
0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Simple User Address Space

bss & dynamic

data

text

stack

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Address-Space Representation
(Somewhat Simplified)

vm_area_struct
1000-7fff
x, shared

vm_area_struct
8000-1afff
rw, private

vm_area_struct
1b000-1bfff
rw, private

vm_area_struct
7fffd000-7fffffff

rw, private

struct
file

task_struct

mm_struct

vm_area_struct is what we used to call as_region

areas, regions, memory segments are the same thing

anon
object

anon
object

a memory segment is

made out of pages

file/anonymous object

manages page frames

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Adding a Mapped File

bss & dynamic

data

text

stack

mapped file

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Address-Space Representation: More Areas

vm_area_struct
1000-7fff
x, shared

vm_area_struct
8000-1afff
rw, private

vm_area_struct
1b000-1bfff
rw, private

vm_area_struct
7fffd000-7fffffff

rw, private

struct
file

task_struct

mm_struct

vm_area_struct
200000-41ffffff

rw, private

struct
file

anon
object

anon
object

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Adding More Stuff

bss & dynamic

data

text

stack 1

mapped file 1

stack 2

stack 3

mapped file 2

mapped file 3

mapped file 117

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Address-Space Representation: Reality

task_struct

mm_struct

200000-201fff

1b000-1bfff

1000-7fff 8000-1afff

202000-203fff

204000-204fff 7fffd000-7fffffff

208000-210fff

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Linux Page Management

two-handed clock algorithm

Replacement

applied to zones in sequence

essentially global in scope

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Page Scanning

Zone
Normal

Free
Pages

Active
Pages

Zone
HighMem

Zone
DMA

Inactive
Pages

keeps track of page frames and backing store

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Important Linux VM Data Structures Summary

virtual memory map (which represents the user address space)

maps virtual memory segments

For each process, PCB contains

hardware page tables

Globally, free, active, and inactive page list are maintained

keeps track of page frames and backing store

virtual memory map (which represents the user address space)

For each process, PCB contains

Globally, free, active, and inactive page list are maintained

maps virtual memory segments

hardware page tables

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Important Linux VM Data Structures Summary

Example usage 1: What happens when a page fault occurs?

keeps track of page frames and backing store

virtual memory map (which represents the user address space)

For each process, PCB contains

Globally, free, active, and inactive page list are maintained

maps virtual memory segments

hardware page tables

Example usage 1: What happens when a page fault occurs?

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Important Linux VM Data Structures Summary

1) page fault came from the hardware if V=0 for a page

2) traps into the kernel, the kernel:

2a) gets a free page frame

2b) looks at the virtual memory map and copy the page from

disk into this free page frame

2c) adjust hardware page table to point to this page

frame

keeps track of page frames and backing store

virtual memory map (which represents the user address space)

can get complicated because a page frame may be shared

by multiple user processes

For each process, PCB contains

Globally, free, active, and inactive page list are maintained

maps virtual memory segments

hardware page tables

Example usage 1: What happens when a page fault occurs?

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Important Linux VM Data Structures Summary

1) page fault came from the hardware if V=0 for a page

2) traps into the kernel, the kernel:

2a) gets a free page frame

2b) looks at the virtual memory map and copy the page from

disk into this free page frame

2c) adjust hardware page table to point to this page

frame

keeps track of page frames and backing store

virtual memory map (which represents the user address space)

For each process, PCB contains

Globally, free, active, and inactive page list are maintained

maps virtual memory segments

hardware page tables

Example usage 2: What happens when pageout daemon wants to

free up a modified/dirty page?

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Important Linux VM Data Structures Summary

keeps track of page frames and backing store

virtual memory map (which represents the user address space)

find the corresponding backing store, write back the page

content to disk (mark the page frame "busy" while writing)

For each process, PCB contains

Globally, free, active, and inactive page list are maintained

maps virtual memory segments

hardware page tables

Example usage 2: What happens when pageout daemon wants to

free up a modified/dirty page?

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Important Linux VM Data Structures Summary

1) find from which processes/address spaces the page frame

belongs to

2)

3)

unmap this page from the corresponding pagetables

4) free the page frame if no process is waiting to use it

read pframe_remove_from_pts() in weenix

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Windows x86 Layout

kernel

user

kernel

user

Two choices

4GB

0

3GB

4GB

0

2GB

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Windows Paging Strategy Highlights

lower bound on page frames

All processes guaranteed a "working set"

Competition for additional page frames

one-handed clock algorithm

"Balance-set" manager thread maintains working sets

then working set

Swapper thread swaps out idle processes (inactive for 15 seconds)

very different from Linux

Some of kernel memory is paged

first kernel stacks

page faults are possible

makes more physical memory available

you can get "cannot start a process because there is not

enough memory" message

must "lock down" page frames for page fault handler

0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Windows Page-Frame States

Modified Standby Free Zeroed

Transition

Active

(waiting

for data

from disk)

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

7.3 Operating System

Issues

General Concerns

Representative Systems

Copy on Write and Fork

Backing Store Issues

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Unix and Virtual Memory:
The fork()/exec() Problem

fork() actually makes a copy of the parent’s address space

for the child

Naive implementation:

child executes a few instructions (setting up file descriptors,

etc.)

