Operating Systems - CSCI 402

Performance

_) Page Fault (accessing a page with V=0)
1) Trap occurs (due to a page fault)
2) Find free physical page
3) Write page out if no free physical page
4) Fetch page
5) Return from trap

ﬁ} A page fault can result in disk operations and slow down the
application
= do not want to wait for the disk!
= heed to reduce this latency
Q prefetching
Q pageout daemon

Copyright © William C. Cheng

Operating Systems - CSCI 402

Improving the Fetch Policy

Fault here { | - /

Bring these
in as well

<

_) This is prefetching
— accesses to pages is often sequential
— gamble that this is worthwhile (since it takes up more memory)

_, This improves step (4) on previous page
= but it uses up physical memory faster and makes (3) more (i\
vy

likely to occur
Copyright © William C. Cheng

Operating Systems - CSCI 402

Improving the Replacement Policy

_) When is replacement done?
= doing it "on demand" causes excessive delays
Q so, "on-demand” (or Lazy Evaluation) is not always a good
policy
—= should be performed as a separate, concurrent activity
Q use a thread (i.e., a pageout deamon) to continuously and
aggressively look for free pages

Copyright © William C. Cheng

The "Pageout Daemon”

Pageout
Daemon

In-Use Page Free Page
Frames Frames

ﬁ> Page frames are used to keep track of physical pages

) Can use multiple pageout daemons

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Choosing the Page to Remove - Replacement Policy

) Which pages are replaced?
= FIFO policy is not good
= want to replace those pages least likely to be referenced soon

) If your DVD rack is full and you just bought a new DVD
= which DVD would you remove from the rack to make room for

the new DVD?

) ldealized policies:
= FIFO (First-In-First-Out)
= LFU (Least-Frequently-Used)
= LRU (Least-Recently-Used)

Copyright © William C. Cheng

Page Table

Implementing LRU

-
“

L
“
—‘
Py

-
-

-
-
-
-
-
-
-
-
-
-
3

-
-
-
-
-
-”
-

> >
-” -
- -
- -
" ——
- _ -

-
-
-
-
-
-
-
-
-
-
-

-

_Pagé Table Entry

-
-
-
-
-
-
-
-

Physical Page #

-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

- -
- -
- -
- -
-

-
-
-
-
-
-
-
-
-

ﬁ> To approximate LRU (a very coarse approximation), the
reference bit in the page table entry is used

Copyright © William C. Cheng

Operating Systems - CSCI 402

Using The Reference Bits

Operating Systems - CSCI 402

Page table Page table Page table
Text Text Text
0_- 0_- 0_-
Data 1 0 - Data 0 - Data 1
BSS 0_- \ BSS 10 A BSS 0_-
0 - 10 -~ 1 -
f 10 S f 0 - f 0 -
0 - 10 ~N 1
0_- 1.0 0 -
Stack s | Stack = Stack =
App1 App2 App3
Physical \1\1
PFO PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9
Memory

ﬁ> Why would some pages referenced more often than other?

= code?
= stack?

— depends on the application

Copyright © William C. Cheng

Clock Algorithm - Two-handed

_) Need to give enough
time for thousands
of references before
checking

Copyright © William C. Cheng

Back hand:

A remove page

if (reference bit == 0)

~

DN

Front hand:
reference bit =0

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Clock Algorithm - One-handed

if (reference bit == 0)
remove page

A | else
set reference bit =0

_) Need to give enough
time for thousands
of references before
checking

Copyright © William C. Cheng

Operating Systems - CSCI 402

Clock Algorithm - One-handed

r

for weenix

= pageoutd is only woken
up when out of memory

= okay for a toy OS

if (reference bit == 0)
remove page

A | else

set reference bit =0

_) Need to give enough
time for thousands
of references before
checking

Copyright © William C. Cheng

Operating Systems - CSCI 402

Global vs. Local Allocation
ﬁ} What if a process uses up all the page frames?

ﬁ> Global allocation
= all processes compete for page frames from a single pool
— problem:
Q memory-hungry processes will get all the memory
Q possibility of thrashing

) Local allocation
— each process has its own private pool of page frames
—= Windows does this
Q processes do not have to compete for the same pool of
page frames
Q goal is to minimize the possibility of thrashing

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thrashing

ﬁ} Consider a system that has exactly two page frames:
= process A has a page in frame 1
— process B has a page in frame 2 2

ﬁ> Process A references another page, causing a page fault
= the page in frame 2 is removed from B and given to A

ﬁ> Process B faults immediately; the page in frame 1 is given to B

ﬁ> Process A resumes execution and faults again; the page in frame 1
Is given back to A

>

= neither processes makes progress

Copyright © William C. Cheng

Operating Systems - CSCI 402

Thrashing

ﬁ} Consider a system that has exactly two page frames:
= process A has a page in frame 1
— process B has a page in frame 2 2

ﬁ> Process A references another page, causing a page fault
= the page in frame 2 is removed from B and given to A

ﬁ> Process B faults immediately; the page in frame 1 is given to B

ﬁ> Process A resumes execution and faults again; the page in frame 1
Is given back to A

|:> throughput
amn A

= neither processes makes progress knee cliff

) Although this is a contrived example,
it highlights the basic problem
= need 3 physical page frames, , ;
but only 2 ilabl |
ut only 2 are available 3

Copyright © William C. Cheng

Operating Systems - CSCI 402

The Working-Set Principle

) To deal with thrashing, the idea of Working-Set can be used
= although it may be difficult to implement exactly

ﬁ} The set of pages being used by a program (the working set) is
relatively small and changes slowly with time

= WS(P,T) is the set of pages used by process P over time
period T

G> Over time period 7, P should be given /WS(P,T)/ page frames

= [f space isn’t available, then P should not run and should
be swapped out

ﬁ> If the sum of the working-set of all processes is less than the
total amount of available physical memory
= then thrashing cannot occur

= using Local Allocation is a way to reduce the chance of
thrashing

Copyright © William C. Cheng

