Operating Systems - CSCI 402

7.3 Operating System
Issues

ﬁ> General Concerns

_, Representative Systems
ﬁ> Copy on Write and Fork
) Backing Store Issues

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Memory: Traditional OS Issues

) Fetch policy
) Placement policy

_ Replacement policy

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Memory: Traditional OS Issues

) Fetch policy Toxt
Data+BSS

) Placement policy e

_ Replacement policy I
Stack

PCB address
space

as_region as_region as_region as_region as_region
1000-7fff 8000-1afff 1b000-1bfff 200000-41ffffff 7ifd000-7fffffff
rx, shared rw, private rw, prlvate rw, shared rw, private

Y

file
object

Copyright © William C. Cheng

Operating Systems - CSCI 402

A Simple Paging Scheme

_) Fetch policy
= start process off with no pages in primary storage

= bring in pages on demand (and only on demand)
Q this is known as demand paging
& defer processing until you absolutely have to do it
& why? because you may not have to process at all
& demand paging is an instance of Lazy Evaluation, a
powerful idea used in computer science

Copyright © William C. Cheng

Operating Systems - CSCI 402
A Simple Paging Scheme

_) Placement policy
= unlike disk pages, it doesn’t matter here - put the incoming
page (from disk) in the first available physical page
Q page frames are used to keep track of physical pages

_) Replacement policy
= required if there is not enough resource to go around
= e.g., replace the page that has been in primary storage the
longest (FIFO policy, which can be bad)

Copyright © William C. Cheng

Operating Systems - CSCI 402

Demand Paging

0
Text E g
Data+BSS E 0
Heap E 0
0
f 0
0
Stack E g
0
0
0

Page table

ﬁ} In exec (), address space is created and page table is cleared with
all entries having V=0

Copyright © William C. Cheng

Operating Systems - CSCI 402

Demand Paging

/> 0
- Text E g
Data+BSS E 0
Heap E g
f 0
0
Stack E g
0
0
0

Page table

ﬁ} In exec (), address space is created and page table is cleared with
all entries having V=0
= as the first instruction executes

Copyright © William C. Cheng

Operating Systems - CSCI 402

Demand Paging

- "

Text
Data+BSS
Heap

i

Stack

(=2 (=] [=] [=] [=} [=] [=} [«] [«} [«] [«} =} [=]

Page table

ﬁ} In exec (), address space is created and page table is cleared with
all entries having V=0
= as the first instruction executes
Q since V=0, the hardware traps into the kernel

Copyright © William C. Cheng

Operating Systems - CSCI 402

Demand Paging

- "

Text
Data+BSS
Heap

i

Stack

ﬁ} In exec (), address space is created and page table is cleared with
all entries having V=0
= as the first instruction executes
Q since V=0, the hardware traps into the kernel
Q the kernel allocates a physical page and copy the first 4KB
of code into this page (allocate from where?)
& point the corresponding page table entry to this page
& update all necessary data structures

(=2 (=] [=] [=] [=} [=] [=} [«] [«} [«] [«} =} [=]

Page table

Copyright © William C. Cheng

Operating Systems - CSCI 402

Demand Paging

- "

Text
Data+BSS
Heap

i

Stack

1 .

(=2 (=] [=] [=] [=} [=] [=} [«] [} [=] [=} N}

Page table

ﬁ} In exec (), address space is created and page table is cleared with
all entries having V=0
= as the first instruction executes
Q since V=0, the hardware traps into the kernel
Q the kernel allocates a physical page and copy the first 4KB
of code into this page (allocate from where?)
& point the corresponding page table entry to this page
& update all necessary data structures |
QO set V=1 and return from the trap 3 @;

Copyright © William C. Cheng

Operating Systems - CSCI 402

Demand Paging

__/—>1 =
Text E g \\>
Data+BSS E 0
Heap E g
f 0
0
= Stack E g
0
0
0

Page table

ﬁ} In exec (), address space is created and page table is cleared with
all entries having V=0
= as the program access the stack

Copyright © William C. Cheng

Operating Systems - CSCI 402

Demand Paging

_/—>1 -
Text E g \\>
Data+BSS E 0
Heap E 0
0
f 0
0
= Stack E g
0
0
\1 _j
Page table

ﬁ} In exec (), address space is created and page table is cleared with
all entries having V=0
= as the program access the stack
Q similar things happen

Copyright © William C. Cheng

Operating Systems - CSCI 402

Demand Paging

_/—>1 -
Text E g \\»
Data+BSS E 0
Heap E 0
P _E 0
f 0
0
= Stack E g
0
0
\1 _j
Page table

ﬁ} In exec (), address space is created and page table is cleared with
all entries having V=0
= as the program access the stack
Q similar things happen
Q although stack is a little different since it needs a backing
store and need to set up for copy-on-write

Copyright © William C. Cheng

Operating Systems - CSCI 402

Demand Paging

Text

>
= [Data+BSS
Heap \

Stack

S EEEEEEEEE R
|

Page table

ﬁ} In exec (), address space is created and page table is cleared with
all entries having V=0
= as the program access the stack
Q similar things happen
Q although stack is a little different since it needs a backing
store and need to set up for copy-on-write
= accessing the data segment is similar to stack (but different)
Q original (read-only) backing store is the executable file |
&)

Q after copy-on-write, backing store is the swap space
Copyright © William C. Cheng

Operating Systems - CSCI 402

Demand Paging

- Text
=1 [Data+BSS
| Heap

(V.