child calls exec()

result: a lot of time wasted copying the address space, though

very little of the copy is actually used

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

vfork()

the parent is suspended until the child returns it

Don’t make a copy of the address space for the child; instead,

give the address space to the child

as part of the exec, the address space is handed back to the

parent

The child executes a few instructions, then does an exec

very efficient

Advantages

child must not intentionally or accidentically modify the address

space

Disadvantages

works only if child does an exec

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Better fork()

if either party attempts to modify a page, the modifying

process gets a copy of just that page

Parent and child share the pages comprising their address

spaces

usually faster than the original fork()

Advantages

slower than vfork()

Disadvantages

semantically equivalent to the original fork()

try to put things off as long as possible if you don’t have to do

them now

Principle of Lazy Evaluation at work

if it needs to be done now, you don’t really have a choice

if you wait long enough, it might turn out that you don’t have

to do them at all

a process gets a private copy of a page after a thread in the

process performs a write to that page for the first time

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Copy on Write and fork()

copy-on-write must work with fork()

To implement the "better" fork(), we need to use copy-on-write

what are the complications?

during page fault, if a virtual memory segment is R/W and

privately mapped, then we need to perform copy-on-write

set every PTE to R/O for pages that correspond to memory

segments that needs copy-on-write (i.e., privately mapped)

make a copy of that page, set corresponding PTE to R/W

and change its physical page number to point to the copy

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping - Copy on Write Occurs after fork()

Pages

Parent and child process share pages, all marked read-only at first

Parent Pagetable

page x

page y

page z

z

y

x Child Pagetable

R/O

R/O

R/O

page x

page y

page z

R/O

R/O

R/O

to initalize the child’s page table, just use memcpy() to copy

the entire page table from the parent

Parent and child process share pages, all marked read-only at first

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping - Copy on Write Occurs after fork()

copy on write: when one of the processes tries to modify

the data, a copy of the page is created and used

Data = 17;

Pages

Parent Pagetable

z

y

x Child Pagetable

0Data

page x

page y

page z

R/O

R/O

R/O

page x

page y

page z

R/O

R/O

R/O

this is another reason for a page fault

Parent and child process share pages, all marked read-only at first

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping - Copy on Write Occurs after fork()

copy on write: when one of the processes tries to modify

the data, a copy of the page is created and used

Data = 17;

Pages

Parent Pagetable

z

y

x Child Pagetable

0Data

17Data

page x

page y

page z

R/O

R/O

R/W

page x

page y

page z

R/O

R/O

R/O

z

this is another reason for a page fault

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Share-Mapped Files

Data = 17;

For shared mapping, changes are writting into the shared page

Pages

Parent Pagetable

y

x Child Pagetable

17Data

page x

page y

page z

R/W

R/W

R/W

page x

page y

page z

R/W

R/W

R/W

z

please note that the information about whether a page is

shared or private is not inside the page table

it is kept in a kernel data structure (vm_area_struct)

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping - Copy on Write before fork()

For private mapping, copy on write

Pages

Parent Pagetable

z

y

x

page x

page y

page z

R/O

R/O

R/O

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping - Copy on Write before fork()

For private mapping, copy on write

Data = 17;

Pages

Parent Pagetable

z

y

x

0Data

page x

page y

page z

R/O

R/O

R/O

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Private Mapping - Copy on Write before fork()

For private mapping, copy on write

Data = 17;

Pages

Parent Pagetable

z

y

x

0Data

17Data

page x

page y

page z

R/O

R/O

R/W

z

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Private-Mapped File Changes

should child process’ page be marked "modified"?

Complication: what if the page is modified before fork()?

some of child’s pages are initialized from files and some

are initialized from the parent’s address space

Data = 17;

Pages

Parent Pagetable

z

y

x Child Pagetable

0Data

17Data

page x

page y

page z

R/O

R/O

R/W

page x

page y

page z

R/O

R/O

?
 ?

 ?

z

memcpy() the parent’s page table is wrong: what if the parent

modify the page further?

Complication: what if the page is modified before fork()?

child should not see these changes

Data = 17;

Pages

Parent Pagetable

z

y

x Child Pagetable

0Data

17Data

page x

page y

page z

R/O

R/O

R/W

page x

page y

page z

R/O

R/O

R/W

z

0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Private-Mapped File Changes

0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Private-Mapped File Changes

this is also wrong

Data = 17;

Pages

Parent Pagetable

z

y

x Child Pagetable

0Data

17Data

page x

page y

page z

R/O

R/O

R/W

page x

page y

page z

R/O

R/O

R/O

z

Complication: what if the page is modified before fork()?

child process should see 17 in Data on page z

Pages

Parent Pagetable

z

y

x Child Pagetable

0Data

17Data

page x

page y

page z

R/O

R/O

R/O

page x

page y

page z

R/O

R/O

R/O

z

Complication: what if the page is modified before fork()?

0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Private-Mapped File Changes

Data = 17;

this seems to be the correct solution

i.e., copy PTEs from parent and reset for copy-on-write

on all private pages (in all private mapping)

Pages

Parent Pagetable

z

y

x Child Pagetable

0Data

17Data

page x

page y

page z

R/O

R/O

R/O

page x

page y

page z

R/O

R/O

R/O

z

Complication: what if the page is modified before fork()?

0123

35

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Private-Mapped File Changes

Data = 17;

but what if the parent or the child calls fork()again?

afterwards, another process calls fork() again, etc.?

cannot use PTEs to keep track (example later)

