
0123

24

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

7.3 Operating System

Issues

General Concerns

Representative Systems

Copy on Write and Fork

Backing Store Issues

Fetch policy

Placement policy

Replacement policy

0123

25

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Memory: Traditional OS Issues

Fetch policy

Placement policy

Replacement policy

0123

26

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Memory: Traditional OS Issues

Text

Data+BSS

Heap

Stack

as_region
1000-7fff

rx, shared

as_region
8000-1afff
rw, private

as_region
1b000-1bfff
rw, private

as_region
200000-41ffffff

rw, shared

as_region
7fffd000-7fffffff

rw, private

file
object

file
object

PCB address
space

anon
object

anon
object

start process off with no pages in primary storage

Fetch policy

bring in pages on demand (and only on demand)

this is known as demand paging

defer processing until you absolutely have to do it

demand paging is an instance of Lazy Evaluation, a

powerful idea used in computer science

why? because you may not have to process at all

0123

27

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple Paging Scheme

unlike disk pages, it doesn’t matter here - put the incoming

page (from disk) in the first available physical page

Placement policy

required if there is not enough resource to go around

Replacement policy

e.g., replace the page that has been in primary storage the

longest (FIFO policy, which can be bad)

0123

28

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

A Simple Paging Scheme

page frames are used to keep track of physical pages

0123

29

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Demand Paging

In exec(), address space is created and page table is cleared with

all entries having V=0

Text

Data+BSS

Heap

Stack

Page table

0

0

0

0

0

0

0

0

0

0

0

0

0

0123

30

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Demand Paging

as the first instruction executes

In exec(), address space is created and page table is cleared with

all entries having V=0

Text

Data+BSS

Heap

Stack

Page table

0

0

0

0

0

0

0

0

0

0

0

0

0

0123

31

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Demand Paging

as the first instruction executes

since V=0, the hardware traps into the kernel

In exec(), address space is created and page table is cleared with

all entries having V=0

Text

Data+BSS

Heap

Stack

Page table

0

0

0

0

0

0

0

0

0

0

0

0

0

Text

Data+BSS

Heap

Stack

0123

32

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Demand Paging

as the first instruction executes

since V=0, the hardware traps into the kernel

In exec(), address space is created and page table is cleared with

all entries having V=0

Page table

0

0

0

0

0

0

0

0

0

0

0

0

0

the kernel allocates a physical page and copy the first 4KB

of code into this page (allocate from where?)

point the corresponding page table entry to this page

update all necessary data structures

Disk

the kernel allocates a physical page and copy the first 4KB

of code into this page (allocate from where?)

point the corresponding page table entry to this page

0123

33

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Demand Paging

as the first instruction executes

since V=0, the hardware traps into the kernel

In exec(), address space is created and page table is cleared with

all entries having V=0

Text

Data+BSS

Heap

Stack

Page table

0

0

0

0

0

0

0

0

0

0

0

0

1

set V=1 and return from the trap

update all necessary data structures

0123

34

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Demand Paging

as the program access the stack

In exec(), address space is created and page table is cleared with

all entries having V=0

Text

Data+BSS

Heap

Stack

Page table

0

0

0

0

0

0

0

0

0

0

0

0

1

0123

35

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Demand Paging

similar things happen

In exec(), address space is created and page table is cleared with

all entries having V=0

Text

Data+BSS

Heap

Stack

Page table

1

0

0

0

0

0

0

0

0

0

0

0

1

as the program access the stack

0123

36

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Demand Paging

similar things happen

In exec(), address space is created and page table is cleared with

all entries having V=0

Text

Data+BSS

Heap

Stack

Page table

1

0

0

0

0

0

0

0

0

0

0

0

1

although stack is a little different since it needs a backing

store and need to set up for copy-on-write

as the program access the stack

although stack is a little different since it needs a backing

store and need to set up for copy-on-write

0123

37

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Demand Paging

similar things happen

In exec(), address space is created and page table is cleared with

all entries having V=0

Text

Data+BSS

Heap

Stack

Page table

1

0

0

0

0

0

1

0

0

0

0

0

1

as the program access the stack

accessing the data segment is similar to stack (but different)

original (read-only) backing store is the executable file

after copy-on-write, backing store is the swap space

Text

Data+BSS

Heap

Stack

Page table

1

0

0

0

0

0

1

0

0

0

0

0

1

0123

38

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Demand Paging

Remember, there are multiple processes and multiple page

tables that the OS is servicing

complicated by the fact that page frames can be shared

In kernel 3, you need to make sure that every time when you

return back into user space, all kernel data structures are in a

consistent state

1)

2)

3)

4)

5)

Trap occurs (due to a page fault)

Find free physical page

Write page out if no free physical page

Fetch page

Return from trap

Page Fault (accessing a page with V=0)

0123

39

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Page Fault

Issues

in step (2), where and how do we find such a free physical page?

