
0123

36

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Copy-on-write & Fork

if a page is "managed by a shadow

object" (or "referenced in a shadow

object"), it has been modified

Shadow Objects

A page in a memory map, into which an

object was mapped private (e.g., data

region), has an associated shadow object

otherwise, the page is managed by

the original object (file or a

"zero/anonymous" object)

keep track of pages that were originally

copy-on-write but have been modified

Process A

Private-mapped
file object

Shadow
object

x y z

vm_area_struct
8000-1afff
rw, private

indirection

x, y, z on the right are pages / page frames

Shadow object tells you where to copy from

when you need to perform copy-on-write

mmobj

0123

37

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Address-Space Representation

Remember this?

vm_area_struct
1000-7fff
x, shared

vm_area_struct
8000-1afff
rw, private

vm_area_struct
1b000-1bfff
rw, private

vm_area_struct
7fffd000-7fffffff

rw, private

struct
file

vm_area_struct
200000-41ffffff

rw, private

struct
file

anon anon

0123

38

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Address-Space Representation

Remember this?

vm_area_struct
1000-7fff
x, shared

vm_area_struct
8000-1afff
rw, private

vm_area_struct
1b000-1bfff
rw, private

vm_area_struct
7fffd000-7fffffff

rw, private

struct
file

vm_area_struct
200000-41ffffff

rw, private

struct
file

anon anon

now we have to start with (mmobj is used in weenix):

mmobj

struct
filemmobj

vm_area_struct
200000-41ffffff

rw, private

vmarea_t
1000-7fff
x, shared

vmarea_t
8000-1afff
rw, private

vmarea_t
1b000-1bfff
rw, private

vmarea_t
7fffd000-7fffffff

rw, private

anon anon

struct
file

0123

39

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Share Mapping (1)

Process A has
shared-mapped a file
into its address space

Process A

File object

shared

x y z

in weenix

instead of pointing to a

File object, it’s pointing

to an mmobj inside a

vnode inside a File

object

mmobj is used to manage

page frames

0123

40

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Share Mapping (2)

Process A has
shared-mapped a file
into its address space

Process A

Share-mapped
file object

Process B

A forks, creating B.

shared shared

x y z

Process B also has
the same shared mapping

0123

41

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (1)

Process A

Private-mapped
file object

Shadow object

x y z

cow

0123

42

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (1)

Process A

Private-mapped
file object

Shadow object

x y z

Pages

A’s Pagetable

z

y

x

page x

page y

page z

R/O

R/O

R/O

cow

0123

43

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (1)

A modifies page x.

Process A

Private-mapped
file object

Shadow object

x y z

Pages

A’s Pagetable

z

y

x

page x

page y

page z

R/O

R/O

R/O

cow

x

0123

44

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (1)

A modifies page x.

Process A

Private-mapped
file object

Shadow object

x y z

Pages

A’s Pagetable

z

y

x

page x

page y

page z

R/W

R/O

R/O

cow

0123

45

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (1)

A modifies page x.

Process A

Private-mapped
file object

Shadow object

x y z

x

x

Pages

A’s Pagetable

z

y

x

page x

page y

page z

R/W

R/O

R/O

cow

0123

46

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (1)

A modifies page x.

Process A

Private-mapped
file object

Shadow object

x y z

xA forks, creating B.

x

Pages

A’s Pagetable

z

y

x

page x

page y

page z

R/W

R/O

R/O

cow

x

A’s Pagetable

z

y

x

page x

page y

page z

R/W

R/O

R/O

0123

47

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (2)

A modifies page x.

Process A

x y z

A forks, creating B.

Process B

x

Child Pagetable

page x

page y

page z

R/W

R/O

R/Ocow cow

but this is not right

need to reset for

copy-on-write

how?

x

A’s Pagetable

z

y

x

page x

page y

page z

R/O

R/O

R/O

0123

48

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (2)

A modifies page x.

Process A

x y z

A forks, creating B.

Process B

x

Child Pagetable

page x

page y

page z

R/O

R/O

R/Ocow cow

reset for copy-on-write

add an empty shadow

object since nothing has

been modified, yet (i.e.,

it’s been "reset")

change PTEs for privately

mapped segments to R/O

x

A’s Pagetable

z

y

x

page x

page y

page z

R/O

R/O

R/O

0123

49

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (2)

A modifies page x.

Process A

x y z

A forks, creating B.

Process B

x

Child Pagetable

page x

page y

page z

R/O

R/O

R/Ocow cow

weenix does it in two steps

it does not change these

PTEs to R/O

instead, it unmaps the

entire user space

page table (i.e., sets V=0

for all user space PTEs)

set PTE to R/O on the next

page fault if reading

wat if the next page fault

is for writing?

0123

50

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (2)

A modifies page x.

Process A

x y z

A forks, creating B.

Process B

x

cowcow

0123

51

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (2)

A modifies page x.

Process A

x y z

A forks, creating B.

A modifies page z.

B modifies page y.

