
0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

7.3 Operating System

Issues

General Concerns

Representative Systems

Copy on Write and Fork

Backing Store Issues

4GB
0123

18

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Linux Intel x86 VM Layout

kernel

user

0

3GB

0123

19

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Real Memory

kernel

user

Virtual Memory Real Memory

0123

20

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Allocation

virtual allocation

User

real allocation

virtual allocation

OS kernel

real allocation

fork

pthread_create

exec

brk

mmap

(not done)

fork, etc.

some kernel data structures

page faults

some kernel data structures

e.g., page tables

pretty much any time when you

allocate from a slab allocator

pretty much any time when you

allocate from the buddy system

3GB

0

0123

21

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example: 1GB Of Real Memory

kernel

user

Virtual Memory Real Memory

1GB

0

4GB

conceptually, can setup page

table so that physical address =

kernel vaddr - 0xc0000000

If you only have 1GB of physical

memory

not done this way in real

systems

OS can read any physical

memory location easily

When allocating page frames

for user space memory pages

these pages are mapped from

both user and kernel spaces

3GB

0

0123

22

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example: 1GB Of Real Memory

kernel

user

Virtual Memory Real Memory

1GB

0

4GB

OS can read any user space

memory location directly

(assuming it’s "mapped")

Page Table

Physical Memory

Page Table

Page Table

Page Table

Physical Memory

Page Table

Page Table

does not look like this but look like this:

Multiple processes - page tables

0123

23

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example: 1GB Of Real Memory

What a user thread becomes the kernel thread, it’s still in the

same process, therefore, should use the same page table

page table
+

vmmap

OS

User

OS

User

1GB

0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example: 1GB Of Real Memory

1GB of Real MemoryApp1 App2

1GB

page table
+

vmmap

OS code and OS data stay exactly where they were

When you switch from one process to another

bottom 1/4 of page tables of all processes are mapped identically

OS text

for kernel-only processes, only the bottom 1/4 of the page

tables are mapped (i.e., top 3/4 always have V=0)

by using the vmmap (virtual memory map) data structure

How to setup top 3/4 page table for a user process?

vmmap is only needed to manage user portion of the

address space

page table
+

vmmap

OS

User

OS

User

1GB

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example: 1GB Of Real Memory

1GB of Real MemoryApp1 App2

1GB

page table
+

vmmap
OS text

Every physical address that’s allocated to a user process can have

two virtual addresses

one for the kernel and one for a user process

which virtual address should the kernel use?

be careful with user virtual address

can always use the kernel virtual address

if V bit in PTE is 0, cannot use such user virtual address in

the kernel

page table
+

vmmap

page table
+

vmmap

OS

User

OS

User
OS text

1GB

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example: 1GB Of Real Memory

1GB of Real MemoryApp1 App2

1GB

you are still the same thread from same process

When you trap into the kernel

you use the same page table

in x86, there’s a user/kernel bit in each PTE (page table entry)

top 3/4 of the PTEs set the bit to U(ser)=1

bottom 1/4 of the PTEs set the bit to 0 (Superviser)

the kernel part of every page table are mapped identically

if you have 1GB or less physical memory, once this

part is mapped, they will never change

page table
+

vmmap

page table
+

vmmap

OS

User

OS

User
OS text

1GB

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example: 1GB Of Real Memory

1GB of Real MemoryApp1 App2

1GB

kernel text, data, and bss starts at virtual address 0xc0000000

HW: read pt_init() in "kernel/mm/pagetable.c" of weenix

then comes kernel’s page directory table (4KB+4KB)

then comes kernel’s page tables (4KB each)

understand how the first page table is setup for the kernel

understand that the kernel, just like user processes, can

only use virtual addresses!

Although weenix only has 256MB of physical memory

In weenix, when an application call read() with buffer address

0x12345678, how can the kernel write to this buffer?

should use kernel virtual address since it’s always safe to use

how to convert 0x12345678 to kernel virtual address?

use the vmmap data structure

page table
+

vmmap

page table
+

vmmap

OS

User

OS

User
OS text

1GB

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example: 1GB Of Real Memory

1GB of Real MemoryApp1 App2

1GB

find memory segment it belongs (a memory segment

consists of a bunch of page frames, find right page frame)

page frame has the base kernel virtual address (i.e.,

page-aligned)

1GB

0

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Lots of Real Memory

kernel

user

Virtual Memory Real Memory

896MB

0

896MB

kmap

1GB

0

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Lots of Real Memory

kernel

user

Virtual Memory Real Memory

896MB

0

896MB

kmap

the kernal can change what

the kmap region maps to

so it can access any

region in physical memory

(where user page frames

sit)

0x38000000+

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Mem_map and Zones

DMA zone: locations < 2
 24

many DMA devices can only handle

24-bit address

Linux divides physical memory into 3 zones

Normal zone: locations ≥ 2
 24

 and < 2
 30

 - 2
 27

HighMem zone: locations ≥ 2
 30

 - 2
 27

OS data structures must reside in this

range

user pages may be in this range

strictly for user pages

0x01000000 to 0x37ffffff

0x00000000 to 0x00ffffff

1GB

0
Real Memory

896MB

0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Mem_map and Zones

Zone
Normal

mem_map
page frames

Zone
HighMem

Zone
DMA

0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Page Lists

Zone
Normal

Free
Pages

Active
Pages

Zone
HighMem

Zone
DMA

Inactive
Pages

0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Page Lists

free list

contain physical pages that have not been allocated

Each zone’s page frames are divided into three lists

buddy system to maintain

inactive

picked out by clock algorithm as not recently used

active

picked out by clock algorithm as recently used

dirty/modified

marked as "busy" and is unmapped from all processes

(i.e., set V=0 in PTE) that share this page

when you lookup a page frame in the page fault handler, if

the page frame is "busy", you must wait until the disk

operation is finished

when data transfer is completed, must wake up all threads

waiting for this page frame to become "un-busy"

