Operating Systems - CSCI 402

7.3 Operating System
Issues

ﬁ> General Concerns

_) Representative Systems
ﬁ> Copy on Write and Fork
) Backing Store Issues

Copyright © William C. Cheng

Operating Systems - CSCI 402

Linux Intel x86 VM Layout

Copyright © William C. Cheng

Operating Systems - CSCI 402

Real Memory

Virtual Memory Real Memory

r B r

user +

kernel

Copyright © William C. Cheng

Operating Systems - CSCI 402

Memory Allocation

ﬁ} User ﬁ} OS kernel

= virtual allocation = virtual allocation
Q fork Q fork, etc.
Q pthread_create Q some kernel data structures
Q exec Q pretty much any time when you
Q brk allocate from a slab allocator
Q mmap = real allocation
= real allocation Q page faults
Q (not done) Q some kernel data structures

< e.g., page tables
Q pretty much any time when you
allocate from the buddy system

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example: 1GB Of Real Memory

Virtual Memory Real Memory

r r

1GB

user +

ﬁ} If you only have 1GB of physical
memory
= conhceptually, can setup page
table so that physical address =
- 3GB - kernel vaddr - 0xc0000000
Q not done this way in real
kernel - systems
= OS can read any physical

memory location easily
S

- 4GB -

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example: 1GB Of Real Memory

Virtual Memory Real Memory

r r

1GB

user +

_> When allocating page frames
for user space memory pages
= these pages are mapped from
both user and kernel spaces
> 3GB - = OS can read any user space
memory location directly
kernel - " (assuming it’s "mapped")

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example: 1GB Of Real Memory

ﬁ> What a user thread becomes the kernel thread, it’s still in the
same process, therefore, should use the same page table

ﬁ> Multiple processes - page tables

— does not look like this = but look like this:
Physical Memory Physical Memory
Page Table Page Table
Page Table Page Table
Page Table Page Table

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example: 1GB Of Real Memory

App1) 1GB of Real Memory \ App2
page table< | page table
User | ymdap > User
OS text vminap
. 7
0S } { 0S
1GB 1GB

ﬁ} When you switch from one process to another
= OS code and OS data stay exactly where they were
= bottom 1/4 of page tables of all processes are mapped identically
Q for kernel-only processes, only the bottom 1/4 of the page
tables are mapped (i.e., top 3/4 always have V=0)

ﬁ} How to setup top 3/4 page table for a user process?
= by using the vmmap (virtual memory map) data structure

Q vmmap is only needed to manage user portion of the 3
‘=’
address space 24

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example: 1GB Of Real Memory

App1) 1GB of Real Memory i App2
page table) | page table
User | ymdap > User
OS text vminap
. ~
OS } { OS
1GB 1GB

ﬁ} Every physical address that’'s allocated to a user process can have
two virtual addresses
= ohne for the kernel and one for a user process
= which virtual address should the kernel use?
Q be careful with user virtual address
& 1f V bitin PTE is 0, cannot use such user virtual address in
the kernel

Q can always use the kernel virtual address @\
253

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example: 1GB Of Real Memory

App1) 1GB of Real Memory \ App2
page table< | page table
User | ymdap > User
OS text vminap
. 7
0S } { 0S
1GB 1GB

> When you trap into the kernel
= you are still the same thread from same process

= you use the same page table
Q 1In x86, there’s a user/kernel bit in each PTE (page table entry)
<& top 3/4 of the PTEs set the bit to U(ser)=1
<& bottom 1/4 of the PTEs set the bit to 0 (Superviser)
Q the kernel part of every page table are mapped identically
& if you have 1GB or less physical memory, once this |
part is mapped, they will never change =

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example: 1GB Of Real Memory

App1) 1GB of Real Memory \ App2
page table< | page table
User | ymdap > User
OS text vminap
. 7
0S } { 0S
1GB 1GB

I:> HW: read pt_init () In "kernel/mm/pagetable.c" of weenix
kernel text, data, and bss starts at virtual address 0xc0000000
then comes kernel’s page directory table (AKB+4KB)

then comes kernel’s page tables (4KB each)

understand how the first page table is setup for the kernel
understand that the kernel, just like user processes, can

only use virtual addresses!

[

U 0 0 [

ﬁ> Although weenix only has 256MB of physical memory .

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example: 1GB Of Real Memory

App1) 1GB of Real Memory i App2
page table) | page table
User | ymdap > User
OS text vminap
. ~
OS } { OS
1GB 1GB

ﬁ} In weenix, when an application call read () with buffer address
0x12345678, how can the kernel write to this buffer?
= should use kernel virtual address since it’s always safe to use
= how to convert 0x12345678 to kernel virtual address?
Q use the vmmap data structure
& find memory segment it belongs (a memory segment
consists of a bunch of page frames, find right page frame)

& page frame has the base kernel virtual address (i.e., |
S

page-aligned)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Lots of Real Memory

Virtual Memory Real Memory

r 0 r ?

4 | 896MB

|y

user +

kernel

Copyright © William C. Cheng

Operating Systems - CSCI 402

Lots of Real Memory

Virtual Memory Real Memory

r 0 r ?

4 | 896MB

v

1GB

user +

{

()
the kernal can change what
the kmap region maps to
= SO it can access any

> j region in physical memory

(where user page frames
sit)

kernel

Copyright © William C. Cheng

Operating Systems - CSCI 402

Mem_map and Zones

) Linux divides physical memory into 3 zones

Real Memory

= DMA zone: locations < 2 ?
Q 0x00000000 to OxXO0ffffff 208MB
Q many DMA devices can only handle *

24-bit address
= Normal zone: locations > 2°* and < 27 -
Q 0x01000000 to Ox37£f££f£fff
Q OS data structures must reside in this
range
Q user pages may be in this range
= HighMem zone: locations > 230277
Q 0x38000000+
Q strictly for user pages

227 1GB

Copyright © William C. Cheng

Operating Systems - CSCI 402

Mem_map and Zones

Zone
DMA) q
> f»
f
—
Zone) >
Normal
|
- .
Zone) -
HighMem :
mem_map page frames

Copyright © William C. Cheng

Operating Systems - CSCI 402

Page Lists

/f\ T~

/f\ T~

Zone
Normal

Higﬁm/f\ E \‘

Inactive Active
Pages Pages

Free
Pages

Copyright © William C. Cheng

Operating Systems - CSCI 402

Page Lists

ﬁ} Each zone’s page frames are divided into three lists
= free list
Q contain physical pages that have not been allocated
Q buddy system to maintain
= active
Q picked out by clock algorithm as recently used
= jnactive
Q picked out by clock algorithm as not recently used
Q dirty/modified
& marked as "busy” and is unmapped from all processes
(i.e., set V=0 in PTE) that share this page
& when you lookup a page frame in the page fault handler, if
the page frame is "busy’, you must wait until the disk
operation is finished
& when data transfer is completed, must wake up all threads

waiting for this page frame to become ""un-busy” @\

Copyright © William C. Cheng

