
0123

1

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Ch 1: Introduction

Bill Cheng

http://merlot.usc.edu/william/usc/

the code that {Microsoft, Apple, Linus, Google} provides

Possible definitions:

0123

2

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

What are Operating Systems?

the code that you didn’t write

the code that runs in privileged mode

the code that makes things work

the code that makes things crash

etc.

0123

3

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Operating Systems

providing an "appropriate" interface for applications

Abstraction

but abstraction to what exactly? (next slide)

think about "abstract data types" in a data structures class

What’s an "abstraction" anyway?

it’s data structures and associated functions to make

something looks like it has some behavior

"objects" is the word we use to mean any data types (primitive,

data structures, pointers)

A list object has a sort() function

of course not

can a list really sort itself?

we need to put the list under some sort of an

"execution context" in order to execute the sort() function

umm... what’s a "context"?

well, it’s hard to say exactly what it is at this time

disks

Hardware

memory

processors

network

monitor

keyboard

mouse

hard drives

optical drives

ethernet

modem

0123

4

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Hardware

DiskDisk

Memory

Network

Application programs are not allowed to use hardware directly

that’s why we have to provide abstractions

0123

5

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

OS Abstractions

disks

Hardware

memory

processors

network

monitor

keyboard

mouse

files (file system)

Operating system

programs (processes)

threads of control

communication

windows, graphics

input

locator

For those who knows about

"processes", we use the word

"program" to mean "process" in

the introductory material

Application programs are not allowed to use hardware directly

that’s why we have to provide abstractions

performance

Concerns

sharing and resource management

failure tolerance

security

marketability

time, space, energy

0123

6

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

OS Abstractions

don’t just "hack" it until it works

The main focus of this class is about how to provide these

abstractions

we will talk about OS design principles and show how these

abstractions can be implemented

this class is more about the fundamentals and is not a "tech"

class

0123

7

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Abstraction Example: Files

Disk Disk

Memory

Abstraction did not come for free

it introduces problems that need to be solved and issues to

be addressed

It’s nice to have a simple abstraction

Shuffling data between disk and memory (high-speed temporary

storage)

0123

8

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Issues With The Files Abstraction

Naming

organized for fast access

Allocating space on disk (permanent storage)

Coping with crashes

minimize waste

device-independence

text

(code)

stack

data

low memory

address

dynamic

(heap)

high memory

address

Code

Data

0123

9

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Abstraction Example: Programs

Application programmers use the Address Space abstraction:

text

(code)

stack

data

low memory

address

dynamic

(heap)

high memory

address

Code

Data

0123

10

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Abstraction Example: Programs

Application programmers use the Address Space abstraction:

our address space is

up-side-down (compared

with the textbook)

Very important:

low address at the top

high address at the bottom

stack looks like a "stack"

our textbook does it the other way

memory layout matches

an array

This is not the only possible

memory layout

compiler decides!

Disk Disk

Memory

Application programmers do not have to worry about any

sharing that’s going on
0123

11

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Abstraction Example: Programs

data

text

(code)

stack

dynamic

(heap)

0123

12

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Sharing Option 1

Program 1

Program 2

Program 3

Operating

System

Physical Memory

Does not appear to be very flexible

Program 3

0123

13

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Memory Sharing Option 2

Physical Memory

What if programs take up too much space (more than physical

memory)?

Program 1

Program 2

0123

14

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Memory

Program 1

Program 2

Program 3

Disk Disk

Memory

virtual memory map

part hardware, part OS

each program thinks

it has its own full

address space

0123

15

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Virtual Memory

Program 1

Program 2

Program 3

Disk Disk

Memory

virtual memory map

part hardware, part OS

each program thinks

it has its own full

address space

VA

PA

VA: virtual address

PA: physical address

If you only have one processor, how do you run multiple "programs"

and every program thinks it owns the processor?

0123

16

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Sharing of Processor: Concurrency

Processor

Virtual Processor

(or thread)

Virtual Processor

(or thread)

Virtual Processor

(or thread)

abstraction: threads (or "threads of execution")

How do you suspend a thread (save execution context) so you

can resume its execution later (restore execution context)?

0123

17

 Operating Systems - CSCI 402

 Copyright © William C. Cheng

Sharing of Processors: Parallelism

Processor

Virtual Processor

(or thread)

Virtual Processor

(or thread)

Virtual Processor

(or thread)

Processor Processor

What if you have a multicore processor or multiple processors?

we don’t distinguish concurrency and parallelism in this class

can still use threads

but we need to worry about how well we do resource

(processor) management/allocation

