Operating Systems - CSCI 402

Simple User Address Space

text

data

bss & dynamic

l

Copyright © William C. Cheng

Operating Systems - CSCI 402

Address-Space Representation

(Somewhat Simplified)

= a memory segment is

task struct made out of pages
B = file/anonymous object
manages page frames

\\ N

vm_area_struct vm_area_struct vm_area_struct vm_area_struct
1000-7fff 8000-1afff 1b000-1bfff 7tffd000-7fffffff
X, shared rw, private rw, private J rw, private
anon anon
object object

= wvm_area_struct is what we used to call as_region

|
Q areas, regions, memory segments are the same thing 33 |.’
Copyright © William C. Cheng

Operating Systems - CSCI 402

Adding a Mapped File

text

data

bss & dynamic

l

mapped file

!

stack

Copyright © William C. Cheng

Operating Systems - CSCI 402

Address-Space Representation: More Areas

task_struct @

vm_area_struct vm_area_struct vm_area_struct vm_area_struct vm_area_struct
1000-7fff 8000-1afff 1b000-1bfff 200000-41ffffff 7tffd000-7fffffff
X, shared rw, private rw, private rw, private rw, private

Copyright © William C. Cheng

Operating Systems - CSCI 402

Adding More Stuff

text

data

bss & dynamic

l

mapped file 117

mapped file 3

mapped file 2

mapped file 1
stack 3
stack 2

|
stack 1 : @J

Copyright © William C. Cheng

Operating Systems - CSCI 402

Address-Space Representation: Reality

f[200000-201ff
1b000-1bfff]\ 202000-203fff

[1000-7fff 8000-1afff [204000-204fff [7fffd000-7fffffff]

[208000-210fff]

Copyright © William C. Cheng

Linux Page Management

_) Replacement
—= (wo-handed clock algorithm

= applied to zones in sequence
= essentially global in scope

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Page Scanning

5

Zone
DMA

5

Zone
Normal

Y
N
N

5

Zone
HighMem e e

Inactive
Pages Pages

Free
Pages

Copyright © William C. Cheng

Operating Systems - CSCI 402

Important Linux VM Data Structures Summary

) For each process, PCB contains
= virtual memory map (which represents the user address space)
Q maps virtual memory segments
Q keeps track of page frames and backing store
= hardware page tables

ﬁ} Globally, free, active, and inactive page list are maintained

Copyright © William C. Cheng

Operating Systems - CSCI 402

Important Linux VM Data Structures Summary

) For each process, PCB contains
= virtual memory map (which represents the user address space)
Q maps virtual memory segments
Q keeps track of page frames and backing store
= hardware page tables

ﬁ} Globally, free, active, and inactive page list are maintained

ﬁ> Example usage 1: What happens when a page fault occurs?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Important Linux VM Data Structures Summary

) For each process, PCB contains
= virtual memory map (which represents the user address space)
Q maps virtual memory segments
Q keeps track of page frames and backing store
= hardware page tables

ﬁ} Globally, free, active, and inactive page list are maintained

ﬁ> Example usage 1: What happens when a page fault occurs?
1) page fault came from the hardware if V=0 for a page
2) traps into the kernel, the kernel:
2a) gets a free page frame
2b) looks at the virtual memory map and copy the page from
disk into this free page frame
2c) adjust hardware page table to point to this page
frame

Copyright © William C. Cheng

Operating Systems - CSCI 402

Important Linux VM Data Structures Summary

) For each process, PCB contains
= virtual memory map (which represents the user address space)
Q maps virtual memory segments
Q keeps track of page frames and backing store
= hardware page tables

ﬁ} Globally, free, active, and inactive page list are maintained

ﬁ> Example usage 1: What happens when a page fault occurs?
1) page fault came from the hardware if V=0 for a page
2) traps into the kernel, the kernel:
2a) gets a free page frame
2b) looks at the virtual memory map and copy the page from
disk into this free page frame
2c) adjust hardware page table to point to this page

frame
= can get complicated because a page frame may be shared
by multiple user processes 133

Copyright © William C. Cheng

Operating Systems - CSCI 402

Important Linux VM Data Structures Summary

) For each process, PCB contains
= virtual memory map (which represents the user address space)
Q maps virtual memory segments
Q keeps track of page frames and backing store
= hardware page tables

ﬁ} Globally, free, active, and inactive page list are maintained

ﬁ> Example usage 2: What happens when pageout daemon wants to
free up a modified/dirty page?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Important Linux VM Data Structures Summary

) For each process, PCB contains
= virtual memory map (which represents the user address space)
Q maps virtual memory segments
Q keeps track of page frames and backing store
= hardware page tables

ﬁ} Globally, free, active, and inactive page list are maintained

ﬁ> Example usage 2: What happens when pageout daemon wants to
free up a modified/dirty page?