Process B

x

to find a page to copy from

start with the process’

memory map and follow

the chain of shadow

objects

if not in a shadow object,

will find it in the mapped

file or "zero/anonymous"

object

cowcow

0123

52

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (2)

A modifies page x.

Process A

x y z

A forks, creating B.

A modifies page z.

B modifies page y.

Process B

x

yz to find a page to copy to

must be managed by the

first shadow object (after

you have performed

"copy")

cowcow

0123

53

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (2)

A modifies page x.

Process A

x y z

A forks, creating B.

A modifies page z.

B modifies page y.

Process B

x

yz

B forks, creating C.

cowcow

0123

54

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (3)

A modifies page x.

Process A

x y z

A forks, creating B.

A modifies page z.

B modifies page y.

Process B

x

y

z

B forks, creating C.

Process C

cowcow cow

0123

55

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (3)

A modifies page x.

Process A

x y z

A forks, creating B.

A modifies page z.

B modifies page y.

Process B

x

y

z

B forks, creating C.

A modifies page x.

B modifies page x.

C modifies page z.

Process C

cowcow cow

0123

56

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (3)

A modifies page x.

Process A

x y z

A forks, creating B.

A modifies page z.

B modifies page y.

Process B

x

y

z

B forks, creating C.

A modifies page x.

B modifies page x.

C modifies page z.

Process C

x z

x

cowcow cow

0123

57

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (3)

A modifies page x.

Process A

x y z

A forks, creating B.

A modifies page z.

B modifies page y.

Process B

x

y

z

B forks, creating C.

A modifies page x.

B modifies page x.

C modifies page z.

Process C

x z

This is known as "bottom

object" in weenix

it does NOT have to be

associated with a file

can be associated with

zero/anonymous memory

polymorphism used

x

cowcow cow

a slightly

different example

0123

58

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping (4)

Process A

x z

Process B

x

z

Process C

x z

for this bottom object

x and z are "resident"

and y is not

the bottom object knows

how to "get" y

what does shadow object

do if write to page y?y

for the bottom

object, not all

page have to be

resident

in weenix, pages in

a shadow object

are, by definition,

"resident"

x

cowcow cow

"copy" arguments from one process to another

Local RPC

assume arguments are page-aligned and page-sized

map pages into both caller and callee, copy-on-write

0123

59

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Copy

works in most cases, except when the page corresponds

to a shared memory-mapped file

in this case, the sender does not have a shadow object!

0123

60

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Share and Private Mapping

Process A

Share-mapped
file object

x y z

Process B

0123

61

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Share and Private Mapping

A virtual copies x,
y, and z into B.

Process A

Share-mapped
file object

x y z

Process B

Shadow object

0123

62

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Share and Private Mapping

A virtual copies x,
y, and z into B.
B modifies y.

Process A

Share-mapped
file object

x y z

Process B

Shadow object
y

0123

63

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Share and Private Mapping

A virtual copies x,
y, and z into B.
B modifies y.
A modifies x.

Process A

Share-mapped
file object

x y z

Process B

Shadow object
x

y

0123

64

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Share and Private Mapping

A virtual copies x,
y, and z into B.
B modifies y.
A modifies x.

Process A

Share-mapped
file object

x’ y z

Process B

Shadow object
x

y

0123

65

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Shadow Objects Summary

because we want to implement copy-on-write together with
fork()

organize a tree of shadow objects using an inverted tree

data structure

Why go through all this trouble?

where the root is the bottom object

what is the "idea" of Shadow Objects?

To manage this mess, weenix uses the idea of Shadow Objects

the rule for finding page frame / physical page that contains

the global variable in question for a particular process

traversing shadow object pointers on the inverted tree

when and how to perform copy-on-write

a variable (such as Data a few slides back) can exist in many

different physical pages simultaneously

each contains a different version of this variable

you have to implement what’s described on these slides in

kernel 3

mmobj

struct
filemmobj

vm_area_struct
200000-41ffffff

rw, private

vmarea_t
1000-7fff

rx, shared

vmarea_t
8000-1afff
rw, private

vmarea_t
1b000-1bfff
rw, private

vmarea_t
7fffd000-7fffffff

rw, private

anon anon

struct
file

0123

66

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Management Objects in weenix

In weenix, an mmobj is used to manage page frames

types of mmobj in kernel assignments are:

there’s one that lives inside a vnode (vn->vn_mmobj)

a shadow object is an mmobj

an anonymous object (meaning not associated with a file and

not a shadow object) is an mmobj

a vmarea is supported by one of these 3 mmobjs

mmobj

struct
filemmobj

vm_area_struct
200000-41ffffff

rw, private

vmarea_t
1000-7fff

rx, shared

vmarea_t
8000-1afff
rw, private

vmarea_t
1b000-1bfff
rw, private

vmarea_t
7fffd000-7fffffff

rw, private

anon anon

struct
file

0123

67

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Management Objects in weenix