1)

2)

3)

4)

5)

Trap occurs (due to a page fault)

Find free physical page

Write page out if no free physical page

Fetch page

Return from trap

Page Fault (accessing a page with V=0)

0123

40

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Page Fault

Issues

in step (2), where and how do we find such a free physical page?

in step (3), where and how do we find an in-use physical page to

write out to disk?

the Buddy System is used

return NULL if no free physical page is available

0123

41

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

Text

Data

BSS

Stack

Page table

0

1

0

0

1

0

0

1

App1

Text

Data

BSS

Stack

Page table

0

1

0

0

1

1

0

1

App2

Text

Data

BSS

Stack

Page table

0

1

0

0

1

0

0

1

App3

Physical

Memory
PF0 PF1 PF9PF2 PF3 PF4 PF5 PF6 PF7 PF8

Text

Data

BSS

Stack

Page table

0

1

0

0

1

0

0

1

App1

Text

Data

BSS

Stack

Page table

0

1

0

0

1

1

0

1

App2

Text

Data

BSS

Stack

Page table

0

1

0

0

1

0

0

1

App3

Text

Data

BSS

Stack

Page table

0

0

0

0

0

0

0

0

App4
?

0123

42

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

Physical

Memory
PF0 PF1 PF9PF2 PF3 PF4 PF5 PF6 PF7 PF8

all physical pages are in use

Need a physical page

all physical pages are in use

Need a physical page

Text

Data

BSS

Stack

Page table

0

1

0

0

1

0

0

1

App1

Text

Data

BSS

Stack

Page table

0

1

0

0

1

1

0

1

App2

Text

Data

BSS

Stack

Page table

0

1

0

0

1

0

0

1

App3

Text

Data

BSS

Stack

Page table

0

0

0

0

0

0

0

0

App4
?

0123

43

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

Physical

Memory
PF0 PF1 PF9PF2 PF3 PF4 PF5 PF6 PF7 PF8

pick any physical page

well, according to the page replacement policy

"swap" this physical page out

all physical pages are in use

Need a physical page

pick any physical page

Text

Data

BSS

Stack

Page table

0

1

0

0

0

0

0

1

App1

Text

Data

BSS

Stack

Page table

0

1

0

0

1

1

0

1

App2

Text

Data

BSS

Stack

Page table

0

1

0

0

1

0

0

1

App3

Text

Data

BSS

Stack

Page table

0

0

0

0

0

0

0

0

App4
?

0123

44

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

Physical

Memory
PF0 PF1 PF9PF2 PF4 PF5 PF6 PF7 PF8PF3

kernel keeps track of

where the physical page is copied to

into its "backing store"

(write to disk if the

page frame is "dirty")

Text

Data

BSS

Stack

Page table

0

1

0

0

0

0

0

1

App1

Text

Data

BSS

Stack

Page table

0

1

0

0

1

1

0

1

App2

Text

Data

BSS

Stack

Page table

0

1

0

0

1

0

0

1

App3

Text

Data

BSS

Stack

Page table

0

0

0

0

0

0

0

0

App4
?

0123

45

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

Physical

Memory
PF0 PF1 PF9PF2 PF4 PF5 PF6 PF7 PF8PF3

a physical page is now free

all physical pages are in use

Need a physical page

pick any physical page

Text

Data

BSS

Stack

Page table

0

1

0

0

0

0

0

1

App1

Text

Data

BSS

Stack

Page table

0

1

0

0

1

1

0

1

App2

Text

Data

BSS

Stack

Page table

0

1

0

0

1

0

0

1

App3

Text

Data

BSS

Stack

Page table

1

0

0

0

0

0

0

0

App4

0123

46

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Example

Physical

Memory
PF0 PF1 PF9PF2 PF4 PF5 PF6 PF7 PF8PF3

fetch page from disk and fix up page table

a physical page is now free

all physical pages are in use

Need a physical page

pick any physical page