1) find from which processes/address spaces the page frame
belongs to

2) unmap this page from the corresponding pagetables
& read pframe_remove_from_pts () iN weenix

3) find the corresponding backing store, write back the page
content to disk (mark the page frame "busy" while writing)

4) free the page frame if no process is waiting to use it |

Copyright © William C. Cheng

Operating Systems - CSCI 402

Windows x86 Layout

ﬁ> Two choices

user

user

g 2GB

kernel - 3GB

kernel <

.

Copyright © William C. Cheng

Operating Systems - CSCI 402

Windows Paging Strategy Highlights

) All processes guaranteed a "working set"
—= |ower bound on page frames
= you can get "cannot start a process because there is not
enough memory" message

> Competition for additional page frames

ﬁ> "Balance-set” manager thread maintains working sets
—= ohe-handed clock algorithm

ﬁ> Swapper thread swaps out idle processes (inactive for 15 seconds)
= first kernel stacks
= then working set
= very different from Linux

ﬁ> Some of kernel memory is paged
= page faults are possible
QO makes more physical memory available |
QO must "lock down" page frames for page fault handler . @;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Windows Page-Frame States

(waiting
for data
from disk)

e
Jei

Modlfled @

Copyright © William C. Cheng

Operating Systems - CSCI 402

7.3 Operating System
Issues

ﬁ> General Concerns

_, Representative Systems
ﬁ> Copy on Write and Fork
) Backing Store Issues

Copyright © William C. Cheng

Operating Systems - CSCI 402

Unix and Virtual Memory:
The fork () /exec () Problem

ﬁ} Naive implementation:

—= fork () actually makes a copy of the parent’s address space

for the child

= child executes a few instructions (setting up file descriptors,
etc.)
child calls exec ()
result: a lot of time wasted copying the address space, though
very little of the copy is actually used

[

[

Copyright © William C. Cheng

Operating Systems - CSCI 402

vEfork ()

ﬁ} Don’t make a copy of the address space for the child; instead,
give the address space to the child
= the parent is suspended until the child returns it

ﬁ> The child executes a few instructions, then does an exec
— as part of the exec, the address space is handed back to the
parent

_) Advantages
= very efficient

) Disadvantages
= works only if child does an exec
= child must not intentionally or accidentically modify the address
space

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Better fork ()

ﬁ} Parent and child share the pages comprising their address
spaces
= if either party attempts to modify a page, the modifying
process gets a copy of just that page

ﬁ> Principle of Lazy Evaluation at work
= try to put things off as long as possible if you don’t have to do
them now
Q If it needs to be done now, you don’t really have a choice
= if you wait long enough, it might turn out that you don’t have
to do them at all

) Advantages
— semantically equivalent to the original fork ()
= usually faster than the original fork ()

_, Disadvantages
= slower than vfork () gy

Copyright © William C. Cheng

Operating Systems - CSCI 402

Copy on Write and fork ()

ﬁ} To implement the "better"” fork (), we need to use copy-on-write
= a process gets a private copy of a page after a thread in the
process performs a write to that page for the first time
Q set every PTE to R/O for pages that correspond to memory
segments that needs copy-on-write (i.e., privately mapped)
Q during page fault, if a virtual memory segment is R/W and
privately mapped, then we need to perform copy-on-write
<& make a copy of that page, set corresponding PTE to R/W
and change its physical page number to point to the copy
= copy-on-write must work with fork ()
Q what are the complications?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping - Copy on Write Occurs after fork ()

Parent Pagetable X Child Pagetable
y
page x__R/O //"z D pagex RO |
pagey RO -] [pagey RO |
page z__R/O ’/ > pagez_R/O
Pages

ﬁ> Parent and child process share pages, all marked read-only at first
= to initalize the child’s page table, just use memcpy () to copy

the entire page table from the parent |

&y

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping - Copy on Write Occurs after fork ()

