
0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Performance

A page fault can result in disk operations and slow down the

application

need to reduce this latency

prefetching

pageout daemon

do not want to wait for the disk!

1)

2)

3)

4)

5)

Trap occurs (due to a page fault)

Find free physical page

Write page out if no free physical page

Fetch page

Return from trap

Page Fault (accessing a page with V=0)

This improves step (4) on previous page

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Improving the Fetch Policy

Fault here

Bring these

in as well

This is prefetching

accesses to pages is often sequential

gamble that this is worthwhile (since it takes up more memory)

but it uses up physical memory faster and makes (3) more

likely to occur

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Improving the Replacement Policy

doing it "on demand" causes excessive delays

When is replacement done?

should be performed as a separate, concurrent activity

use a thread (i.e., a pageout deamon) to continuously and

aggressively look for free pages

so, "on-demand" (or Lazy Evaluation) is not always a good

policy

Can use multiple pageout daemons
0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The "Pageout Daemon"

In-Use Page
Frames

Free Page
Frames

Disk

Pageout
Daemon

Page frames are used to keep track of physical pages

LRU (Least-Recently-Used)

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Choosing the Page to Remove - Replacement Policy

FIFO (First-In-First-Out)

Idealized policies:

LFU (Least-Frequently-Used)

which DVD would you remove from the rack to make room for

the new DVD?

If your DVD rack is full and you just bought a new DVD

FIFO policy is not good

Which pages are replaced?

want to replace those pages least likely to be referenced soon

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Implementing LRU

Physical Page #PortRMV
Page Table

Page Table Entry

To approximate LRU (a very coarse approximation), the

reference bit in the page table entry is used

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Using The Reference Bits

Text

Data

BSS

Stack

Page table

0

1

0

0

1

0

0

1

App1

Text

Data

BSS

Stack

Page table

0

1

0

0

1

1

0

1

App2

Text

Data

BSS

Stack

Page table

0

1

0

0

1

0

0

1

App3

Physical

Memory
PF0 PF1 PF9PF2 PF3 PF4 PF5 PF6 PF7 PF8

-

0

-

0

-

0

-

-

-

-

0

0

-

0

0

-

-

0

-

-

0

-

-

0

code?

Why would some pages referenced more often than other?

stack?

depends on the application

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Clock Algorithm - Two-handed

Back hand:
if (reference bit == 0)
 remove page

Front hand:
reference bit = 0

Need to give enough

time for thousands

of references before

checking

0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Clock Algorithm - One-handed

Need to give enough

time for thousands

of references before

checking

if (reference bit == 0)
 remove page
else
 set reference bit = 0

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Clock Algorithm - One-handed

Need to give enough

time for thousands

of references before

checking

if (reference bit == 0)
 remove page
else
 set reference bit = 0

for weenix

pageoutd is only woken

up when out of memory

okay for a toy OS

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Global vs. Local Allocation

all processes compete for page frames from a single pool

Global allocation

each process has its own private pool of page frames

Local allocation

Windows does this

processes do not have to compete for the same pool of

page frames

What if a process uses up all the page frames?

problem:

memory-hungry processes will get all the memory

possibility of thrashing

goal is to minimize the possibility of thrashing

Process A references another page, causing a page fault

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thrashing

process A has a page in frame 1

Consider a system that has exactly two page frames:

process B has a page in frame 2

Process B faults immediately; the page in frame 1 is given to B

Process A resumes execution and faults again; the page in frame 1

is given back to A

...

neither processes makes progress

the page in frame 2 is removed from B and given to A

1

2

Process A references another page, causing a page fault

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Thrashing

process A has a page in frame 1

Consider a system that has exactly two page frames:

process B has a page in frame 2

Process B faults immediately; the page in frame 1 is given to B

Process A resumes execution and faults again; the page in frame 1

is given back to A

...

need 3 physical page frames,

but only 2 are available

Although this is a contrived example,

it highlights the basic problem

throughput

load

knee cliffneither processes makes progress

the page in frame 2 is removed from B and given to A

1

2

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

The Working-Set Principle

WS(P,T) is the set of pages used by process P over time

period T

The set of pages being used by a program (the working set) is

relatively small and changes slowly with time

if space isn’t available, then P should not run and should

be swapped out

Over time period T, P should be given |WS(P,T)| page frames

although it may be difficult to implement exactly

To deal with thrashing, the idea of Working-Set can be used

then thrashing cannot occur

If the sum of the working-set of all processes is less than the

total amount of available physical memory

using Local Allocation is a way to reduce the chance of

thrashing

