Operating Systems - CSCI 402

Ch 1: Introduction

Bill Cheng

http://merlot.usc.edu/william/usc/

Copyright © William C. Cheng

Operating Systems - CSCI 402

What are Operating Systems?

_) Possible definitions:
= the code that {Microsoft, Apple, Linus, Google} provides
the code that you didn’t write
the code that runs in privileged mode
the code that makes things work
the code that makes things crash
etc.

[

U 0 0 [

Copyright © William C. Cheng

Operating Systems - CSCI 402

Operating Systems

) Abstraction
= providing an "appropriate” interface for applications
= but abstraction to what exactly? (next slide)

_, What's an "abstraction" anyway?
= think about "abstract data types™ in a data structures class
Q it’s data structures and associated functions to make
something looks like it has some behavior

) Alist object has a sort () function
—= "objects" is the word we use to mean any data types (primitive,
data structures, pointers)
= can a list really sort itself?
Q of course not
Q we need to put the list under some sort of an
"execution context" in order to execute the sort () function

< umm... what’s a "context"?
. I - / @!,}_
& well, it’s hard to say exactly what it is at this time Y

Copyright © William C. Cheng

_,) Hardware

= disks
Q hard drives
Q optical drives
memory
processors
network
Q ethernet
Q modem
monitor
keyboard
mouse

[

[

[

[

[

[

Operating Systems - CSCI 402

Hardware

Disk \

= @

Memory

Network

ﬁ> Application programs are not allowed to use hardware directly

= that’s why we have to provide abstractions .

Copyright © William C. Cheng

Operating Systems - CSCI 402

OS Abstractions
_, Hardware) Operating system
= disks = files (file system)
= memory = programs (processes)
= processors — threads of control
= nhetwork = communication
= monitor = windows, graphics
— keyboard = input
= mouse = locator

_, For those who knows about
"processes", we use the word
"program"” to mean ""process" in
the introductory material

ﬁ> Application programs are not allowed to use hardware directly
= that’s why we have to provide abstractions N
2

Copyright © William C. Cheng

Operating Systems - CSCI 402

OS Abstractions

ﬁ} The main focus of this class is about how to provide these
abstractions
= don’t just "hack" it until it works
= we will talk about OS design principles and show how these
abstractions can be implemented
Q this class is more about the fundamentals and is not a "tech"
class

ﬁ> Concerns
= performance
Q time, space, energy
sharing and resource management
failure tolerance
security
marketability

0 0 0 0

Copyright © William C. Cheng

Operating Systems - CSCI 402

Abstraction Example: Files

_ - Memory
= o
_— 1 —
& &) B
= = = m m
= = =

) It's nice to have a simple abstraction

) Abstraction did not come for free

= [t introduces problems that need to be solved and issues to
be addressed

Copyright © William C. Cheng

Operating Systems - CSCI 402

Issues With The Files Abstraction

ﬁ} Naming

= device-independence

ﬁ} Allocating space on disk (permanent storage)
= organized for fast access
= minimize waste

ﬁ> Shuffling data between disk and memory (high-speed temporary
storage)

_) Coping with crashes

Copyright © William C. Cheng

Abstraction Example: Programs

Operating Systems - CSCI 402

ﬁ> Application programmers use the Address Space abstraction:

low memory text
address (code)

data

dynamic
(heap)

high memory
address

Copyright © William C. Cheng

\

J\L

r Code

- Data

Abstraction Example: Programs

ﬁ} Application programmers use the Address Space abstraction:

ﬁ> Very important:

— our address space is
up-side-down (compared
with the textbook)

Q low address at the top
Q high address at the bottom
< memory layout matches
an array
Q stack looks like a "stack"
= our textbook does it the other way

low memory
address

) This is not the only possible

memory layout high memory
= compiler decides! address

Copyright © William C. Cheng

text
(code)

data

dynamic
(heap)

\

J\L

Operating Systems - CSCI 402

r Code

- Data

Operating Systems - CSCI 402

Abstraction Example: Programs

text
(code) L]

Memory

data L

dynamic
(heap) B

v
b L

stack ||

@

ﬁ> Application programmers do not have to worry about any
sharing that’s going on

Copyright © William C. Cheng

Operating Systems - CSCI 402

Memory Sharing Option 1

Program 1

Program 2

Program 3

Operating
System

Physical Memory

> Does not appear to be very flexible

Copyright © William C. Cheng

Operating Systems - CSCI 402

Memory Sharing Option 2

Physical Memory

G> What if programs take up too much space (more than physical
memory)?

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Memory

= virtual memory map
Q part hardware, part OS
Q each program thinks

it has its own full
address space 4

14

Copyright © William C. Cheng

Operating Systems - CSCI 402

Virtual Memory

= VA: virtual address
= PA: physical address

= virtual memory map
Q part hardware, part OS
Q each program thinks

it has its own full
address space 1534

Copyright © William C. Cheng

Operating Systems - CSCI 402

Sharing of Processor: Concurrency

ﬁ} If you only have one processor, how do you run multiple "programs”
and every program thinks it owns the processor?
= abstraction: threads (or "threads of execution™)

¥ w W

Virtual Processor Virtual Processor Virtual Processor
(or thread) (or thread) (or thread)

Processor

ﬁ} How do you suspend a thread (save execution context) so you |
K2

can resume its execution later (restore execution context)?
Copyright © William C. Cheng

1

Operating Systems - CSCI 402

Sharing of Processors: Parallelism

ﬁ} What if you have a multicore processor or multiple processors?
= we don’t distinguish concurrency and parallelism in this class
= can still use threads

Q but we need to worry about how well we do resource

(processor) management/allocation

Virtual Processor Virtual Processor Virtual Processor
(or thread) (or thread) (or thread)

|
Pr r Pr r Pr r 3
ocesso ocesso ocesso @,

Copyright © William C. Cheng