Parent Pagetable X Child Pagetable
y
page x__R/O //" z D pagex RO |
pagey RO 1] [>pagey RO |
page z__R/O ’/ > pagez_R/O
Data[0]
Pages
Data = 17;

ﬁ> Parent and child process share pages, all marked read-only at first
= copy on write: when one of the processes tries to modify

the data, a copy of the page is created and used |
Q this is another reason for a page fault 2534

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping - Copy on Write Occurs after fork ()

Parent Pagetable X Child Pagetable

y
page x__R/O //" z D pagex RO |
pagey RO -] [>pagey RO |
pagez_ R/W S*/ > pagez_R/O

Data[0]
Pages
Zz
Data = 17;
Data

ﬁ> Parent and child process share pages, all marked read-only at first
= copy on write: when one of the processes tries to modify

the data, a copy of the page is created and used |
Q this is another reason for a page fault 2534

Copyright © William C. Cheng

Operating Systems - CSCI 402

Share-Mapped Files

Parent Pagetable X Child Pagetable
y
page x__R/W / = P D pagex RW_|
pagey RW -] [pagey RW |
pagez R/W ’/ > pagez R/W
Data [17]
Pages
Data = 17;

ﬁ> For shared mapping, changes are writting into the shared page
= please note that the information about whether a page is
shared or private is not inside the page table

I
Q itis kept in a kernel data structure (vin_area_struct) 273 ..’
Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping - Copy on Write before fork ()

Parent Pagetable X

pagex R/O / /" z

pagey RO 7 /

pagez_R/O]

Pages

) For private mapping, copy on write

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping - Copy on Write before fork ()

Parent Pagetable X

pagex R/O / /" z

pagey RO 7
page z R;O ’/
Data[0]
Pages
Data = 17;

) For private mapping, copy on write

Copyright © William C. Cheng

Operating Systems - CSCI 402

Private Mapping - Copy on Write before fork ()

Parent Pagetable X

pagex R/O / /" z

age RO
gl
Data[0 |
Pages
Data = 17;
Data

) For private mapping, copy on write

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Private-Mapped File Changes

Parent Pagetable X Child Pagetable

y
page x__R/O //" z) D pagex RO |
pagey RO -] 7 [pagey RO |
pagez_R/W S*/ \Zgagez ?

Data [0 | /
?
Pages
z
Data = 17;
Data

ﬁ> Complication: what if the page is modified before fork () ?
= should child process’ page be marked "modified"?
Q some of child’s pages are initialized from files and some (\
0 —

are initialized from the parent’s address space 313 X

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Private-Mapped File Changes

Parent Pagetable X Child Pagetable

y
page x__R/O //" z D pagex RO |
pagey RO -] [pagey RO |
pagez_R/W S*/ /Ppagez R/W

Data[0]
Pages
z
Data = 17;
Data

ﬁ> Complication: what if the page is modified before fork () ?
—= memcpy () the parent’s page table is wrong: what if the parent
modify the page further? |
Q child should not see these changes y @;

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Private-Mapped File Changes

Parent Pagetable X Child Pagetable

y
page x__R/O //" z D pagex RO |
pagey RO -] [>pagey RO |
pagez_ R/W S*/ > pagez_R/O

Data[0]
Pages
z
Data = 17;
Data

ﬁ> Complication: what if the page is modified before fork () ?
= this is also wrong
Q child process should see 17 in Data on page z

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Private-Mapped File Changes

Parent Pagetable X Child Pagetable

y
page x__R/O //" z D pagex RO |
pagey RO -] [pagey RO |
pagez_R/O S*/ /Pagez R/O

Data[0]
Pages
z
Data = 17;
Data

ﬁ> Complication: what if the page is modified before fork () ?
= this seems to be the correct solution
Q i.e., copy PTEs from parent and reset for copy-on-write
on all private pages (in all private mapping) 3
Copyright © William C. Cheng

34

Operating Systems - CSCI 402

A Private-Mapped File Changes

Parent Pagetable X Child Pagetable

y
page x__R/O //" z D pagex RO |
pagey RO -] [pagey RO |
pagez_R/O S*/ /Pagez R/O

Data[0]
Pages
z
Data = 17;
Data

ﬁ> Complication: what if the page is modified before fork () ?
= but what if the parent or the child calls fork () again?
Q afterwards, another process calls fork () again, etc.?
g
Q cannot use PTEs to keep track (example later) vy

Copyright © William C. Cheng

