C)cow
Q if you map part of a file
(say a page) into your
address space, you need
to remember which page
& pagenumis then a
page index in that file
(b,0) T (0] (1] |2
(b,1) T T

(b, 2)

Copyright © William C. Cheng

B

Memory Management Objects in weenix

_) Inweenix, an mmobjis used to manage page frames

Operating Systems - CSCI 402

= a page frame is uniquely
identified by an mmobj and
d pagenum
Q notation:
(mmobj, pagenum)

Process A

>{Loow }>

Q hash table used for lookup
Q read kernel 3 FAQ

—= sometimes, you know (s, 2
the exact nhame of a
page frame
Q use hash table to lookup

— sometimes, you only

)
Q Shadow object s

know e.g.,
pagenum (€.¢ (b, 0) -

_>

"where is page z?")

Bottom object b

Q hneed to search

cow
Of |1] (2
T

(b, 1)

|

(b, 2)

Copyright © William C. Cheng

B

Operating Systems - CSCI 402

7.3 Operating System
Issues

ﬁ> General Concerns

_, Representative Systems
ﬁ> Copy on Write and Fork
_) Backing Store Issues

Copyright © William C. Cheng

Page Frames

Copyright © William C. Cheng

The Backing Store

Operating Systems - CSCI 402

 T—
| S— 1 —
[1
1 B
RN Y —
r] '!_l

File System

Disk

??

Operating Systems - CSCI 402

Backing Up Pages (1)

_) Read-only mapping of a file (e.g. text)
= pages come from the file, but, since they are never modified,
they never need to be written back

ﬁ> Read-write shared mapping of a file (e.g. via mmap () system call)
= pages come from the file, modified pages are written back to
the file

vmarea_t vmarea_t vmarea_t vm_area_struct vmarea_t
1000-7fff 8000-1afff 1b000-1bfff 200000-41 ffffff 71ffd000-7ffffff
rx, shared rw, private rw, private rw, shared rw, private

struct struct
file file Y

mmobj anon mmobj anon

) weenix supports this type of "backing store"

Copyright © William C. Cheng

Operating Systems - CSCI 402

Backing Up Pages (2)

) Read-write private mapping of a file (e.g. the data section as

well as memory mapped private by the mmap () system call)

— pages come from the file, but modified pages, associated
with shadow objects, must be backed up in swap space

ﬁ> Anonymous memory (e.g. bss, stack, and shared memory), also
privately mapped

— pages are created as zero fill on demand; they must be
backed up in swap space
Q modified pages of these, associated with shadow objects,
must be backed up in swap space

ﬁ} weenix does not support this type of backing store
—= need to prevent the pageout daemon to free up these pages
accidentically

Q simply move them out of the pageout daemon’s way using
pframe_pin ()

Copyright © William C. Cheng

Operating Systems - CSCI 402

Swap Space

ﬁ} Swap space management possibilities
= radically-conservative approach: Eager Evaluation (or
pre-allocation)
Q backing-store space is allocated when virtual memory is
allocated
Q page outs always succeed
Q disadvantage: might need to have much more backing store
than needed
= radically-liberal approach: Lazy Evaluation
Q backing-store space is allocated only when needed
Q advantage: can get by with minimal backing-store space
Q disadvantage: page outs could fail because of no space and
process gets killed at a seemingly random time

Copyright © William C. Cheng

Operating Systems - CSCI 402

Swap Space

) Space management possibilities
= mixed approach: e.g., reserve stack space for a thread in

Windows

Q the address space for the thread stack is first "reserved”
& no backing store actually created, but space is reserved so

no other thread can use the reserved space

Q when part of this address space is used, it's "committed”

(backing store is actually allocated)

ﬁ> For things like malloc () and allocation of address space for
privately-mapped files
= by default, done with eager evaluation in Windows and
most Unix/Linux systems
= both systems provide means for lazy evaluation as well

Copyright © William C. Cheng

Operating Systems - CSCI 402

Space Allocation in Linux
) Total memory = primary + swap space

G> System-wide parameter: overcommit_memory
= three possibilities
QO maybe (default)
Q always
Q hever

_, mmap has MAP_NORESERVE flag
= don’t worry about over-committing

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Space Allocation in Windows

) Space reservation
= allocation of virtual memory

) Space commitment
= reservation of physical resources
Q paging space + physical memory

_) MapViewOfFile (sort of like mmap)
= Nno over-commitment

) Thread creation
= creator specifies both reservation and commitment for stack
pages

X

Copyright © William C. Cheng

Operating Systems - CSCI 402

Summary

oo (0] . .

e ™) OS
Process Virtual Memory
Management Management

[File System]

\. J

) The subsystems are inter-related

= file systems uses threads managed by the process subsystem

— file systems uses buffer cache (managed by the memory
subsystem)
memory subsystem uses threads to do background work
process subsystem keeps track of data structures related (;,\

to files and virtual memory on behalf of processes 793 X

[

[

Copyright © William C. Cheng

Operating Systems - CSCI 402

Summary

oo (0] . .

e ™) OS
[Process] [Virtual Memory]

Management Management

[File System]

\. J

ﬁ> To make sure you understand the big picuture
= think of everything that happens in these subsystems when
you type "1s" into a console

) Kernel 3 is where everything comes together
= although we are already using page tables in earlier

assignments (see pt_init ()) / @’_

Copyright © William C. Cheng