-] Stack

(=1 (=} (=] (=} [=0 4 [=} [=] [=} =) =} 1

) o

-t

Page table

ﬁ} Remember, there are multiple processes and multiple page
tables that the OS is servicing
= complicated by the fact that page frames can be shared

ﬁ> In kernel 3, you need to make sure that every time when you
return back into user space, all kernel data structures are in a
consistent state

Copyright © William C. Cheng

Operating Systems - CSCI 402

Page Fault

_) Page Fault (accessing a page with V=0)
1) Trap occurs (due to a page fault)
2) Find free physical page
3) Write page out if no free physical page
4) Fetch page
5) Return from trap

_) Issues

= in step (2), where and how do we find such a free physical page?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Page Fault

_) Page Fault (accessing a page with V=0)
1) Trap occurs (due to a page fault)
2) Find free physical page
3) Write page out if no free physical page
4) Fetch page
5) Return from trap

ﬁ> Issues

= in step (2), where and how do we find such a free physical page?

Q the Buddy System is used
& return NULL if no free physical page is available
= in step (3), where and how do we find an in-use physical page to

write out to disk?

Copyright © William C. Cheng

Example
Page table Page table Page table
Text Text Text
0 0 0
Data 1 - Data 0 Data 1
BSS 0 \ BSS 1 5 BSS 0
0 1 ~ 1 -
? 1 N ? 0 ¢ 0
0 1 N 1
0 1 0
Stack ” | Stack = Stack 5
App1 App2 App3
Physical
PFO PF1
Memory

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems - CSCI 402

Example
Page table Page table Page table Page table
Text Text Text Text
0 0 0 0 ~
Data 1 - Data 0 Data 1 Data 0
BSS 0 \ BSS 1 5 BSS 0 BSS 0
0 1 -~ 1 - 0
f 1 ~ f 0 0 f 0
0 1 ~N 1 \ 0
0 1 0 0
Stack ” | Stack = 5 \ Stack =
App1 App2 App4
?
Physical \1\\
PFO PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9
Memory

) Need a physical page
= all physical pages are in use

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example
Page table Page table Page table Page table
Text Text Text Text
0 0 0 0 ~
Data 1 - Data 0 Data 1 Data 0
BSS 0 \ BSS ! 5 BSS 0 BSS 0
~ ~ 0
f 1 f 0 0 f 0
1 ~ 1 \ 0
0 1 0 0
Stack ” | Stack = 5 \ Stack =
App1 App2 App4
?
Physical \1\\
PFO PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9
Memory

_, Need a physical page

= all physical pages are in use
= pick any physical page
Q well, according to the page replacement policy

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example
Page table Page table Page table Page table
Text Text Text Text
0 0 0 0 ~
Data 1 - Data 0 Data 1 Data 0
BSS 0 \ BSS ! 5 BSS 0 BSS 0
~ ~ 0
f 0 f 0 0 f 0
1 ~ 1 \ 0
0 1 0 0
Stack ” | Stack = 5 \ Stack =
App1 App2 App4
?
Physical \1\\
PFO PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9
Memory

_, Need a physical page
= all physical pages are in use
= pick any physical page

Q kernel keeps track of

=y

where the physical page is copied to

Copyright © William C. Cheng

"swap" this physical page out
into its "backing store
(write to disk if the
page frame is "dirty")

B

Operating Systems - CSCI 402

Example
Page table Page table Page table Page table
Text Text Text Text
0 0 0 0 ~
Data 1 - Data 0 Data 1 Data 0
BSS 0 \ BSS 1 5 BSS 0 BSS 0
0 1 ~ 1 -~ 0
B bR bR P EB
0 1 N 1 \ 0
0 1 0 0
Stack ” | Stack = Stack 5 \ Stack =
App1 App2 App3 App4
?
PhVSicaI (\\
PFO PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9
Memory

) Need a physical page
= all physical pages are in us
= pick any physical page
= a physical page is now free

Copyright © William C. Cheng

Operating Systems - CSCI 402

Example
Page table Page table Page table Pa ble
Text Text Text Text
0 0 0 1
Data 1 - Data 0 Data 1 Data
BSS 0 \ BSS 1 E BSS 0 BSS 0
0 1 ~ 1 -~ 0
B bR bR P EB
0 1 S 1 \ 0 /
0 1 0 0 /
Stack ” | Stack = Stack 5 \ Stack = 7
App1 App2 App3 App4
PFO PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9
Memory

_, Need a physical page
= all physical pages are in use
= pick any physical page
= a physical page is now free |
= fetch page from disk and fix up page table g @

Copyright © William C. Cheng