In weenix, an mmobj is used to manage page frames

types of mmobj in kernel assignments are:

there’s one that lives inside a vnode (vn->vn_mmobj)

a shadow object is an mmobj

an anonymous object (meaning not associated with a file and

not a shadow object) is an mmobj

a vmarea is supported by one of these 3 mmobjs

ok to have a shadow object here since it won’t get used

since it’s read-only (i.e., no copy-on-write is possible)

Bottom object b

Shadow object s

Process A

x y z

z

cow

0123

68

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Management Objects in weenix

In weenix, an mmobj is used to manage page frames

a page frame is uniquely

identified by an mmobj and

a pagenum

notation:
(mmobj, pagenum)

where does pagenum

come from?

think of a file as

an array of pages

then pagenum is

the array index

into the file

notation:
(mmobj, pagenum)

Process A

Bottom object b

Shadow object s

0 1 2

z

cow

0123

69

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Management Objects in weenix

In weenix, an mmobj is used to manage page frames

a page frame is uniquely

identified by an mmobj and

a pagenum

(b,0)

(b,1)
(b,2)

pagenum is then a

page index in that file

if you map part of a file

(say a page) into your

address space, you need

to remember which page

sometimes, you know

the exact name of a

page frame

need to search

sometimes, you only

know pagenum (e.g.,

"where is page z?")

use hash table to lookup

notation:
(mmobj, pagenum)

Process A

Bottom object b

Shadow object s

0 1 2

2

cow

0123

70

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Management Objects in weenix

In weenix, an mmobj is used to manage page frames

a page frame is uniquely

identified by an mmobj and

a pagenum

(s,2)

(b,0)

(b,1)
(b,2)

hash table used for lookup

read kernel 3 FAQ

0123

71

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

7.3 Operating System

Issues

General Concerns

Representative Systems

Copy on Write and Fork

Backing Store Issues

0123

72

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The Backing Store

File System

Disk

??Page Frames

mmobj

struct
file

mmobj

vm_area_struct
200000-41ffffff

rw, shared

vmarea_t
1000-7fff

rx, shared

vmarea_t
8000-1afff
rw, private

vmarea_t
1b000-1bfff
rw, private

vmarea_t
7fffd000-7fffffff

rw, private

anon anon

struct
file

0123

73

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Backing Up Pages (1)

pages come from the file, but, since they are never modified,

they never need to be written back

Read-only mapping of a file (e.g. text)

pages come from the file, modified pages are written back to

the file

Read-write shared mapping of a file (e.g. via mmap() system call)

weenix supports this type of "backing store"

0123

74

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Backing Up Pages (2)

pages come from the file, but modified pages, associated

with shadow objects, must be backed up in swap space

Read-write private mapping of a file (e.g. the data section as

well as memory mapped private by the mmap() system call)

pages are created as zero fill on demand; they must be

backed up in swap space

Anonymous memory (e.g. bss, stack, and shared memory), also

privately mapped

weenix does not support this type of backing store

need to prevent the pageout daemon to free up these pages

accidentically

simply move them out of the pageout daemon’s way using
pframe_pin()

modified pages of these, associated with shadow objects,

must be backed up in swap space

0123

75

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Swap Space

radically-conservative approach: Eager Evaluation (or

pre-allocation)

Swap space management possibilities

radically-liberal approach: Lazy Evaluation

backing-store space is allocated when virtual memory is

allocated

page outs always succeed

disadvantage: might need to have much more backing store

than needed

backing-store space is allocated only when needed

disadvantage: page outs could fail because of no space and

process gets killed at a seemingly random time

advantage: can get by with minimal backing-store space

0123

76

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Swap Space

by default, done with eager evaluation in Windows and

most Unix/Linux systems

For things like malloc() and allocation of address space for

privately-mapped files

Space management possibilities

mixed approach: e.g., reserve stack space for a thread in

Windows

the address space for the thread stack is first "reserved"

when part of this address space is used, it’s "committed"

(backing store is actually allocated)

both systems provide means for lazy evaluation as well

no backing store actually created, but space is reserved so

no other thread can use the reserved space

0123

77

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Space Allocation in Linux

Total memory = primary + swap space

three possibilities

System-wide parameter: overcommit_memory

don’t worry about over-committing

mmap has MAP_NORESERVE flag

maybe (default)

always

never

0123

78

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Space Allocation in Windows

allocation of virtual memory

Space reservation

reservation of physical resources

Space commitment

no over-commitment

MapViewOfFile (sort of like mmap)

creator specifies both reservation and commitment for stack

pages

Thread creation

paging space + physical memory

0123

79

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Summary

App

Process
Management

Virtual Memory
Management

File System

User

OS

App

file systems uses threads managed by the process subsystem

The subsystems are inter-related

file systems uses buffer cache (managed by the memory

subsystem)

memory subsystem uses threads to do background work

process subsystem keeps track of data structures related

to files and virtual memory on behalf of processes

0123

80

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Summary

App

Process
Management

Virtual Memory
Management

File System

User

OS

App

think of everything that happens in these subsystems when

you type "ls" into a console

To make sure you understand the big picuture

although we are already using page tables in earlier

assignments (see pt_init())

Kernel 3 is where everything comes together

